
REVERSE ENGINEERING OF METABOLIC PATHWAYS FROM
OBSERVED DATA USING GENETIC PROGRAMMING

John R. Koza

Biomedical Informatics, Department of Medicine
Department of Electrical Engineering

Stanford University, Stanford, California, koza@stanford.edu
William Mydlowec

Genetic Programming Inc., Los Altos, California, myd@cs.stanford.edu
Guido Lanza

Genetic Programming Inc., Los Altos, California, guidissimo@hotmail.com
Jessen Yu

Genetic Programming Inc., Los Altos, California, jyu@cs.stanford.edu
Martin A. Keane

Econometrics Inc., Chicago, Illinois, makeane@ix.netcom.com

Recent work has demonstrated that genetic programming is

capable of automatically creating complex networks (such as
analog electrical circuits and controllers) whose behavior is
modeled by linear and non-linear continuous-time differential
equations and whose behavior matches prespecified output
values. The concentrations of substances participating in
networks of chemical reactions are also modeled by non-linear
continuous-time differential equations. This paper
demonstrates that it is possible to automatically create (reverse
engineer) a network of chemical reactions from observed time-
domain data. Genetic programming starts with observed time-
domain concentrations of input substances and automatically
creates both the topology of the network of chemical reactions
and the rates of each reaction within the network such that the
concentration of the final product of the automatically created
network matches the observed time-domain data. Specifically,
genetic programming automatically created metabolic
pathways involved in the phospholipid cycle and the synthesis
and degradation of ketone bodies.

1. Introduction
A living cell can be viewed as a dynamical system in which a large number of
different substances react continuously and non-linearly with one another. In order
to understand the behavior of a continuous non-linear dynamical system with
numerous interacting parts, it is usually insufficient to study behavior of each part in
isolation. Instead, the behavior must usually be analyzed as a whole (Tomita et al.
1999).

Considerable amounts of time-domain data are now becoming available
concerning the concentration of biologically important chemicals in living
organisms. Such data include both gene expression data (obtained from microarrays)
and data on the concentration of substances participating in metabolic pathways
(Ptashne 1992; McAdams. and Shapiro 1995; Loomis and Sternberg 1995; Arkin,
Shen, and Ross 1997; Yuh, Bolouri, and Davidson 1998; Laing, Fuhrman, and
Somogyi 1998; D'haeseleer, Wen, Fuhrman, and Somogyi 1999).

The concentrations of substrates, products, intermediate substances, and catalysts
(e.g., enzymes) participating in chemical reactions are modeled by non-linear
continuous-time differential equations, including various first-order and second-
order rate laws, power laws, and the Michaelis-Menten equations (Voit 2000).

The question arises as to whether it is possible to start with observed time-
domain concentrations of product substances and automatically create both the
topology of the network of chemical reactions and the numerical rates for each
reaction of the network. In other words, is it possible to reverse engineer a network
from data?

Intuitively, it might seem difficult or impossible to automatically infer both the
topology and numerical parameters for a complex network from observed data.
However, such intuition may be misleading.

Genetic programming (Koza 1992; Koza, Bennett, Andre, and Keane 1999) is a
method for automatically creating a computer program whose behavior satisfies
certain high-level requirements. Genetic programming starts with a primordial ooze
of thousands of randomly created programs (program trees) and uses the Darwinian
principle of natural selection, crossover (sexual recombination), mutation, gene
duplication, gene deletion, and certain mechanisms of developmental biology to
breed a population of programs over a series of generations.

Recent work has demonstrated that genetic programming can automatically
create complex networks that exhibit prespecified behavior in fields where the
network's behavior is modeled by differential equations (both linear and non-linear)
or by other equations (e.g., Maxwell's equations relevant to antennas).

For example, genetic programming is capable of automatically creating both the
topology and sizing (component values) for analog electrical circuits (e.g., filters,
amplifiers, computational circuits) composed of transistors, capacitors, resistors, and

other components merely by specifying the circuit's output  that is, the output data
values that would be observed if one already had the circuit. This reverse
engineering of circuits from data is performed by genetic programming even though
there is no general mathematical method for creating (synthesizing) both the
topology and sizing (component values) of analog electrical circuits from the
circuit's desired (or observed) behavior (Koza, Bennett, Andre, and Keane 1999).
Seven of the circuits that were created using genetic programming infringe on
previously issued patents. Others duplicate the functionality of previously patented
inventions in novel ways.

As another example, genetic programming is capable of automatically creating
both the topology and sizing (tuning) for controllers composed of time-domain
blocks (e.g., integrators, differentiators, multipliers, adders, delays, gains, leads, and
lags) merely by specifying the controller's effect on the to-be-controlled plant (Koza,
Keane, Yu, Bennett, Mydlowec, and Stiffelman 1999; Koza, Keane, Yu, Bennett,
and Mydlowec 2000). This reverse engineering of controllers is performed by
genetic programming even though there is no general mathematical method for
creating both the topology and sizing for controllers from a high-level statement of
the design goals for the controller. Two of the controllers that were created using
genetic programming infringe on previously issued patents. Several other controllers
designed using genetic programming outperform controllers designed by humans.

As yet another example, it is possible to automatically create antennas composed
of a network of wires merely by specifying the antenna's high-level specifications.
One such antenna has the key features of a type of antenna invented in the early
years of the field of antenna design (Comisky, Yu, and Koza 2000).

Our approach to the problem of automatically creating both the topology and
sizing of a network of chemical reactions involves

(1) establishing a representation involving program trees (composed of functions
and terminals) for chemical networks,

(2) converting each individual program tree in the population into an analog
electrical circuit representing the network of chemical reactions,

(3) obtaining the behavior of the individual network of chemical reactions by
simulating the electrical circuit,

(4) defining a fitness measure that measures how well the behavior of an
individual network matches the observed data, and

(5) applying genetic programming to breed a population of improving program
trees using the fitness measure.

Since the description herein of our methods and results is necessarily severely
limited by space, the authors are simultaneously publishing a considerably longer
technical report that provides additional details and explanatory figures (Koza,
Mydlowec, Lanza, Yu, and Keane 2000).

Section 2 states two illustrative "proof of principle" problems. Section 3 presents
a method of representing networks of chemical reactions with program trees. Section
4 presents the preparatory steps for applying genetic programming to the illustrative
problem. Section 5 presents the results. Section 6 is the conclusion.

2. Statement of Two Illustrative Problems
The goal in the two problems herein is to automatically create (reverse engineer)
both the topology and sizing (defined below) of a network of chemical reactions.

The topology of a network of chemical reactions comprises
• the number of substrates consumed by each reaction,
• the number of products produced by each reaction,
• the pathways supplying the substrates (either from external sources or other

reactions in the network) to each reaction, and
• the pathways dispersing each reaction's products (either to other reactions or

external outputs).
We use the term sizing for a network of chemical reactions to encompass the

determination of all the numerical values specifying the rates of each reaction.
We chose, for the two illustrative problems, two networks that each incorporate

all three of the following noteworthy topological features:
• an internal feedback loop (in which a substance is both consumed and

produced by the reactions in the loop),
• a bifurcation point (where one substance is distributed to two different

reactions), and
• an accumulation point (where one substance is accumulated from two

sources).
The first network (figure 1) consists of four reactions that are part of

phospholipid cycle, as presented in the E-CELL cell simulation model (Tomita et al.
1999). This network's external inputs are glycerol (C00116) and fatty acids
(C00162). The network's final product is diacyl-glycerol (C00165). The network's
four reactions are catalyzed by Glycerol kinase (EC2.7.1.30), Glycerol-1-
phosphatase (EC3.1.3.21), Acylglycerol lipase (EC3.1.1.23), and Triacylglycerol
lipase (EC3.1.1.3).

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95 (1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K =1.45 (1.45)

EC3.1.3.21
K = 1.17 (1.19)

EC2.7.1.30
K = 1.69 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

ATP

C00002

Figure 1 Four reactions from the phospholipid cycle.
To save space, figure 1 shows both the actual network (from the E-CELL model)

and the outcome of the run of genetic programming reported in section 5. The actual
rates (from the E-CELL model) of each reaction are in parenthesis while the (equal
or nearly equal) genetically evolved rates are outside the parenthesis.

The second network (figure 2) consists of three reactions that are involved in the
synthesis and degradation of ketone bodies. This network's external inputs are
acetoacetyl-CoA and Acetyl-CoA. The network's final product is Acetoacetate. The
network's three reactions are catalyzed by 3-oxoacid CoA-transferase (EC 2.8.3.5),
Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5), and Hydroxymethylglutaryl-
CoA lyase (EC 4.1.3.4). Again, to save space, figure 2 shows both the actual
network and the result of the run reported in section 5.

EC4.1.3.5
K = 0.85 (0.85)

INT-1

Acetoacetyl-
CoA

Acetyl-
CoA

Acetyl-
CoA

Acetoacetyl
-CoA

EC2.8.3.5
K = 1.56 (1.56)

OUTPUT
(MEASURED)

EC4.1.3.4
K = 0.70 (0.70)

Hydroxymethylglutaryl-
CoA lyase

Hydroxymethylglutaryl-
CoA synthase

Acetoacetate

3-oxoacid CoA-
transferase

Figure 2 Three reactions for synthesis and degradation of ketone bodies.

3. Representation of Chemical Reaction Networks
Networks of chemical reactions are represented as program trees. Each program tree
represents an interconnected network of reactions involving various substances. A
chemical reaction may consume one or two substances and produce one or two
substances. The consumed substances may be external input substances or
intermediate substances produced by reactions. The chemical reactions, enzymes,
and substances of a network may be represented by a program tree that contains

• internal nodes representing chemical reaction functions,
• internal nodes representing selector functions that select the reaction's first

versus the reaction's second (if any) product,
• external points (leaves) representing substances that are consumed and

produced by a reaction,
• external points (leaves) representing enzyme that catalyzes a reaction, and.
• external points (leaves) representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from the
problem's function set and terminals from the problem's terminal set.

3.1. Repertoire of Functions
There are four chemical reaction functions and two selector functions.

The first argument of each chemical reaction function identifies the enzyme that
catalyzes the reaction. The second argument specifies the reaction's rate. In addition,
there are two, three, or four arguments specifying the substrate(s) and product(s) of
the reaction. Table 1 shows the number of substrate(s) and product(s) and overall
arity for each of the four chemical reaction functions. The runs in this paper use a
first-order and second-order rate law.

Table 1 Four chemical reaction functions.
Function Substrates Products Arity
CR_1_1 1 1 4
CR_1_2 1 2 5
CR_2_1 2 1 5
CR_2_2 2 2 6

Each chemical reaction function returns a list composed of the reaction's one or
two products. The one-argument FIRST function returns the first of the one or two
products produced by the chemical reaction function designated by its argument.
The one-argument SECOND function returns the second of the two products (or, the
first product, if the reaction produces only one product).

3.2. Repertoire of Terminals
Some terminals represent substances (input substances, intermediate substances
created by reactions, and output substances). Other terminals represent the enzymes
that catalyze the chemical reactions. Still other terminals represent numerical
constants for the rates of the reactions.

3.3. Constrained Syntactic Structure
The trees are constructed in accordance with a constrained syntactic structure. The
root of every result-producing branch must be a chemical reaction function. The
enzyme that catalyzes a reaction always appears as the first argument of its chemical
reaction function. A numerical value representing a reaction's rate always appears as
the second argument of its chemical reaction function. The one or two input
arguments to a chemical reaction function can be either a substance terminal or
selector function (FIRST or SECOND). The result of having a selector function as an
input argument is to create a cascade of reactions. The one or two output arguments
to a function must be a substance terminal. The argument to a one-argument selector
function (FIRST or SECOND) is always a function.

For additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000.

4. Preparatory Steps
Before applying genetic programming to a problem of network synthesis, we must
specify (1) the architecture of the program trees, (2) the functions, (3) the terminals,
(4) the fitness measure, (5) control parameters and termination procedure.

4.1. Program Architecture
Each program tree in the initial random population (generation 0) has one result-
producing branch. In subsequent generations, the architecture-altering operations
(patterned after gene duplication and gene deletion in nature) may insert and delete
result-producing branches to particular individual program trees in the population.
Each program tree may have four result-producing branches.

4.2. Function Set
The function set, F, is
F = {CR1_1, CR1_2, CR2_1, CR2_2, FIRST, SECOND}.

4.3. Terminal Set
For the first network, the terminal set, T, is
T = {ℜ, INT_1, INT_2, INT_3, C00116, C00162, C00002, C00165}.

ℜ denotes a perturbable numerical value. In the initial random generation
(generation 0) of a run, each perturbable numerical value is set, individually and
separately, to a random value in a chosen range (from 0.0 and 2.0 here).

INT_1, INT_2, and INT_3 are the concentrations of intermediate substances 1,
2, and 3 (respectively).

For the first network, C00116 is the concentration of glycerol; C00162 is the
concentration of fatty acid; C00002 is the concentration of the cofactor ATP; and
C00165 is the concentration of diacyl-glycerol (the network's final product).

For the second network, the external inputs are acetoacetyl-CoA and Acetyl-CoA
and the output product is Acetoacetate.

4.4. Fitness Measure
Genetic programming is a probabilistic algorithm that searches the space of
compositions of the available functions and terminals under the guidance of a fitness
measure. In order to evaluate the fitness of an individual program tree in the
population, the program tree is converted into a directed graph representing the
network. One reactor (representing the concentration of the substances participating
in the reaction) is inserted into the network for each chemical reaction function that
is encountered in a branch. The reactor is labeled with the reaction's enzyme and
rate. A directed line entering the reactor is added for each of the reaction's one or
two substrate(s). A directed line leaving the reactor is added for each of the
reaction's one or two product(s). The first product of a reaction is selected whenever
a FIRST function is encountered in a branch. The second product of a reaction is
selected whenever a SECOND function is encountered in a branch.

After the network is constructed, it is converted into an analog electrical circuit.
A SPICE netlist is then constructed to represent the circuit. We provide SPICE with
subcircuit definitions to implement all the chemical reaction equations. This SPICE
netlist is wrapped inside an appropriate set of SPICE commands to carry out an
analysis in the time domain. The electrical circuit is then simulated using our
modified version of the original 217,000-line SPICE3 simulator (Quarles, Newton,
Pederson, and Sangiovanni-Vincentelli 1994). We have embedded our modified
version of SPICE as a submodule within our genetic programming system.

Each individual chemical reaction network is exposed to nine test cases. Each
test case consists of the concentrations, over time, of four enzymes (EC2.7.1.30,
EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3) over 30 half-second time steps (table 2).

The data is obtained from the E-CELL cell simulation model (Tomita et al.
1999).

Fitness is the sum, over the 270 fitness cases, of the absolute value of the
difference between the concentration of the end product of the individual reaction
network (i.e., diacyl-glycerol C00165 for the first network and Acetoacetate for the
second network) and the observed concentration (data). The smaller the fitness, the

better. An individual that cannot be simulated by SPICE is assigned a high penalty
value of fitness (10

8
). The number of hits is defined as the number of fitness cases (0

to 270) for which the concentration of the measured substances is within 5% of the
observed data value.

Table 2 Variations in the levels of the four enzymes.
Signal EC2.7.1.30 EC3.1.3.21 EC3.1.1.23 EC3.1.1.3
1 Slope-Up Sawtooth Step-Down Step-Up
2 Slope-Down Step-Up Sawtooth Step-Down
3 Step-Down Slope-Up Slope-Down Step-Up
4 Step-Up Slope-Down Step-Up Step-Down
5 Sawtooth Step-Down Slope-Up Step-Up
6 Sawtooth Step-Down Knock-Out Slope-Up
7 Sawtooth Knock-Out Slope-Up Step-Down
8 Knock-Out Step-Down Slope-Up Sawtooth
9 Step-Down Slope-Up Sawtooth Knock-Out

4.5. Control Parameters and Termination Procedure
The population size, M, is 100,000. The run was manually monitored and manually
terminated when the fitness of many successive best-of-generation individuals
appeared to have reached a plateau. For additional details, see Koza, Mydlowec,
Lanza, Yu, and Keane 2000.

5. Results
5.1. Phospholipid Cycle

The fitness of the best individual from generation 0 (the randomly created initial
population) is 86.4. This individual scores only 126 hits (out of 270). Substance
C00162 (fatty acid) is used as an input substance; however, glycerol (C00116) and
cofactor ATP (C00002) are not. Only two of the four available reactions are used.
This individual contains only one of the three noteworthy topological features of the
actual network, namely the bifurcation of C00162 to two reactions.

The best individual of generation 10 has a fitness of 64.0 and scores 151 hits. It
improves on generation 0 in that it consumes both C00162 (fatty acid) and glycerol
(C00116); however, it contains only two reactions and does not use ATP
(C00002).

In generation 120, the fitness of the best individual is 2.33. This individual has
the same topology as the correct network; however, the numerical rates (sizing) are
not yet correct. Consequently, this individual scores only 255 hits.

The best-of-run individual (shown in figure 1 and the electrical circuit of figure
3) appears in generation 225, has near-zero fitness (0.054) and scores 270 hits. It has

the correct topology. The rates of three of the four reactions match the correct rates
to three significant digits, while the fourth rate is within less than 2% of the correct
rate.

V
+-

Substrate A

Substrate B

Rate

Enzyme

1.69V

K

Glycerol Kinase

1.17V
V

+-

Glycerol-1-phosphatase

Substrate Rate

Enzyme K

V
+-

1.95V

Substrate A

Substrate B

Rate

Enzyme K

Acylglycerol lipase

1.45V

Substrate A

Substrate B

Rate

Enzyme K

V
+-

Triacylglycerol lipase

Glycerol

ATP

Intermediate 1

Fatty Acid

Intermediate 2

Diacyl glycerol

Adder

Adder

Adder

0.5V

1.5V

1.2V

Figure 3 Electrical circuit corresponding to the chemical reaction network.
The six triangles in figure 3 represent integrators. The four rectangles at the right

represent chemical reaction functions (all equivalent here to voltage multipliers).
In the best-of-run network, the rate of the two-substrate, one-product reaction

catalyzed by Triacylglycerol lipase (EC 3.1.1.3) (found at the very bottom of figures
1 and 3) that produces the final product diacyl-glycerol (C00165) is given by

3.1.1.3] EC][2_][00162[45.1]00162[INTC
dt

Cd
= .

The rate of the two-substrate, one-product reaction catalyzed by Acylglycerol
lipase (EC3.1.1.23) that produces intermediate substance INT_2 is

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.1]2_[INTCCC
dt

INTd
= .

The rate of the two-substrate, one-product reaction catalyzed by Glycerol kinase
(EC2.7.1.30) that produces intermediate substance INT_1 in the internal loop is

3.1.3.21] EC][1_[17.1 -2.7.1.30] EC][00002][00116[69.1]1_[INTCC
dt

INTd
= .

The rate of supply and consumption of cofactor ATP (C00002) is

2.7.1.30] EC][00002][00116[69.15.1][CC
dt
ATPd

−=

The rate of supply and consumption of fatty acids (C00162) is

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.12.1]00162[INTCCC
dt

Cd
−= .

The rate of supply, consumption, and production of glycerol (C00116) is
3.1.1.23] EC][00116][00162[95.1-2.7.1.30] EC][00002][00116[69.1-3.1.3.21] EC][1_[17.15.0]00116[CCCCINT

dt
Cd

+=

Notice that genetic programming created the entire metabolic pathway, including
topological features (such as the internal feedback loop, the bifurcation point, and
the accumulation point) and all numerical rate parameter values (sizing). Genetic
programming also determined that two intermediate substances (INT_1 and INT_2)
would be used. Genetic programming did this using only the time-domain
concentration values of C00165 (i.e., diacyl-glycerol, the final product).

Both the topology and sizing of the metabolic pathway were created by using
270 time-domain values of the final product. This example (and the one below)
demonstrate the principle that it is possible to reverse engineer metabolic pathways
from observed data. Note that we have not, at this time, addressed the question of the
minimal number of data points necessary to automatically create a correct metabolic
pathway or whether the requisite amount of data is available in practical situations.

5.2. Synthesis and Degradation of Ketone Bodies
The best individual from the randomly created population of generation 0 has a
fitness value of 76.96 and scores 164 hits. This network contains a bifurcation of one
substance (acetoacetyl-CoA) and two double accumulation points. It employs one
intermediate substance (INT_1).

The best individual from generation 5 has a fitness value of 22.89 and scores 209
hits. This network has the same topology (but incorrect sizing) of the correct
metabolic pathway. In particular, it has the internal loop in which Acetyl-CoA is
produced by the reaction catalyzed by Hydroxymethylglutaryl-CoA lyase (EC
4.1.3.4) and, in turn, consumed by the reaction catalyzed by Hydroxymethylglutaryl-
CoA synthase (EC 4.1.3.5). It employs one intermediate substance (INT_1).

The fitness of the best network of generation 97 has a fitness of 0.000 (and
scores 270 hits). This individual has the same topology as the correct metabolic
pathway and the same rates (to three significant digits) for each of the three
reactions.

For additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000.

6. Conclusion
In summary, driven only by the time-domain concentration values of the final
product (Diacyl-glycerol for the network from the phospholipid cycle and
Acetoacetate for the network for the synthesis and degradation of ketone bodies),
genetic programming created two metabolic pathways, including

• topological features such as the internal feedback loop,
• topological features such as a bifurcation point where one substance is

distributed to two different reactions,
• topological features such as an accumulation point where one substance is

accumulated from two sources, and
• numerical rates (sizing) for all reactions.

References
Arkin, Adam, Shen, Peidong, and Ross, John. 1997. A test case of correlation metric

construction of a reaction pathway from measurements. Science. 277. Pages 1275 -
1279. August 29, 1997.

Comisky, William, Yu, Jessen, and Koza, John. 2000. Automatic synthesis of a wire
antenna using genetic programming. Late Breaking Papers at the 2000 Genetic
and Evolutionary Computation Conference, Las Vegas, Nevada. Pages 179 - 186.

D'haeseleer, Patrik, Wen, Xiling, Fuhrman, Stefanie, and Somogyi, Roland. 1999.
Linear modeling of mRNA expression levels during CNS development and injury.
In Altman, Russ B. Dunker, A. Keith, Hunter, Lawrence, Klein, Teri E., and
Lauderdale, Kevin (editors). Pacific Symposium on Biocomputing '99. Singapore:
World Scientific. Pages 41 - 52.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999.
Genetic Programming III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett, Forrest H III, and Mydlowec,
William. 2000. Automatic creation of human-competitive programs and controllers
by means of genetic programming. Genetic Programming and Evolvable
Machines. (1) 121 - 164.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett, Forrest H III, Mydlowec,
William, and Stiffelman, Oscar. 1999. Automatic synthesis of both the topology
and parameters for a robust controller for a non-minimal phase plant and a three-
lag plant by means of genetic programming. Proceedings of 1999 IEEE
Conference on Decision and Control. Pages 5292 - 5300.

Koza, John R., Mydlowec, William, Lanza, Guido, Yu, Jessen, and Keane, Martin
A. 2000. Reverse Engineering and Automatic Synthesis of Metabolic Pathways
from Observed Data Using Genetic Programming. Stanford Medical Informatics
Technical Report SMI-2000-0851.

Laing, Shoudan, Fuhrman, Stefanie, and Somogyi, Roland. 1998. REVEAL: A
general reverse engineering algorithm for inference of genetic network
architecture. In Altman, Russ B. Dunker, A. Keith, Hunter, Lawrence, and Klein,
Teri E. (editors). Pacific Symposium on Biocomputing '98. Singapore: World
Scientific. Pages 18 - 29.

Loomis, William F. and Sternberg, Paul W. 1995. Genetic networks. Science. 269.
Page 649. August 4, 1995.

McAdams, Harley H. and Shapiro, Lucy. 1995. Circuit simulation of genetic
networks. Science. 269. Pages 650-656. August 4, 1995.

Ptashne, Mark. 1992. A Genetic Switch: Phage λ and Higher Organisms. Second
Edition. Cambridge, MA: Cell Press and Blackwell Scientific Publications.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli, A.
1994. SPICE 3 Version 3F5 User's Manual. Department of Electrical Engineering
and Computer Science, University of California. Berkeley, CA. March 1994.

Tomita, Masaru, Hashimoto, Kenta, Takahashi, Kouichi, Shimizu, Thomas Simon,
Matsuzaki, Yuri, Miyoshi, Fumihiko, Saito, Kanako, Tanida, Sakura, Yugi,
Katsuyuki, Venter, J. Craig, Hutchison, Clyde A. III. 1999. E-CELL: Software
environment for whole cell simulation. Bioinformatics. Volume 15 (1) 72-84.

Voit, Eberhard O. 2000. Computational Analysis of Biochemical Systems.
Cambridge: Cambridge University Press.

Yuh, Chiou-Hwa, Bolouri, Hamid, and Davidson, Eric H. 1998. Genomic cis-
regulatory logic: Experimental and computational analysis of a sea urchin gene.
Science. 279. Pages 1896 - 1902.

