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Recent work has demonstrated that genetic programming is 

capable of automatically creating complex networks (such as 
analog electrical circuits and controllers) whose behavior is 
modeled by linear and non-linear continuous-time differential 
equations and whose behavior matches prespecified output 
values. The concentrations of substances participating in 
networks of chemical reactions are also modeled by non-linear 
continuous-time differential equations. This paper 
demonstrates that it is possible to automatically create (reverse 
engineer) a network of chemical reactions from observed time-
domain data. Genetic programming starts with observed time-
domain concentrations of input substances and automatically 
creates both the topology of the network of chemical reactions 
and the rates of each reaction within the network such that the 
concentration of the final product of the automatically created 
network matches the observed time-domain data. Specifically, 
genetic programming automatically created metabolic 
pathways involved in the phospholipid cycle and the synthesis 
and degradation of ketone bodies.  



1. Introduction 
A living cell can be viewed as a dynamical system in which a large number of 
different substances react continuously and non-linearly with one another. In order 
to understand the behavior of a continuous non-linear dynamical system with 
numerous interacting parts, it is usually insufficient to study behavior of each part in 
isolation. Instead, the behavior must usually be analyzed as a whole (Tomita et al. 
1999).  

Considerable amounts of time-domain data are now becoming available 
concerning the concentration of biologically important chemicals in living 
organisms. Such data include both gene expression data (obtained from microarrays) 
and data on the concentration of substances participating in metabolic pathways 
(Ptashne 1992; McAdams. and Shapiro 1995; Loomis and Sternberg 1995; Arkin, 
Shen, and Ross 1997; Yuh, Bolouri, and Davidson 1998; Laing, Fuhrman, and 
Somogyi 1998; D'haeseleer, Wen, Fuhrman, and Somogyi 1999).  

The concentrations of substrates, products, intermediate substances, and catalysts 
(e.g., enzymes) participating in chemical reactions are modeled by non-linear 
continuous-time differential equations, including various first-order and second-
order rate laws, power laws, and the Michaelis-Menten equations (Voit 2000).  

The question arises as to whether it is possible to start with observed time-
domain concentrations of product substances and automatically create both the 
topology of the network of chemical reactions and the numerical rates for each 
reaction of the network. In other words, is it possible to reverse engineer a network 
from data?  

Intuitively, it might seem difficult or impossible to automatically infer both the 
topology and numerical parameters for a complex network from observed data. 
However, such intuition may be misleading.  

Genetic programming (Koza 1992; Koza, Bennett, Andre, and Keane 1999) is a 
method for automatically creating a computer program whose behavior satisfies 
certain high-level requirements. Genetic programming starts with a primordial ooze 
of thousands of randomly created programs (program trees) and uses the Darwinian 
principle of natural selection, crossover (sexual recombination), mutation, gene 
duplication, gene deletion, and certain mechanisms of developmental biology to 
breed a population of programs over a series of generations.  

Recent work has demonstrated that genetic programming can automatically 
create complex networks that exhibit prespecified behavior in fields where the 
network's behavior is modeled by differential equations (both linear and non-linear) 
or by other equations (e.g., Maxwell's equations relevant to antennas).  

For example, genetic programming is capable of automatically creating both the 
topology and sizing (component values) for analog electrical circuits (e.g., filters, 
amplifiers, computational circuits) composed of transistors, capacitors, resistors, and 



other components merely by specifying the circuit's output  that is, the output data 
values that would be observed if one already had the circuit. This reverse 
engineering of circuits from data is performed by genetic programming even though 
there is no general mathematical method for creating (synthesizing) both the 
topology and sizing (component values) of analog electrical circuits from the 
circuit's desired (or observed) behavior (Koza, Bennett, Andre, and Keane 1999). 
Seven of the circuits that were created using genetic programming infringe on 
previously issued patents. Others duplicate the functionality of previously patented 
inventions in novel ways.  

As another example, genetic programming is capable of automatically creating 
both the topology and sizing (tuning) for controllers composed of time-domain 
blocks (e.g., integrators, differentiators, multipliers, adders, delays, gains, leads, and 
lags) merely by specifying the controller's effect on the to-be-controlled plant (Koza, 
Keane, Yu, Bennett, Mydlowec, and Stiffelman 1999; Koza, Keane, Yu, Bennett, 
and Mydlowec 2000). This reverse engineering of controllers is performed by 
genetic programming even though there is no general mathematical method for 
creating both the topology and sizing for controllers from a high-level statement of 
the design goals for the controller. Two of the controllers that were created using 
genetic programming infringe on previously issued patents. Several other controllers 
designed using genetic programming outperform controllers designed by humans.  

As yet another example, it is possible to automatically create antennas composed 
of a network of wires merely by specifying the antenna's high-level specifications. 
One such antenna has the key features of a type of antenna invented in the early 
years of the field of antenna design (Comisky, Yu, and Koza 2000).  

Our approach to the problem of automatically creating both the topology and 
sizing of a network of chemical reactions involves 

(1) establishing a representation involving program trees (composed of functions 
and terminals) for chemical networks,  

(2) converting each individual program tree in the population into an analog 
electrical circuit representing the network of chemical reactions,  

(3) obtaining the behavior of the individual network of chemical reactions by 
simulating the electrical circuit,  

(4) defining a fitness measure that measures how well the behavior of an 
individual network matches the observed data, and 

(5) applying genetic programming to breed a population of improving program 
trees using the fitness measure.  

Since the description herein of our methods and results is necessarily severely 
limited by space, the authors are simultaneously publishing a considerably longer 
technical report that provides additional details and explanatory figures (Koza, 
Mydlowec, Lanza, Yu, and Keane 2000).  



Section 2 states two illustrative "proof of principle" problems. Section 3 presents 
a method of representing networks of chemical reactions with program trees. Section 
4 presents the preparatory steps for applying genetic programming to the illustrative 
problem. Section 5 presents the results. Section 6 is the conclusion.  

2. Statement of Two Illustrative Problems 
The goal in the two problems herein is to automatically create (reverse engineer) 
both the topology and sizing (defined below) of a network of chemical reactions.  

The topology of a network of chemical reactions comprises  
• the number of substrates consumed by each reaction,  
• the number of products produced by each reaction,  
• the pathways supplying the substrates (either from external sources or other 

reactions in the network) to each reaction, and  
• the pathways dispersing each reaction's products (either to other reactions or 

external outputs).  
We use the term sizing for a network of chemical reactions to encompass the 

determination of all the numerical values specifying the rates of each reaction.  
We chose, for the two illustrative problems, two networks that each incorporate 

all three of the following noteworthy topological features:  
• an internal feedback loop (in which a substance is both consumed and 

produced by the reactions in the loop),  
• a bifurcation point (where one substance is distributed to two different 

reactions), and  
• an accumulation point (where one substance is accumulated from two 

sources).  
The first network (figure 1) consists of four reactions that are part of 

phospholipid cycle, as presented in the E-CELL cell simulation model (Tomita et al. 
1999). This network's external inputs are glycerol (C00116) and fatty acids 
(C00162). The network's final product is diacyl-glycerol (C00165). The network's 
four reactions are catalyzed by Glycerol kinase (EC2.7.1.30), Glycerol-1-
phosphatase (EC3.1.3.21), Acylglycerol lipase (EC3.1.1.23), and Triacylglycerol 
lipase (EC3.1.1.3).  
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Figure 1 Four reactions from the phospholipid cycle.   
To save space, figure 1 shows both the actual network (from the E-CELL model) 

and the outcome of the run of genetic programming reported in section 5. The actual 
rates (from the E-CELL model) of each reaction are in parenthesis while the (equal 
or nearly equal) genetically evolved rates are outside the parenthesis.  

The second network (figure 2) consists of three reactions that are involved in the 
synthesis and degradation of ketone bodies. This network's external inputs are 
acetoacetyl-CoA and Acetyl-CoA. The network's final product is Acetoacetate. The 
network's three reactions are catalyzed by 3-oxoacid CoA-transferase (EC 2.8.3.5), 
Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5), and Hydroxymethylglutaryl-
CoA lyase (EC 4.1.3.4). Again, to save space, figure 2 shows both the actual 
network and the result of the run reported in section 5.  
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Figure 2 Three reactions for synthesis and degradation of ketone bodies.   



3. Representation of Chemical Reaction Networks 
Networks of chemical reactions are represented as program trees. Each program tree 
represents an interconnected network of reactions involving various substances. A 
chemical reaction may consume one or two substances and produce one or two 
substances. The consumed substances may be external input substances or 
intermediate substances produced by reactions. The chemical reactions, enzymes, 
and substances of a network may be represented by a program tree that contains  

• internal nodes representing chemical reaction functions, 
• internal nodes representing selector functions that select the reaction's first 

versus the reaction's second (if any) product,  
• external points (leaves) representing substances that are consumed and 

produced by a reaction, 
• external points (leaves) representing enzyme that catalyzes a reaction, and.  
• external points (leaves) representing numerical constants (reaction rates).  

Each program tree in the population is a composition of functions from the 
problem's function set and terminals from the problem's terminal set.  

3.1. Repertoire of Functions 
There are four chemical reaction functions and two selector functions. 

The first argument of each chemical reaction function identifies the enzyme that 
catalyzes the reaction. The second argument specifies the reaction's rate. In addition, 
there are two, three, or four arguments specifying the substrate(s) and product(s) of 
the reaction. Table 1 shows the number of substrate(s) and product(s) and overall 
arity for each of the four chemical reaction functions. The runs in this paper use a 
first-order and second-order rate law.  

Table 1 Four chemical reaction functions.  
Function Substrates Products Arity 
CR_1_1 1 1 4 
CR_1_2 1 2 5 
CR_2_1 2 1 5 
CR_2_2 2 2 6 

Each chemical reaction function returns a list composed of the reaction's one or 
two products. The one-argument FIRST function returns the first of the one or two 
products produced by the chemical reaction function designated by its argument. 
The one-argument SECOND function returns the second of the two products (or, the 
first product, if the reaction produces only one product).  



3.2. Repertoire of Terminals 
Some terminals represent substances (input substances, intermediate substances 
created by reactions, and output substances). Other terminals represent the enzymes 
that catalyze the chemical reactions. Still other terminals represent numerical 
constants for the rates of the reactions.  

3.3. Constrained Syntactic Structure 
The trees are constructed in accordance with a constrained syntactic structure. The 
root of every result-producing branch must be a chemical reaction function. The 
enzyme that catalyzes a reaction always appears as the first argument of its chemical 
reaction function. A numerical value representing a reaction's rate always appears as 
the second argument of its chemical reaction function. The one or two input 
arguments to a chemical reaction function can be either a substance terminal or 
selector function (FIRST or SECOND). The result of having a selector function as an 
input argument is to create a cascade of reactions. The one or two output arguments 
to a function must be a substance terminal. The argument to a one-argument selector 
function (FIRST or SECOND) is always a function.  

For additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000. 

4. Preparatory Steps 
Before applying genetic programming to a problem of network synthesis, we must 
specify (1) the architecture of the program trees, (2) the functions, (3) the terminals, 
(4) the fitness measure, (5) control parameters and termination procedure.  

4.1. Program Architecture 
Each program tree in the initial random population (generation 0) has one result-
producing branch. In subsequent generations, the architecture-altering operations 
(patterned after gene duplication and gene deletion in nature) may insert and delete 
result-producing branches to particular individual program trees in the population. 
Each program tree may have four result-producing branches.  

4.2. Function Set 
The function set, F, is 
F = {CR1_1, CR1_2, CR2_1, CR2_2, FIRST, SECOND}.  

4.3. Terminal Set 
For the first network, the terminal set, T, is 
T = {ℜ, INT_1, INT_2, INT_3, C00116, C00162, C00002, C00165}.  



ℜ denotes a perturbable numerical value. In the initial random generation 
(generation 0) of a run, each perturbable numerical value is set, individually and 
separately, to a random value in a chosen range (from 0.0 and 2.0 here).  

INT_1, INT_2, and INT_3 are the concentrations of intermediate substances 1, 
2, and 3 (respectively).  

For the first network, C00116 is the concentration of glycerol; C00162 is the 
concentration of fatty acid; C00002 is the concentration of the cofactor ATP; and 
C00165 is the concentration of diacyl-glycerol (the network's final product).  

For the second network, the external inputs are acetoacetyl-CoA and Acetyl-CoA 
and the output product is Acetoacetate.  

4.4. Fitness Measure 
Genetic programming is a probabilistic algorithm that searches the space of 
compositions of the available functions and terminals under the guidance of a fitness 
measure. In order to evaluate the fitness of an individual program tree in the 
population, the program tree is converted into a directed graph representing the 
network. One reactor (representing the concentration of the substances participating 
in the reaction) is inserted into the network for each chemical reaction function that 
is encountered in a branch. The reactor is labeled with the reaction's enzyme and 
rate. A directed line entering the reactor is added for each of the reaction's one or 
two substrate(s). A directed line leaving the reactor is added for each of the 
reaction's one or two product(s). The first product of a reaction is selected whenever 
a FIRST function is encountered in a branch. The second product of a reaction is 
selected whenever a SECOND function is encountered in a branch.  

After the network is constructed, it is converted into an analog electrical circuit. 
A SPICE netlist is then constructed to represent the circuit. We provide SPICE with 
subcircuit definitions to implement all the chemical reaction equations. This SPICE 
netlist is wrapped inside an appropriate set of SPICE commands to carry out an 
analysis in the time domain. The electrical circuit is then simulated using our 
modified version of the original 217,000-line SPICE3 simulator (Quarles, Newton, 
Pederson, and Sangiovanni-Vincentelli 1994). We have embedded our modified 
version of SPICE as a submodule within our genetic programming system.  

Each individual chemical reaction network is exposed to nine test cases. Each 
test case consists of the concentrations, over time, of four enzymes (EC2.7.1.30, 
EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3) over 30 half-second time steps (table 2).  

The data is obtained from the E-CELL cell simulation model (Tomita et al. 
1999). 

Fitness is the sum, over the 270 fitness cases, of the absolute value of the 
difference between the concentration of the end product of the individual reaction 
network (i.e., diacyl-glycerol C00165 for the first network and Acetoacetate for the 
second network) and the observed concentration (data). The smaller the fitness, the 



better. An individual that cannot be simulated by SPICE is assigned a high penalty 
value of fitness (10

8
). The number of hits is defined as the number of fitness cases (0 

to 270) for which the concentration of the measured substances is within 5% of the 
observed data value.  

Table 2 Variations in the levels of the four enzymes.  
Signal EC2.7.1.30 EC3.1.3.21 EC3.1.1.23 EC3.1.1.3 
1 Slope-Up Sawtooth Step-Down Step-Up 
2 Slope-Down Step-Up Sawtooth Step-Down 
3 Step-Down Slope-Up Slope-Down Step-Up 
4 Step-Up Slope-Down Step-Up Step-Down 
5 Sawtooth Step-Down Slope-Up Step-Up 
6 Sawtooth Step-Down Knock-Out Slope-Up 
7 Sawtooth Knock-Out Slope-Up Step-Down 
8 Knock-Out Step-Down Slope-Up Sawtooth 
9 Step-Down Slope-Up Sawtooth Knock-Out 

4.5. Control Parameters and Termination Procedure 
The population size, M, is 100,000. The run was manually monitored and manually 
terminated when the fitness of many successive best-of-generation individuals 
appeared to have reached a plateau. For additional details, see Koza, Mydlowec, 
Lanza, Yu, and Keane 2000.  

5. Results 
5.1. Phospholipid Cycle 

The fitness of the best individual from generation 0 (the randomly created initial 
population) is 86.4. This individual scores only 126 hits (out of 270). Substance 
C00162 (fatty acid) is used as an input substance; however, glycerol (C00116) and 
cofactor ATP (C00002) are not. Only two of the four available reactions are used. 
This individual contains only one of the three noteworthy topological features of the 
actual network, namely the bifurcation of C00162 to two reactions.  

The best individual of generation 10 has a fitness of 64.0 and scores 151 hits. It 
improves on generation 0 in that it consumes both C00162 (fatty acid) and glycerol 
(C00116); however, it contains only two reactions and does not use ATP 
(C00002).  

In generation 120, the fitness of the best individual is 2.33. This individual has 
the same topology as the correct network; however, the numerical rates (sizing) are 
not yet correct. Consequently, this individual scores only 255 hits.  

The best-of-run individual (shown in figure 1 and the electrical circuit of figure 
3) appears in generation 225, has near-zero fitness (0.054) and scores 270 hits. It has 



the correct topology. The rates of three of the four reactions match the correct rates 
to three significant digits, while the fourth rate is within less than 2% of the correct 
rate.  
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Figure 3 Electrical circuit corresponding to the chemical reaction network.   
The six triangles in figure 3 represent integrators. The four rectangles at the right 

represent chemical reaction functions (all equivalent here to voltage multipliers).  
In the best-of-run network, the rate of the two-substrate, one-product reaction 

catalyzed by Triacylglycerol lipase (EC 3.1.1.3) (found at the very bottom of figures 
1 and 3) that produces the final product diacyl-glycerol (C00165) is given by 

3.1.1.3] EC][2_][00162[45.1]00162[ INTC
dt

Cd
= . 

The rate of the two-substrate, one-product reaction catalyzed by Acylglycerol 
lipase (EC3.1.1.23) that produces intermediate substance INT_2 is  

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.1]2_[ INTCCC
dt

INTd
= . 

The rate of the two-substrate, one-product reaction catalyzed by Glycerol kinase 
(EC2.7.1.30) that produces intermediate substance INT_1 in the internal loop is  

3.1.3.21] EC][1_[17.1 -2.7.1.30] EC][00002][00116[69.1]1_[ INTCC
dt

INTd
= . 

The rate of supply and consumption of cofactor ATP (C00002) is  



2.7.1.30] EC][00002][00116[69.15.1][ CC
dt
ATPd

−=  

The rate of supply and consumption of fatty acids (C00162) is 

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.12.1]00162[ INTCCC
dt

Cd
−= . 

The rate of supply, consumption, and production of glycerol (C00116) is 
3.1.1.23] EC][00116][00162[95.1-2.7.1.30] EC][00002][00116[69.1-3.1.3.21] EC][1_[17.15.0]00116[ CCCCINT

dt
Cd

+=  

Notice that genetic programming created the entire metabolic pathway, including 
topological features (such as the internal feedback loop, the bifurcation point, and 
the accumulation point) and all numerical rate parameter values (sizing). Genetic 
programming also determined that two intermediate substances (INT_1 and INT_2) 
would be used. Genetic programming did this using only the time-domain 
concentration values of C00165 (i.e., diacyl-glycerol, the final product).  

Both the topology and sizing of the metabolic pathway were created by using 
270 time-domain values of the final product. This example (and the one below) 
demonstrate the principle that it is possible to reverse engineer metabolic pathways 
from observed data. Note that we have not, at this time, addressed the question of the 
minimal number of data points necessary to automatically create a correct metabolic 
pathway or whether the requisite amount of data is available in practical situations.  

5.2. Synthesis and Degradation of Ketone Bodies 
The best individual from the randomly created population of generation 0 has a 
fitness value of 76.96 and scores 164 hits. This network contains a bifurcation of one 
substance (acetoacetyl-CoA) and two double accumulation points. It employs one 
intermediate substance (INT_1).  

The best individual from generation 5 has a fitness value of 22.89 and scores 209 
hits. This network has the same topology (but incorrect sizing) of the correct 
metabolic pathway. In particular, it has the internal loop in which Acetyl-CoA is 
produced by the reaction catalyzed by Hydroxymethylglutaryl-CoA lyase (EC 
4.1.3.4) and, in turn, consumed by the reaction catalyzed by Hydroxymethylglutaryl-
CoA synthase (EC 4.1.3.5). It employs one intermediate substance (INT_1).  

The fitness of the best network of generation 97 has a fitness of 0.000 (and 
scores 270 hits). This individual has the same topology as the correct metabolic 
pathway and the same rates (to three significant digits) for each of the three 
reactions.  

For additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000.  



6. Conclusion 
In summary, driven only by the time-domain concentration values of the final 
product (Diacyl-glycerol for the network from the phospholipid cycle and 
Acetoacetate for the network for the synthesis and degradation of ketone bodies), 
genetic programming created two metabolic pathways, including  

• topological features such as the internal feedback loop,  
• topological features such as a bifurcation point where one substance is 

distributed to two different reactions,  
• topological features such as an accumulation point where one substance is 

accumulated from two sources, and  
• numerical rates (sizing) for all reactions. 
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