
1

EVOLUTION OF FOOD FORAGING STRATEGIES FOR THE CARIBBEAN
ANOLIS LIZARD USING GENETIC PROGRAMMING

John R. Koza

Computer Science Department
Margaret Jacks Hall
Stanford University

Stanford, California 94305 USA
 Koza@Sunburn.Stanford.Edu

415-941-0336
James P. Rice

Stanford University Knowledge Systems Laboratory
701 Welch Road

Palo Alto, California 94304 USA
Rice@Sumex-Aim.Stanford.Edu

415-723-8405
Jonathan Roughgarden

Department of Biological Sciences
Herrin Hall

Stanford University
Stanford, California 94305 USA
 Rough@Pangea.Stanford.Edu

415-723-3648

Abstract
This paper describes the recently developed genetic programming paradigm which

genetically breeds a population of computer programs to solve problems. The paper then shows,
step by step, how to apply genetic programming to a problem of behavioral ecology in biology –
specifically, two versions of the problem of finding an optimal food foraging strategy for the
Caribbean Anolis lizard. A simulation of the adaptive behavior of the lizard is required to
evaluate each possible adaptive control strategy considered for the lizard. The foraging strategy
produced by genetic programming is close to the mathematical solution for the one version for
which the solution is known and appears to be a reasonable approximation to the solution for the
second version of the problem.

Acknowledgments
The collaborative work contained in this paper is the outgrowth of the Founding Workshop in
Adaptive Computation held at the Santa Fe Institute on March 10-15, 1992. This paper has been

2

submitted to the Simulation of Adaptive Behavior journal published by The MIT Press.

3

1 Introduction and Overview
Organisms in nature often possess an optimally designed anatomical trait. For example, a bird's
wing may be shaped to maximize lift or a leaf may be shaped to maximize interception of light.
In such instances, natural selection caused the population to accumulate genes whose expression
led to the observed optimal anatomy. But what of behavior? Certainly in most vertebrates and
many invertebrates, behavior is not a direct expression of genes, but instead reflects the result of
experience accumulated during the animal's life. Ecologists have, over the years, observed
numerous behaviors in nature that closely agree with analytical calculations of optimal behavior
or near optimal behavior. The question arises as to whether such optimal behavior be attained by
means of accumulating environmental experience. This paper offers a demonstration of one way
in which optimal behavior, specifically optimal behavior in foraging for food, may be attained as
a result of accumulating environmental experience during the animal's life.

The green, grey, and brown lizards of the genus Anolis in the Caribbean islands occupy the
ecological niche occupied in North America and Europe by ground-feeding insectivorous birds,
such as robins and blue jays. These anoles are "sit and wait" predators typically perch head-
down on tree trunks and scan the ground for desirable insects to eat (Ehrlich and Roughgarden
1987, Roughgarden 1989). Figure 1 shows an anole perched head-down on a tree trunk.

Figure 1 Anole lizard perched head-down on a tree trunk.

The optimal foraging strategy for such lizards in their environment is the behavioral rule
which, when followed repetitively by a lizard, yields the maximum amount of food for the lizard.
A possible foraging strategy is to attack prey according to a criteria or policy that minimizes the
average time invested per captured item of prey.

Insects appear probabilistically within the lizard's viewing area. The lizard sees all insects

4

that are in the 180° planar area visible from the lizard's perch. If insects only rarely alight within
the lizard's viewing area, it would seem advantageous for the lizard unconditionally to chase
every insect that it sees. If insects are abundant, the lizard should certainly chase every nearby
insect. However, if insects are abundant and the lizard chases a distant insect, the lizard will be
away from its perch for so long that it will forgo the possibility of chasing and eating a greater
number of nearby insects. This suggests ignoring distant insects. However, there is no
guarantee that any insects will appear nearby during the period of time just after the lizard
decides to forgo a distant insect.

The question arises as to what is the optimal tradeoff among these competing considerations.
The optimal strategy for the lizard is a function of four variables, namely the probability of
appearance of the prey per square meter per second (called the abundance a), the lizard's sprint
velocity v (in meters per second), and the location of the insect within the lizard's planar viewing
area (expressed via its two x-y coordinates). Thus, this problem involves finding a function of
four variables that optimizes the average time spent per food item eaten by the lizard.
Determining what food is eaten when the lizard pursues a particular foraging policy requires a
simulation of adaptive behavior.

In section 2, we analytically derive an optimal control strategy for the lizard. In section 3,
we provide background on genetic algorithms. In section 4, we describe the recently developed
genetic programming paradigm. In section 5, we show the steps required to prepare to use
genetic programming to solve a problem. In section 6, we use genetic programming to
genetically breed a foraging strategy for a version of this problem for which the optimal strategy
is known. In section 7, we breed a foraging strategy for which the optimal strategy is not known.

2 The Optimal Foraging Strategy
Time is used while the lizard waits for prey to appear and while the lizard chases the insect and
returns to its perch. We consider a model in which all prey items are identical and the amount of
time spent waiting for prey is calorically equivalent to a unit of time spent chasing a prey, so that
minimizing time maximizes the energy yield per unit of time. A physiologically more elaborate
energy model for the lizard appears in Roughgarden 1992. Moreover, for the values of
abundance appropriate to this model, insects are sufficiently rare that the lizard can be assumed
to start every chase from its perch.

In the first version of this problem, the lizard always catches the insect if the lizard decides
to chase the insect. The functional form of the optimal strategy for the lizard for this version of
the problem must be a semicircle. Thus, this version of the problem reduces to finding the cutoff
radius rc for the semicircle such that insects are chased if they are closer than this value and
ignored if they are farther than this value.

The average waiting time between the appearance of insects within the semicircle of radius r
is

1

⌡⌠
0

r c

 aπrdr

 .

The average pursuit time is the integral from 0 to rc of the product of the probability that an
insect is at distance r times the pursuit time, 2r/v, for the insect at distance r, namely

5

⌡
⌠

0

rc

 aπr

⌡⌠
0

r c

 aπrdr

2r
v dr

6

The average waiting time w spent per insect captured is the sum of the average pursuit time
and the average waiting time between the appearance of insects, namely

w =
1

⌡⌠
0

r c

 aπrdr

 +

⌡
⌠

0

rc

 aπr

⌡⌠
0

r c

 aπrdr

2r
v dr .

For example 1 of this problem, Roughgarden was able to do the integration required and
obtain

w =
2

aπrc2 +
4rc
3v

The optimal foraging distance r* is the value of rc that minimizes w. The minimum value of
w occurs when the cutoff radius rc is equal to

3√(
3v
πa

) .

The optimal control strategy for specifying when the lizard should decide to chase an insect
can be expressed in terms of a function returning +1 for a point (x,y) in the lizard's viewing area
for which it is advisable for the lizard to initiate a chase and returning -1 for points for which it is
advisable to ignore the insect. Thus, if an insect appears at position (x,y) in the 180° area visible
from the lizard's perch (0,0), the optimal foraging strategy is

Sig [3√(
3v
πa

) – 2√(x2 + y2)].

where Sig is the sign function that returns +1 for a positive argument and –1 otherwise. That is,
the lizard should chase the insect if the insect lies inside the semicircle centered at the lizard's
perch of radius r*.

Figure 2 shows this optimal foraging strategy via the switching curve (i.e., semicircle) which
partitions the half plane into the +1 (chase) region and the –1 (ignore) region. In this figure, we
show an insect at position (x1,y1) that is in the –1 (ignore) region of the lizard's 20 meter by 10
meter viewing area.

Figure 3 shows the result of applying the optimal control strategy for one experiment lasting
300 seconds in the particular case where the probability of appearance of the prey (i.e., the
abundance a) is 0.003 per square meter per second and where the lizard's sprint velocity v is 1.5
meters per second. Of the 180 insects shown as dots that appear in this 200 square meter area
during this 300-second experiment, 91 are inside the semicircle and about 89 are outside the
semicircle. Thirty-one of the 91 insects inside the semicircle are actually chased and eaten and
are shown as larger dots. Sixty of the 91 insects appear in the semicircular "chase" region while
the lizard is away from its perch and are shown as small dots.

Finding the above mathematical expression in closed form for the optimal strategy for this
first version of the foraging problem depended on the realization that the functional form of the

7

solution was a semicircle and our being able to perform the required integration.

(x ,y)1 1

r*

Ignore

Chase

y

x

+10

-10

+10
(0,0)

Figure 2 Switching curve for optimal foraging strategy for example 1.

r*

Ignore

Chase

y

x

+10

-10

+10
(0,0)

Figure 3 Performance of the optimal foraging strategy for example 1.

8

3 Background on Genetic Algorithms
John Holland's pioneering Adaptation in Natural and Artificial Systems [1975] described how
the evolutionary process in nature can be applied to artificial systems using the genetic algorithm
operating on fixed length character strings. Holland demonstrated that a population of fixed
length character strings (each representing a proposed solution to a problem) can be genetically
bred using the Darwinian operation of fitness proportionate reproduction and the genetic
operation of recombination. The recombination operation combines parts of two chromosome-
like fixed length character strings, each selected on the basis of their fitness, to produce new
offspring strings. Holland established, among other things, that the genetic algorithm is a
mathematically near optimal approach to adaptation in that it maximizes expected overall
average payoff when the adaptive process is viewed as a multi-armed slot machine problem
requiring an optimal allocation of future trials given the currently available information.

Genetic algorithms are an efficient way to search a highly non-linear multi-dimensional
space. A good overview of the many practical applications of the genetic algorithm operating on
fixed length character strings (and other variants of the genetic algorithm) can be found in
Goldberg [1989], Davis [1987,1991], Belew and Booker [1991], and Rawlins [1991].
Applications of the genetic algorithm involving simulation of adaptive behavior can be found in
Meyer and Wilson [1991].

4 Background on Genetic Programming
For many problems, the most natural representation for solutions are computer programs. The
size, shape, and contents of the computer program to solve the problem is generally not known in
advance. The computer program that solves a given problem is typically a hierarchical
composition of various functions and typically takes the state variables of the system as inputs.

In Genetic Programming: On the Programming of Computers by Means of Natural
Selection and Genetics [Koza 1992a] and elsewhere [Koza 1989, 1992b], we have shown that
computer programs can be genetically bred to solve problems in a surprising variety of areas,
including
• optimal control (e.g., centering a cart and balancing a broom on a moving cart in minimal time

by applying a "bang bang" force to the cart [Koza and Keane 1990] and backing a tractor-
trailer truck to a loading dock [Koza 1992a],

• planning (e.g., navigating an artificial ant along a trail) [Koza 1991a],
• finding minimax strategies for games (e.g., differential pursuer-evader games, discrete games

in extensive form) by both evolution and co-evolution [Koza 1991b],
• evolving robotic action plans in the style of the subsumption architecture (e.g., a wall

following strategy for a robot with sonar sensors in an irregular room) [Koza 1992d],
• empirical discovery (e.g., rediscovering Kepler's Third Law, rediscovering the well-known

non-linear econometric "exchange equation" MV = PQ from actual, noisy time series data for
the money supply, the velocity of money, the price level, and the gross national product of an
economy),

• discovering inverse kinematic equations (e.g., to move a robot arm to designated target points),
• simultaneous architectural design and training of neural networks [Koza and Rice 1991a].

A videotape visualization of various applications of genetic programming can be found in
Koza and Rice [1991b, 1992].

9

4.1 Objects used in Genetic Programming
In genetic programming, the individuals in the population are compositions of functions and
terminals appropriate to the particular problem domain. The set of functions used typically
includes arithmetic operations, mathematical functions, conditional logical operations, and
domain-specific functions. The set of terminals used typically includes inputs appropriate to the
problem domain and various constants. Each function in the function set should be well defined
for any combination of elements from the range of every function that it may encounter and
every terminal that it may encounter.

The compositions of functions and terminals described above correspond directly to the
parse tree that is internally created by most compilers and to the programs found in programming
languages such as LISP (where they are called symbolic expressions or S-expressions).

In genetic programming, we view the search for a solution to the problem as a search in the
space of all possible compositions of functions that can be recursively composed of the available
functions and terminals.

4.2 Steps Required to Execute the Genetic Programming
Genetic programming, like the conventional genetic algorithm, is a domain independent method.
It proceeds by genetically breeding populations of computer programs by executing the
following three steps:
(1) Generate an initial population of random compositions of the functions and terminals of the

problem (i.e., computer programs).
(2) Iteratively perform the following sub-steps until a termination criterion has been satisfied:

(a) Execute each program in the population and assign it a fitness value according to
how well it solves the problem.

(b) Create a new population of computer programs by applying the following two
operations. The operations are applied to computer program(s) in the population
chosen with a probability based on fitness.
(i) Reproduction: Copy existing computer programs to the new population.
(ii) Crossover: Create new computer programs by genetically recombining

randomly chosen parts of two existing programs.
(3) The single best computer program in the population at the time of termination is designated

as the result of the run of genetic programming. This result may be a solution (or
approximate solution) to the problem.

4.3 Operations used in Genetic Programming
The basic genetic operations in genetic programming are fitness proportionate reproduction and
crossover (recombination).

The Darwinian reproduction operation merely involves copying a computer program from
the current population into the new population.

The genetic crossover (sexual recombination) operation operates on two parental computer
programs and produces two offspring programs using parts of each parent.

For example, consider the following computer program:
(OR (NOT D1) (AND D0 D1)).

10

This program takes two inputs (D0 and D1) and produces a Boolean-valued output which will
either be T (True) or NIL (false). In the prefix notation used, the function NOT is first applied to
the terminal D1 to produce an intermediate result. Then, the function AND is applied to the
terminals D0 and D1 to produce a second intermediate result. Finally, the function OR is applied
to the two intermediate results to produce the overall result (T or NIL).

Also, consider a second program:
(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1)).

In figure 4, these two programs are depicted as rooted, point-labeled trees with ordered
branches. Internal points (i.e., nodes) of the tree correspond to functions (i.e., operations) and
external points (i.e. leaves, endpoints) correspond to terminals (i.e., input data). The numbers on
the function and terminal points of the tree appear for reference only.

OR

NOT AND

D0 D1D1 D1

OR

ANDOR

NOT

D0

NOT NOT

D0 D1

2

3

4

5 6

1

2

3

1

4

5

6

7

8

9

10

Figure 4 Two Parental computer programs.

The crossover operation creates new offspring by exchanging sub-trees (i.e., sub-lists)
between the two parents. Because entire sub-trees are swapped, this crossover operation always
produces syntactically and semantically valid programs as offspring regardless of the crossover
points.

Assume that the points of both trees are numbered in a depth-first way starting at the left.
Suppose that the point no. 2 (out of 6 points of the first parent) is randomly selected as the
crossover point for the first parent and that the point no. 6 (out of 10 points of the second parent)
is randomly selected as the crossover point of the second parent. The crossover points in the
trees above are therefore the NOT in the first parent and the AND in the second parent. The two
crossover fragments are the two sub-trees shown in figure 5.

NOT

D1

AND

NOT NOT

D0 D1

Figure 5 Two Crossover Fragments
These two crossover fragments correspond to the bold, underlined sub-programs (sub-lists)

in the two parental computer programs shown in figure 5. The two offspring resulting from
crossover are shown in figure 6.

11

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 6 Two Offspring.

Thus, crossover creates new computer programs using parts of existing parental programs.
Because programs are selected to participate in the crossover operation with a probability
proportional to fitness, crossover allocates future trials to parts of the search space whose
programs contains parts from promising programs.

5 Preparatory Steps for Using Genetic Programming
There are five major steps in preparing to use genetic programming, namely determining:

(1) the set of terminals,
(2) the set of functions,
(3) the fitness measure,
(4) the parameters and variables for controlling the run, and
(5) the criterion for designating a result and terminating a run.

We will now apply these five major preparatory steps to the problem of finding an optimal
foraging strategy for the lizard.

The computer programs (i.e., control strategies) in the genetic population are compositions
of functions and terminals.

The first major step in preparing to use genetic programming is to identify the set of
terminals. The four variables (i.e., X, Y, AB, VEL) can be viewed as inputs to the unknown
computer program which we want to find via genetic programming for optimally controlling the
lizard. Here X and Y represent the position of an insect. X and Y vary each time an insect
appears within a simulation. The value AB represents the abundance a and VEL represents the
lizard's sprint velocity v. The values of AB and VEL are constant within any one simulation, but
these parameters vary between simulations. Thus, the terminal set T for this problem is

T = {X, Y, AB, VEL,← }.

When the ephemeral random floating point constant ← appears in a program in the initial
random population (i.e., generation 0), it is replaced by a different random floating point value
between –1.0 and +1.0. Thereafter, that random value remains fixed.

The second major step in preparing to use genetic programming is to identify a sufficient set
of functions to solve for the problem. The function set F consisting of four arithmetic
operations, the two-argument exponentiation function SREXPT, and the decision function IFLTZ
("If Less Than or Equal") seems reasonable. That is,

12

F = {+, -, *, %, SREXPT, IFLTE},

taking 2, 2, 2, 2, 2, and 4 arguments, respectively.
The protected division function % returns one when division by zero is attempted, and,

otherwise, returns the normal quotient.
The two-argument exponentiation function SREXPT raises the absolute value of the first

argument to the power specified by its second argument as a real value. For example, (SREXPT
-2.0 0.5) returns √2 | –2.0 | = +1.414.

Since exponentiation as well as the arithmetic operations have the potential of creating very
large or very small floating point values, each function traps any floating point overflow or
underflow errors and returns a very large (or very small) fixed arbitrary value.

The conditional branching function IFLTE ("If Less Than or Equal") evaluates its third
argument if its first argument is less than its second argument and otherwise evaluates its fourth
argument. For example, (IFLTZ 1.5 2.0 P Q) returns the result of evaluating P.

Since IFLTE returns a floating point value, % protects against division by zero, SREXPT
cannot produce a complex value, and SREXPT and the arithmetic operations cannot produce an
overflow or underflow, any composition of these functions will produce a valid result (i.e., there
is closure among the functions of the function set).

The third major step in preparing to use genetic programming is the identification of the
fitness measure for evaluating how good a given computer program is at solving the problem at
hand. In this application, a simulation of the lizard's behavior is required to compute the fitness
of a program.

Each program is tested against a simulated environment consisting of 36 combinations of
values of the parameters AB and VEL. The abundance AB ranges over six values from 0.0030 to
0.0050 in steps of 0.0004. The lizard's sprint velocity VEL ranges over six values from 0.5
meters per second to 1.5 in steps of 0.2. Thirty-six combinations of values of these two
parameters are used so as to provide a sufficiently varied environment to permit genetic
programming to produce a solution which is likely to generalize to other combinations of values
of these two parameters. Creation of the fitness cases for a problem is similar to creating a test
set of data for debugging a hand-written computer program.

Because the appearance of insects is probabilistic, the simulation of the lizard's behavior
should be done more than once for each of the 36 combinations of values. Computer time was
conserved by performing only two experiments for each of the 36 combinations. Thus, there are
72 fitness cases (experiments) for this problem.

A total of 300 seconds of simulated time are provided for each simulation.
The fitness of a program in the population is defined to be the sum, over the 72 experiments,

of the number of insects eaten by the lizard. A total of 17,256 insects are available in the 72
experiments. The optimal foraging strategy represented by the closed expression derived above
catches about 1,671 insects. This number is only approximate since the insects appear
probabilistically in each experiment. Since we do not expect to do better than the known optimal
strategy, fitness effectively varies between 0 and about 1,671. The details of converting the
above fitness measure into the standardized fitness measure and the normalized fitness measure
is discussed in Koza [1992a].

13

A hit is defined as an experiment for which the number of insects eaten is equal to or greater
than one less than the number eaten using the closed-form optimal foraging strategy derived
above. That is, a hit indicates that the program has only a small shortfall in performance for a
particular experiment with respect to the optimal foraging strategy. Hits range between 0 and
72. Hits are used only to control the termination of a run and for external monitoring of runs.
The evolutionary process is driven by fitness, not hits.

Since a given computer program can return any floating-point value and we want our
programs to advise the lizard as to whether to chase (+1) or ignore (–1) the current insect, a
wrapper (output interface) is used to convert the value returned by a given individual computer
program to a value appropriate to this problem domain. In particular, if the program evaluates to
any non-negative number, the wrapper returns +1 (chase), but otherwise returns –1 (ignore).

The fourth major step in preparing to use genetic programming is selecting the values of
certain parameters. The major parameters are population size and the maximum number of
generations to be run. We used a population size of 1,000 individual programs and a maximum
number of 61 generations. Our choice of population size and number of generations to be run
reflected an estimate on our part as to the likely complexity of the solution to this problem.

In addition, each new generation is created from the preceding generation by applying the
fitness proportionate reproduction operation to 10% of the population and by applying the
crossover operation to 90% of the population (with both parents selected with a probability
proportionate to fitness). In selecting crossover points, 90% were internal (function) points of
the tree and 10% were external (terminal) points of the tree. For practical reasons of computer
implementation, the depth of initial random programs was limited to 6 and the depth of programs
created by crossover was limited to 17. The selection of values of the other parameters are the
same as we used on most of the other problems cited in Koza [1992a].

Finally, the fifth major step in preparing to use genetic programming is the selection of the
criterion for terminating a run and designating a result. We will terminate a given run when
either (i) genetic programming produces a computer program scoring 72 hits, or (ii) 61
generations have been run. We will designate the best program obtained during any generation
of the run as the result.

Since great precision was not required by the simulations involved in this problem, we
achieved a considerable savings of computer resources on our computer by using the "short
float" data type for all numerical calculations.

6 Results for Version 1
Problems of control can be viewed as requiring the discovery of a computer program that takes
the variables of a problem as its inputs and produces the value of the control variables as its
output. In solving such problems in general, we will usually not be able to identify the
functional form of the solution in advance and to do the required integration. When genetic
programming is used, there is no need to have any advance insight as to the functional form of
the solution and there is no need to do any integration. The solution to a problem produced by
genetic programming is not just a numerical solution applicable to a single specific combination
of numerical parameters, but, instead, comes in the form of a function (computer program) that
maps the variables of the system into values of the control variable. There is no need to specify
the exact size and shape of the computer program in advance. The needed structure is evolved in
response to the selective pressures of Darwinian natural selection and genetic sexual

14

recombination.
In the first version of this problem, the lizard always catches the insect if the lizard decides

to chase the insect.
As one would expect, the performance of the random control strategies found in the initial

generation (generation 0) is exceedingly poor. In one run, the worst 4% of the individual
computer programs in the population of 1,000 always returned a negative value. Such programs
unconditionally advise the lizard not to chase any insects and therefore have a fitness value of
zero. An additional 19% of the programs enables the lizard to catch a few insects and scored no
hits. 93% of these random programs score two hits or less.

The following individual from a population of 1,000 for generation 0 consisted of 143 points
(i.e., functions and terminals) and enables the lizard to catch 1,235 insects:
(+ (- (- (* (SREXPT VEL Y) (+ -0.3752 X)) (+ (* VEL 0.991) (+ -0.9522 X))) (IFLTE (+
(% AB Y) (% VEL X)) (+ (+ X 0.3201) (% AB VEL)) (IFLTE (IFLTE X AB X Y) (SREXPT AB
VEL) (+ X -0.9962) (% -0.0542984 AB)) (- (* Y Y) (* Y VEL)))) (% (IFLTE (IFLTE (+ X Y)
(+ X Y) (+ VEL AB) (* Y Y)) (- (% 0.662094 AB) (* VEL X)) (+ (SREXPT AB X) (- X Y))
(IFLTE (* Y Y) (SREXPT VEL VEL) (+ Y VEL) (IFLTE AB AB X VEL))) (IFLTE (IFLTE (SREXPT
X AB) (* VEL -0.0304031) (IFLTE 0.9642 X Y AB) (SREXPT 0.0341034 AB)) (+ (- VEL
0.032898) (- X VEL)) (IFLTE (- X Y) (SREXPT VEL 0.141296) (* X AB) (SREXPT -0.6911
0.5399)) (SREXPT (+ AB AB) (IFLTE 0.90849 VEL AB 0.9308)))))

This rather unfit individual from generation 0 is in the 35th percentile of fitness (where the
100th percentile contains the most fit individuals of the population).

15

Ignore

Chase

Ig
no

re

y

x

+10

-10

+10
(0,0)

Ig
no

re

Chase

Figure 7 Switching curves of a program from the 35th percentile of fitness for generation 0

for version 1.

16

Ignore

Chase

Ignore

y

x

+10

-10

+10
(0,0)

Chase

Figure 8 Switching curve of the best-of-generation program from generation 0 for version

1.

17

Ignore

Chase

Ignore

y

x

+10

-10

+10
(0,0)

Chase

Figure 9 Switching curve of the best-of-generation program from generation 10 for

version 1.

18

Ignore

Chase

Ignore

y

x

+10

-10

+10
(0,0)

Chase

Ignore

Figure 10 Switching curve of the best-of-generation program from generation 25 for

version 1.
Figure 7 graphically depicts the foraging strategy of this individual as a switching curve.

This figure and all subsequent figures are based on an abundance AB of 0.003 and a sprint
velocity VEL of 1.5 (i.e., one of the 36 combinations of AB and VEL). A complete depiction
would require showing switching curves for all the other combinations of AB and VEL. As can
be seen, there are three separate "ignore" regions and one large "chase" region. This program
causes the lizard to ignore about a third of the insects in the upper half of the figure, including
many insects that are very close to the lizard's perch. It also causes the lizard to ignore the thin
rectangular region in the lower half of the figure lying along the Y axis. The main part of the
"chase" region is distant from the perch, although there is a small T-shaped sliver immediately
adjacent to the lizard's perch. Effective foraging behavior involves chasing insects near the
perch and ignoring insects that are distant from the perch; this program usually does the
opposite.

The best-of-generation individual from generation 0 enables the lizard to catch 1,460
insects. This 37-point program is shown below:
(- (- (+ (* 0.5605 Y) (% VEL VEL)) (* (SREXPT Y X) (* X AB))) (* (* (+ X 0.0101929) (*
-0.155502 X)) (IFLTE (+ VEL Y) (- AB X) (* X Y) (SREXPT VEL X))))

Figure 8 shows the switching curve for this best-of-generation individual from generation 0.
While this non-symmetric control strategy gives poor overall performance, it is somewhat
reasonable in that many of the points for which it advises ignoring the insect are distant from the
lizard's perch. In particular, all of the points in the "ignore" region at the top of the figure are
reasonably distant from the lizard's perch at the origin (0,0) although the boundary is not, by any
means, optimal. The "ignore" region at the bottom of the figure gives poorer performance.

19

However, even in this initial random population, some individuals are better than others.
The gradation in performance is used by the evolutionary process to improve the population over
subsequent generations. Each successive generation of the population is created by applying the
Darwinian operation of fitness proportionate reproduction and the genetic operation of crossover
to individuals selected from the population with a probability proportional to fitness.

In generation 10, the best-of-generation individual catches 1,514 insects and scores 26 hits.
This 47-point program is shown below:
(- (- X (* (SREXPT Y X) (* X AB))) (* (* (+ X 0.0101929) (* -0.155502 (+ AB X)))
(IFLTE (+ X (+ (- (SREXPT X Y) (+ X 0.240997)) (+ 0.105392 VEL))) (% VEL 0.8255) (*
(SREXPT X VEL) (+ -0.7414 VEL)) (SREXPT VEL X))))

Figure 9 shows the switching curve for this best-of-generation individual from generation
10. As can be seen, this program advises ignoring the insect when it appears in either of two
approximately symmetric regions away from the perch.

In generation 25, the best-of-generation individual catches 1,629 insects and scores 52 hits.
This 81-point program is shown below:
(- (- (+ (- (- (- (SREXPT AB -0.9738) (SREXPT -0.443604 Y)) (* (SREXPT Y (+ (* (SREXPT
(% (SREXPT Y AB) (- VEL -0.9724)) (+ X 0.0101929)) 0.457596) (+ Y X))) (* X AB))) (*
(* (+ X 0.0101929) (% (+ Y -0.059105) (* 0.9099 Y))) (IFLTE (+ X (SREXPT AB Y)) (% VEL
0.8255) (IFLTE Y VEL 0.282303 -0.272697) (SREXPT (* (SREXPT Y X) (* X AB)) X)))) (% AB
0.412598)) (* (SREXPT X X) (* X AB))) 0.4662)

Figure 10 shows the switching curve for this best-of-generation individual from generation
25. In this figure, the control strategy advises the lizard to ignore the insect when the insect is
outside an irregular region that vaguely resembles a semicircle centered at the lizard's perch.
Note that there is an anomalous close-in point along the X axis where this control strategy
advises the lizard to ignore any insect.

20

In generation 40, the best-of-generation individual catches 1,646 insects and scores 60 hits.
This 145-point program is shown below:
(+ (- (+ (- (- (SREXPT AB -0.9738) (SREXPT -0.443604 Y)) (* (SREXPT X X) (* X AB))) (*
(+ (+ Y -0.059105) (- (SREXPT AB -0.9738) (+ AB X))) (% (- VEL VEL) (+ 0.7457
0.338898)))) (SREXPT Y X)) (- (- (- (SREXPT AB -0.9738) (SREXPT -0.443604 Y)) (*
(SREXPT Y X) (* X AB))) (* (* (+ X 0.0101929) (% (+ (% 0.7717 (+ Y AB)) (SREXPT (IFLTE
Y VEL X Y) (% (+ Y -0.059105) (+ VEL VEL)))) (+ (% (- Y X) (% X AB)) VEL))) (IFLTE (-
(- (- (SREXPT AB -0.9738) (SREXPT -0.443604 Y)) (* (SREXPT X X) (* X AB))) (IFLTE X X
Y AB)) (IFLTE (SREXPT VEL VEL) (+ X 0.0101929) (% VEL -0.407303) (+ -0.496597 AB)) (*
X (SREXPT 0.838104 X)) (SREXPT VEL (+ (+ AB X) (* (% VEL VEL) (IFLTE Y VEL 0.888504
VEL))))))))

In generation 60, the best-of-generation individual catches 1,652 insects and scores 62 hits.
This 67-point program is shown below:
(+ (- (+ (- (SREXPT AB -0.9738) (* (SREXPT X X) (* X AB))) (* (+ VEL AB) (% (- VEL (%
AB Y)) (+ 0.7457 0.338898)))) (SREXPT Y X)) (- (- (SREXPT AB -0.9738) (SREXPT -
0.443604 (- (- (+ (- (SREXPT AB -0.9738) (SREXPT -0.443604 Y)) (+ AB X)) (SREXPT Y X))
(* (* (+ X 0.0101929) AB) X)))) (* (SREXPT Y Y) (* X AB))))

This program is equivalent to

 –0.44a + x + a– 0 . 9 7 3 8 – (0 .44 y + yx + ax[x + 0 .01])

 + 0.922(v + a)(v -
a
y)

 + 2a–0.97 –yx –ax(xx + yy)

21

Ignore

Chase

y

x

+10

-10

+10
(0,0)

Chase

Ignore

Figure 11 Switching curve of the best-of-generation program from generation 60 for

version 1.
Figure 11 shows the switching curve for this best-of-generation individual from generation

60. As before, this figure is based on an abundance AB of 0.003 and a sprint velocity VEL of 1.5.
As can be seen, the switching curve here is approximately symmetric and bears a reasonable
resemblance to a semicircle centered at the lizard's perch. The score of 1,652 is only 19 short of
the 1,671 achieved by the known optimal foraging strategy. In fact, the shortfall from the known
optimal strategy is one or less insects for 60 of the 72 fitness cases. Of the remaining 12 fitness
cases, eight had a shortfall of only two insects from the known optimal foraging strategy. The
performance of this foraging strategy is therefore very close to the performance of the known
optimal foraging strategy.

The above control strategy is not the exact solution. It is an approximately correct computer
program that emerged from a competitive genetic process that searches the space of possible
programs for a satisficing result.

Note also that we did not pre-specify the size and shape of the solution. As we proceeded
from generation to generation, the size and shape of the best-of-generation individuals changed
as a result of the selective pressure exerted by the fitness measure and the genetic operations.
For example, there were 37, 47, 81, 145, and 67 points for the best-of-generation individual for
generations 0, 10, 25, 40, and 60, respectively.

The control strategy found in generation 60 of this particular run was obtained after
processing 61,000 individuals (i.e., 1,000 individuals for an initial random generation and 60
additional generations). We have achieved similar results in other runs of this problem.

22

7 Results for Version 2
In the second version of this problem, the lizard does not necessarily catch the insect at the
location where it saw the insect.

The lizard's 20 meter by 10 meter viewing area is divided into three regions depending on
the probability that the insect will actually be present when the lizard arrives at the location
where the lizard saw the insect. Figure 12 shows the three regions. In region I (where the
angular location of points lies between -60° and -90°), the insect is never present when the lizard
arrives at the location where the lizard saw the insect. In region II (between -60° and the X axis),
the insect is always present. In region III, the probability that the insect is present when the
lizard arrives varies with the angular location of the point within the region. In region III, the
probability is 100% along the X axis (where the angle is 0°); the probability is 50% along the Y
axis (where the angle is 90°); and the probability varies linearly as the angle varies between 0°
and 90°.

Although we have not attempted to derive a mathematical solution to this version of the
problem, it is clear that the lizard should learn to ignore insects it sees in region I and that the
lizard should chase insects it sees in region II that are within a circular sector within some radius
of the perch. In region III, the lizard should reduce the distance it is willing to travel in pursuit
of an insect because of the uncertainty of catching the insect. Moreover, this reduction should
depend not just on the insect's distance, but the insect's angular position within region III. This
reduction should be greatest for locations on the Y axis.

We apply genetic programming in the same manner as in version 1, except that the
simulation of the behavior of the lizard must now incorporate the probability of actually catching
and eating an insect when the lizard decides to initiate a chase. Since we do not know the
optimal foraging strategy for this version of the problem, we do not attempt to define hits. The
termination criterion for the run is simply completion of 61 generations.

In one run of this version of the problem, the best-of-generation individual from generation
0 enables the lizard to catch 1,164 insects. This program had 37 points and is shown below:
(+ (% (* (IFLTE X VEL VEL X) (+ VEL Y)) (- (% AB X) (+ Y Y))) (SREXPT (* (SREXPT VEL
VEL) (% X Y)) (+ (IFLTE AB VEL 0.194 X) (IFLTE VEL Y VEL VEL))))

Figure 13 shows the switching curve of this best-of-generation individual from generation 0.
As can be seen, the lizard ignores many locations that are near the Y axis. The large gray squares
indicate insects which the lizard decides to chase, but which are not present when the lizard
arrives. This program is better than the others in generation 0 because it ignores an area in the
bottom half of the figure that corresponds roughly to region I and because it ignores the area in
the top half of this figure where the probability of catching an observed insect is lowest.

In generation 12, the following 107-point best-of-generation individual enables the lizard to
catch 1,228 insects:
(IFLTE AB (* (SREXPT (* X 0.71089) (IFLTE VEL AB 0.053299 X)) (+ (- VEL Y) (IFLTE (*
(IFLTE (SREXPT (% -0.175102 (SREXPT Y AB)) (SREXPT (% VEL AB) (IFLTE Y (+ 0.175598 Y)
(+ VEL (+ X (+ AB Y))) (* 0.7769 (IFLTE 0.7204 AB 0.962204 AB))))) VEL (- VEL (SREXPT
(% VEL AB) (% 0.8029 0.36119))) (+ -0.157204 X)) VEL) (- X X) (+ VEL 0.8965) (*
0.180893 AB)))) (+ (IFLTE (- VEL X) (% -0.588 Y) (SREXPT 0.5443 -0.6836) (% X X)) (%
(+ X Y) (- VEL AB))) (- (% (SREXPT AB Y) (IFLTE Y Y X Y)) (IFLTE VEL AB X X)))

Figure 14 shows the switching curve of this best-of-generation individual from generation
12. As can be seen, the avoidance of region I and the parts of region III are more pronounced.

23

In generation 46, the following 227-point best-of-generation individual emerged. It enables
the lizard to catch 1,379 insects:
(IFLTE AB (* (SREXPT (* -0.588 0.71089) (IFLTE VEL AB 0.053299 X)) (+ (- VEL Y) (IFLTE
(% (SREXPT AB Y) (IFLTE Y Y X Y)) (- VEL (IFLTE X (+ (* AB AB) (+ (IFLTE AB X AB AB)
(* VEL AB))) (* (- X X) AB) AB)) (+ VEL 0.8965) (+ 0.175598 Y)))) (+ (IFLTE (+ VEL
VEL) X (SREXPT 0.5443 -0.6836) (% X X)) (% (+ X Y) (- VEL AB))) (- (* (IFLTE (SREXPT
(SREXPT -0.0914 Y) (IFLTE (+ X Y) (% -0.588 Y) (* AB 0.304092) (% X X))) X (- VEL
(IFLTE Y AB X Y)) (+ -0.157204 (IFLTE (+ (- (% (% X (- VEL (IFLTE Y AB X Y))) (- (%
(SREXPT AB Y) (IFLTE Y Y X Y)) (IFLTE VEL AB X X))) (+ (SREXPT Y Y) (- -0.172798 Y)))
(IFLTE (SREXPT AB X) (- (% AB 0.7782) 0.444794) (* (IFLTE Y (SREXPT (SREXPT X
0.299393) (+ VEL X)) 0.6398 Y) (- X -0.6541)) (IFLTE (- (SREXPT Y 0.4991) (- (%
(SREXPT AB Y) (IFLTE Y Y X Y)) (IFLTE VEL AB X X))) AB (SREXPT VEL (SREXPT (SREXPT X
0.299393) (* -0.3575 X))) (+ (% VEL AB) X)))) VEL (- VEL (- (% (SREXPT AB Y) (+
(SREXPT Y Y) (% VEL VEL))) (IFLTE VEL AB X X))) (+ -0.157204 X)))) VEL) (IFLTE VEL AB
X X)))

Figure 15 shows the switching curve of this best-of-generation individual from generation
46. As can be seen, the lizard avoids an area that approximately corresponds to region I; chases
insects in region II; and is willing to travel less far to catch an insect in region III. Moreover, the
distance the lizard is willing to travel in region III is greatest when the angular location of the
insect is near 0° and decreases as the angle approaches 90°.

In an optimization problem where the optimal value of the variable to be optimized is not
known in advance and cannot be recognized when it is achieved, judgment must be exercised as
to when to stop making additional runs. If several runs appear to plateau at approximately the
same value, it may be reasonable to accept the best individual from those runs as the result of
applying genetic programming to the problem.

8 Discussion and Conclusions
This paper has shown that genetic programming can be applied to the domain of behavioral
ecology in biology. In particular, we have demonstrated the genetic breeding of switching
curves for a near optimal strategy for the Caribbean anolis lizard for two versions of the food
foraging problem.

This demonstration of the applicability of genetic programming to the domain of behavioral
ecology in biology has biological significance. Artificial intelligence, including artificial life
studies, may provide valuable metaphors for how animals behave adaptively. Specifically,
artificial intelligence appears to offer three metaphors to describe how adaptive behavior can
come to exist in an animal.

24

y

x

+10

-10

+10
(0,0)

I

II

III

Figure 12 Three regions for version 2.

25

y

x

+10

-10

+10
(0,0)

Ignore

Chase

Ignore

Chase

Figure 13 Switching curve of the best-of-generation program from generation 0 for

version 2.

26

y

x

+10

-10

+10
(0,0)

Ignore

Chase

Ignore

Chase

Figure 14 Switching curve of the best-of-generation program from generation 12 for

version 2.

27

y

x

+10

-10

+10
(0,0)

Ignore

Chase

Ignore

Chase

Figure 15 Switching curve of the best-of-generation program from generation 46 for

version 2.
First, an animal may instinctually possess a simple decision rule whose repeated application

leads to optimal behavior. In Roughgarden 1992, a simple rule is exhibited which, when
repeatedly followed, causes an animal's behavior to converge on optimal behavior. This rule was
simply conjectured, a priori, as being zoologically plausible, with the anticipation of carrying
out experiments with lizards in the field to test whether the hypothesized rule is actually
employed by lizards.

This paper contributes a second metaphor for how an animal's behavior may approach
optimal behavior. Here the rule that the animal follows is not stipulated a priori, but is the result
of a selection process. This selection can be interpreted in two ways. The population of
computer programs on which selection operates may correspond to a population of organisms
each possessing a specific behavioral rule. If so, the selection process of genetic programming
may be analogous to natural selection acting on a population of biological organisms with
respect to a these behavioral rules considered as phenotypic traits. Still, there is a difference.
Here the recombination is among the programs themselves. In population genetics, the
recombination is among genes, with selection acting on the phenotype that the genes express.
But here the programs are the phenotype, so that the recombination here is essentially a
recombination among phenotypes. Nonetheless, genetic programming seems analogous to
biological evolution, excepting that it is based on a non-traditional genetics.

Alternatively, the development of brain function within a single organism may be thought of
as the formation of biochemical or cellular links among various neural modules that represent
elementary capabilities. By either this evolutionary or developmental interpretation, the rule that
emerges is neither simple nor elegant, but definitely workable. With this metaphor, the function

28

of the rule (i.e., why it was selected) is only remotely related to the properties of any of its
component modules examined in isolation. That is, the function of the rule will seem "emergent''
because it is effectively unpredictable from inspection of the components of the rule.

A third metaphor for how adaptive behavior can be obtained is supplied by the concept of a
neural net. A neural net is a system of inputs and outputs among nodes, and the sensitivity of any
one node to another node or to an external input is tunable. When a neural net is trained with a
set of test data, the sensitivities of all the interconnections are adjusted to obtain a desired overall
system performance. A net might be trained to yield optimal foraging behavior, thus supplying a
third metaphor for how an individual organism can attain optimal behavior while experiencing
environmental conditions.

These three metaphors for how an animal may come to have optimal behavior seem to
represent alternative approaches, not alternative states of nature. That is, an animal may behave
optimally by following a simple rule that is itself decomposable into elementary capabilities
characteristic of the animal's body plan, and each of these abilities may ultimately be translated
into some cellular circuitry. If so, one's preferred metaphor will reflect the purposes of the
inquiry, rather than one's beliefs about the state of nature.

29

9 References
Belew, Richard, and Booker, Lashon (editors). Proceedings of the Fourth International

Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann 1991.
Davis, Lawrence (editor). Genetic Algorithms and Simulated Annealing. London: Pittman

l987.
Davis, Lawrence. Handbook of Genetic Algorithms. New York: Van Nostrand

Reinhold.1991.
Ehrlich, Paul R. and Roughgarden, Jonathan. The Science of Ecology. New York:

Macmillan 1987.
Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading, MA: Addison-Wesley l989.
Holland, John H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University

of Michigan Press 1975. Second edition: Cambridge, MA: The MIT Press 1992.
Koza, John R. Hierarchical genetic algorithms operating on populations of computer

programs. In Proceedings of the 11th International Joint Conference on Artificial Intelligence.
San Mateo, CA: Morgan Kaufmann 1989. Volume I. Pages 768-774.

Koza, John R. Evolution and co-evolution of computer programs to control independent-
acting agents. In Meyer, Jean-Arcady, and Wilson, Stewart W. From Animals to Animats:
Proceedings of the First International Conference on Simulation of Adaptive Behavior. Paris.
September 24-28, 1990. Cambridge, MA: The MIT Press 1991.Pages 366-375. 1991a.

Koza, John R. Genetic evolution and co-evolution of computer programs. In Langton,
Christopher, Taylor, Charles, Farmer, J. Doyne, and Rasmussen, Steen (editors). Artificial Life
II, SFI Studies in the Sciences of Complexity. Volume X. Redwood City, CA: Addison-Wesley
1991. Pages 603-629. 1991b.

Koza, John R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection and Genetics. Cambridge, MA: The MIT Press 1992. 1992a.

Koza, John R. The genetic programming paradigm: Genetically breeding populations of
computer programs to solve problems. In Soucek, Branko and the IRIS Group (editors).
Dynamic, Genetic, and Chaotic Programming. New York: John Wiley 1992. Pages 203-321.
1992b.

Koza, John R. A genetic approach to finding a controller to back up a tractor-trailer truck.
In Proceedings of the 1992 American Control Conference. Evanston, IL: American Automatic
Control Council 1992. Pages ---. 1992c.

Koza, John R. Evolution of subsumption using genetic programming. In Varela, Francisco
J., and Bourgine, Paul (editors). Toward a Practice of Autonomous Systems: Proceedings of the
first European Conference on Artificial Life. Cambridge, MA: The MIT Press 1992. Pages ----
1992d.

Koza, John R., and Keane, Martin A. Genetic breeding of non-linear optimal control
strategies for broom balancing. In Proceedings of the Ninth International Conference on
Analysis and Optimization of Systems. Antibes, France, June, 1990. Pages 47-56. Berlin:

30

Springer-Verlag, 1990. 1990.
Koza, John R., and Rice, James P. Genetic generation of both the weights and architecture

for a neural network. In Proceedings of International Joint Conference on Neural Networks,
Seattle, July 1991. Los Alamitos, CA: IEEE Press 1991. Volume II, Pages 397-404. 1991a.

Koza, John R., and Rice, James P. A genetic approach to artificial intelligence. In Langton,
C. G. (editor). Artificial Life II Video Proceedings. Addison-Wesley 1991. 1991b.

Koza, John R., and Rice, James P. Genetic Programming: The Movie. Cambridge, MA:
The MIT Press 1992.

Meyer, Jean-Arcady, and Wilson, Stewart W. From Animals to Animats: Proceedings of the
First International Conference on Simulation of Adaptive Behavior. Paris. September 24-28,
1990. Cambridge, MA: The MIT Press 1991.

Rawlins, Gregory (editor). Foundations of Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann 1991.

Roughgarden, Jonathan. Theory of Population Genetics and Evolutionary Ecology: An
Introduction. New York: Macmillan Publishing Co., Inc. 1979.

Roughgarden, Jonathan. In Roughgarden, Jonathan, May, Robert M., and Levin, Simon A.
Perspectives in Ecological Theory. Princeton, NJ: Princeton University Press 1989. Pages 203-
226.

Roughgarden, Jonathan. Anolis Lizards of the Caribbean: Ecology, Evolution, and Plate
Tectonics. Oxford University Press 1992. (In Press).

