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ABSTRACT:   Many seemingly different problems in machine 
learning, artificial intelligence, and symbolic processing can be 
viewed as requiring the discovery of a computer program that 
produces some desired output for particular inputs.  When viewed in 
this way, the process of solving these problems becomes equivalent to 
searching a space of possible computer programs for a highly fit 
individual computer program.  The recently developed genetic 
programming paradigm described herein provides a way to search 
the space of possible computer programs for a highly fit individual 
computer program to solve (or approximately solve) a surprising 
variety of different problems from different fields.  In the genetic 
programming paradigm, populations of computer programs are 
genetically bred using the Darwinian principle of survival of the 
fittest and using a genetic crossover (sexual recombination) operator 
appropriate for genetically mating computer programs.  This chapter 
shows how to reformulate  seemingly different problems into a 
common form (i.e. a problem requiring discovery of a computer 
program) and, then, to show how the genetic programming paradigm 
can serve as a single, unified approach for solving problems 
formulated in this common way. 

1. INTRODUCTION AND OVERVIEW 

A central question in computer science is “How can computers 
learn to program themselves to solve problems?” 
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Existing paradigms for machine learning all involve searching a 
space of specialized structures for a good or best structure to solve a 
problem.  In each paradigm, the structures involved are distinctly 
different from computer programs. 

• Connectionists envision the solution to a given problem as being a 
set of real-valued weights.  The weights are used to amplify or 
diminish signals passing along the connecting lines of a neural 
network.  One of several neural network paradigms is used to 
search for a best set of weights.  The neural network using this 
best set of weights is then used to solve the given problem.   

• Selectionists envision the solution to a given problem as being a 
fixed length character string (i.e. chromosome).  Each 
chromosome represents a possible approach to solving the 
problem.  The conventional genetic algorithm is used to search for 
a good or best chromosome.  The best chromosome specifies the 
approach to be used to solve the given problem.   

• Inductionists envision the solution to a given problem as being a 
decision tree.  Each decision tree classifies each instance of a 
given problem into a class representing a possible solution to the 
problem.  An inductive method, such as ID3, is used to search for 
a good or best decision tree.  The best decision tree is then used to 
solve the given problem.  

Searching for a specialized structure such as a weight vector, 
chromosome, or decision tree can be an efficient way to solve certain 
classes of problems.  Moreover, such specialized structures often 
facilitate mathematical analysis that might otherwise not be possible.   

However, these specialized structures are often an unnatural and 
difficult way of viewing the problem and expressing a solution.  In 
many cases, the flexibility that is really wanted and needed is the 
flexibility provided by computer programs.  Computer programs offer 
the flexibility to 

• perform computations on variables of many different types,  
• perform alternative computations conditioned on the outcome of 

intermediate calculations,  
• perform iterations and recursions,  
• define computed values and sub-programs so that they can be 

subsequently re-used, and  
• arrange groups of operations into hierarchies. 
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Producing solutions in hierarchical form is especially important 
because hierarchies are efficient, easy to understand, and lend 
themselves to scaling up.   

The flexibility we want and need also includes flexibility as to the 
size, shape, and structural complexity of the solution.  The user 
should not be required to specify the size, shape, and structural 
complexity of the solution in advance.  Instead, the size, shape, and 
structural complexity of the solution should emerge during the 
problem solving process.  In other words, the size, shape, and 
structural complexity should be part of the answer produced by a 
problem solving technique — not part of the question.  

Once we realize that what we really want and need is the flexibility 
offered by computer programs, we start to view searches for 
specialized structures such as weight vectors, chromosomes, or 
decision trees as flanking actions against the overall problem of 
getting computers to learn to program themselves.  This chapter is a 
direct frontal assault on the problem of getting computers to learn to 
program themselves.  Our goal here is to find a computer program to 
solve  the given problem.  In particular, we search the space of 
possible computer programs for a computer program that solves the 
given problem.  The recently developed genetic programming 
paradigm described herein offers a way to genetically breed a 
computer program to solves (or approximately solve) the given 
problem.  

This chapter does not offer any mathematical proof that the genetic 
programming paradigm can always be successfully used to solve all 
problems of every conceivable type.  This chapter does, however, 
provides a large amount of empirical evidence that this new paradigm 
can be used to solve a surprisingly variety of seemingly different 
problems from many different fields. 

Specifically, this chapter makes two main points. 
• POINT NO. 1:  A wide variety of seemingly different problems  

from many different fields can be reformulated as requiring the 
discovery of a computer program that produces some desired 
output when presented with particular inputs.  That is, these 
seemingly different problems can be reformulated as problems of 
program induction. 

• POINT NO. 2:  The new genetic programming paradigm 
described herein provides an efficient and effective way to search 
the space of possible computer programs for a highly fit 
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individual computer program to solve (or approximately solve) a 
wide variety of different problems from many different fields. 

We deal with Point No. 1 in Section 2 where we show that many 
seemingly different problems such as automatic programming, 
optimal control, planning, finding game playing strategies, symbolic 
regression, and programming emergent behavior can all be viewed as 
problems of program induction.   

Of course, there is no reason to want to view these seemingly 
different problems as problems of program induction unless there is 
some good way to do program induction.  Accordingly, the remainder  
of this chapter deals with Point No. 2.  In particular, we describe a 
single, unified approach to solving the problem of program induction, 
namely, the genetic programming paradigm.  We demonstrate that 
this new paradigm is effective by presenting a wide variety of 
different examples from a variety of different fields.  Existing 
paradigms for machine learning or artificial intelligence would 
probably find it impossible to successfully solve all of these 
problems.  Nonetheless, we use a single, unified approach regardless 
of whether the example involves automatic programming, optimal 
control, planning, finding game playing strategies, symbolic 
regression, or programming emergent behavior.   

The goal of this chapter is to establish Point No. 2 with empirical 
evidence.  At some point the reader may begin to feel that the 
examples being presented have merely become “repetitions” of “the 
same thing.”  Indeed, they are.  When the reader starts viewing 
genetic solutions to problems of automatic programming, optimal 
control, planning, finding game playing strategies, symbolic 
regression, and programming emergent behavior as “the same thing,” 
this chapter will have succeeded in communicating its main point, 
namely, Point No. 2.   

2. THE PERVASIVENESS OF PROGRAM 
INDUCTION 

Program induction involves the inductive discovery of a computer 
program, from the space of possible computer programs, that 
produces some desired output when presented with some particular 
input.  

As an example of program induction, consider the pair of linear 
equations 
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a11x1 + a12x2 = b1  
a21x1 + a22x2 = b2  

in two unknown variables x1 and x2.  The well known mathematical 
formula for solving such a pair of equations starts with six given 
values (i.e. a11, a12, a21, a22, b1, and b2) as its input and produces, as 
its output, the values of the two unknown variables (i.e. x1 and x2) 
that satisfy the pair of equations.  Program induction involves finding 
the computer program that implements this well known mathematical 
formula.  The process of program induction uses a finite sampling of 
combinations of the inputs and correct outputs to induce a computer 
program.  The induced computer program should produce the correct 
output for any case from the original finite sampling and should also 
generalize so as to produce the “correct” output for a previously 
unseen case. 

A wide variety of seemingly different problems can be reformulated 
as a problem of program induction.  This fact is obscured by the 
different terminology used in different fields to describe the concept 
of program induction. 

Depending on the terminology of the particular field involved, the 
computer program may be called a formula, plan, control strategy, 
computational procedure, model, decision tree, game-playing 
strategy, transfer function, mathematical expression, or, perhaps 
merely, a composition of functions.  

Similarly, the inputs to the computer program may be called the 
sensor values, state variables, independent variables, attributes, 
information to be processed, input signals, input values, known 
variables, or, perhaps merely, arguments of a function.  

The output from the computer program may be called a dependent 
variable, a control variable, category, class, move, decision, action, 
effector, result, output signal, output values, unknown variables, or, 
perhaps merely, the value returned by a function.  

Regardless of the differences in terminology, the problem of 
discovering a computer program that produces some desired output 
when presented with particular inputs is common to many seemingly 
different situations.  Several examples follow. 
SYMBOLIC REGRESSION 

Symbolic regression (symbolic function identification) involves 
finding a mathematical expression, in symbolic form, that provides a 
good, best, or perfect fit between a given finite sampling of values of 
the independent variables and the associated values of the dependent 
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variables.  That is, symbolic regression involves finding a model that 
fits a given sample of data. 

When the variables are real valued, symbolic regression involves 
finding both the functional form and the numeric coefficients for the 
model.  Symbolic regression differs from conventional linear, 
quadratic, or polynomial regression.  The latter merely involve 
finding the numeric coefficients for a function whose form (linear, 
quadratic, or polynomial) has been pre-specified.   

In any case, the mathematical expression being sought in symbolic 
regression can be viewed as a computer program which takes the 
values of the independent variables as input and produces the values 
of the dependent variables as output. 

Symbolic regression of real-valued variables is discussed in Section 
11.  It is later discussed with constant creation in Section 12.  If the 
data is noisy data from the real world, this problem of finding the 
model from the data is often called empirical discovery (See Section 
13).  If the independent variable consists of non-negative integers, 
symbolic regression may be called sequence induction (See Section 
10).  Machine learning of the Boolean 11-multiplexer function is 
symbolic regression applied to a function with a Boolean range and 
domain (Section 6).  
PLANNING 

Planning in artificial intelligence and robotics requires finding a 
plan that receives information from detectors or sensors about the 
state of various objects in a system and then uses that information to 
select effector actions which change the state of the objects in the 
system.   

An example of a planning problem involves discovering a robotic 
action plan to navigate an artificial ant along an irregular trail to find 
the food lying along the trail (Section 7).  Another example involves 
discovering a plan for stacking blocks in the correct order (Section 
16). 

The desired plan in a planning problem can be viewed as a 
computer program.  The computer program takes the information 
from the sensors or detectors as its input and produces effector 
actions as its output.  The effector actions, in turn, cause a change in 
the state of the objects of the system. 
OPTIMAL CONTROL 

Optimal control involves finding a control strategy that uses the 
state variables of a system to choose the control variables which will 
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change the state of the system to the desired target state with minimal 
cost.  

An example of an time-optimal control problem involves 
discovering a bang-bang control strategy for balancing a broom on a 
moving cart in minimal time.  The state variables of the system are 
the position of the cart, velocity of the cart, angle of the broom, and 
angular velocity of the broom.  The control variable is the bang-bang 
force that may be applied to the system. 

The desired control strategy in an optimal control problem can be 
viewed as a computer program.  The computer program takes the 
state variables of the system as its input and produces values of the 
control variable as its output.  The control variables, in turn, cause a 
change in the state of the system (Section 17). 
AUTOMATIC PROGRAMMING 

Randomizers (i.e. computer programs that convert a sequence of 
consecutive integers into a high entropy sequence of random digits) 
are considered difficult to write.  Automatic programming of a 
randomizer is another example of program induction.  The desired 
computer program takes a sequence of consecutive integers as its 
input and produces a sequence of bits with high entropy as its output 
(Section 9). 
MINIMAX STRATEGY FOR PLAYING A GAME  

Game playing requires finding a strategy that specifies what move a 
player is to make at each point in the game, given the known 
information about the game. 

In a game, the known information may be an explicit history of the 
previous moves by the players or an implicit history of previous 
moves in the form of a current “state” of the game (e.g. in chess, the 
position of each piece on the board). 

The game-playing strategy can be viewed as a computer program 
which takes the known information about the game as its input and 
produces a move as its output (Section 18). 
EMERGENT BEHAVIOR 

Emergent behavior involves the repetitive application of seemingly 
simple rules which lead to complex overall behavior.  The evolution 
of the sets of rules which produce emergent behavior is a problem in 
program induction. 

An example is the problem of finding a set of rules for controlling 
the behavior of an individual ant which, when simultaneously 
executed in parallel by all the ants in the colony, causes the ants to 
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work together to locate and transport available food to the nest.  The 
computer program (i.e. set of rules) being sought takes the sensory 
input of each ant as input and produces actions by the ants as output 
(Section 19). 

3. THE CONVENTIONAL GENETIC ALGORITHM 

Before discussing the genetic program paradigm, we will first 
describe the conventional genetic algorithm. 

In nature, the evolutionary process occurs when the following four 
conditions are satisfied:   

• An entity must have the ability to reproduce (or approximately 
reproduce) itself. 

• There must be a population of such self-reproducing entities. 
• There must be some variety amongst the entities in the population.  
• There must be some difference in ability to survive in the 

environment associated with the variety.  
This variety is manifested as variation in the chromosomes of the 

entities which, in turn, is reflected in variation in the structure and 
behavior of the entities.  Variation in structure and behavior is, in 
turn, reflected as differences in the rate of survival.  The existence of 
some variability that has some differential effect on the rate of 
survivability is almost inevitable.  Thus, the presence of the first 
condition (i.e. self-reproducibility) typically is sufficient to start the 
evolutionary process.   

Thus, in nature, entities with the ability to reproduce themselves 
become better able to perform tasks in their environment because the 
more fit entities survive at a differentially higher rate.  Over a period 
of time and many generations, the population becomes more fit in 
performing its tasks in its environment.  That is, the population 
evolves to higher levels of fitness.  The structure of individuals in the 
population changes over time because of the relentless effects of 
natural selection. 

John Holland's pioneering Adaptation in Natural and Artificial 
Systems1 described how the evolutionary process in nature can be 
applied to artificial systems.  In particular, Holland's genetic 
algorithm is a highly parallel mathematical algorithm that transforms 
a population of individual mathematical objects (typically fixed 
length character strings patterned after chromosome strings) into a 
new population using  
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• the operation of Darwinian fitness proportionate reproduction 
(survival of the fittest),  

• the naturally occurring genetic operation of sexual recombination 
(crossover), and, 

• possibly, a small amount of occasional random mutation. 
Many problems can be solved using the conventional genetic 

algorithm operating on fixed length character strings.  An overview of 
genetic algorithms can be found in Goldberg2.  Recent research work 
in the field is reported in Davis3,4, Schaffer5, Rawlins6 and Belew 
and Booker7.   

The use of fixed length character strings has permitted Holland and 
others to construct a significant body of theory as to why genetic 
algorithms work.  Much of this theoretical analysis depends on the 
mathematical tractability of the fixed length character strings as 
compared with mathematical structures that are more complex and 
comparatively less susceptible to theoretical analysis.  Nonetheless, 
the use of fixed length character strings as the representational 
scheme leaves many problems unsettled. 

Representation is a key issue in genetic algorithm work because 
genetic algorithms directly manipulate the coded representation of the 
problem and because the representation scheme can severely limit the 
window by which the system observes its world. 

As Davis and Steenstrup8 point out,  
“In all of Holland's work, and in the work of many of his students, 
chromosomes are bit strings.” 

For many problems in machine learning and artificial intelligence, 
the most natural known representation for a solution is a hierarchical 
computer program of indeterminate size and shape, as opposed to 
character strings whose size has been determined in advance.  It is 
sometimes difficult, unnatural, and overly restrictive to represent 
hierarchies of dynamically varying size and shape with fixed length 
character strings.  

String-based representation schemes do not provide the hierarchical 
structure central to the organization of computer programs (into 
programs and subroutines) and the organization of behavior (into 
tasks and subtasks). 

String-based representation schemes do not provide any convenient 
way of representing arbitrary computational procedures or of 
incorporating iteration or recursion when these capabilities are in-
herently necessary to solve the problem.  
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Moreover, string-based representation schemes do not have 
dynamic variability.  The initial selection of string length limits in 
advance the number of internal states of the system and the com-
putational complexity of what the system can learn.  

The predetermination of the size and shape of solutions and the pre-
identification of the particular components of solutions has been a 
bane of machine learning systems from the earliest times as well as in 
later efforts in automatic programming.  The need for more powerful 
representations in the genetic algorithm field has been recognized for 
some time (De Jong9). 

The structure of the individual mathematical objects that are 
manipulated by a genetic algorithm can, in fact, be more complex 
than fixed length character strings.  Smith10 departed from Holland's 
emphasis on fixed-length character strings by introducing variable 
length strings (including strings whose elements were if-then rules, 
rather than single characters).   

The introduction of the genetic classifier system (Holland11 
Holland et. al.12) continued the trend towards increasing the 
complexity of the structures undergoing adaptation using the genetic 
algorithm.  The genetic classifier system is a highly parallel cognitive 
architecture in which the genetic algorithm adaptively modifies a 
population of if-then rules (whose condition and action parts are fixed 
length binary strings).  Examples of applications of genetic classifier 
systems include Wilson's13,14 learning of Boolean function and 
Forrest's15 work on parallelization of classifier systems. 

Wilson16 extended Holland’s bucket brigade algorithm for credit 
allocation in genetic classifier systems by introducing hierarchical 
credit allocation.  Wilson’s hierarchical credit allocation encourages 
the creation of hierarchies of rules in lieu of the exceedingly long 
sequences of rules that are otherwise characteristic of classifier 
systems.  Wilson's efforts recognize the central importance of 
hierarchies in representing the tasks and subtasks (that is, programs 
and subroutines) that are needed to solve complex problems. 

Goldberg et. al.17 introduced the messy genetic algorithm which 
processes populations of variable length character strings.  Messy 
genetic algorithms solve problems by combining relatively short, 
well-tested sub-strings that deal with part of a problem to form 
longer, more complex strings that deal with all aspects of the 
problem. 
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As will be seen, the genetic programming paradigm is a further 
continuation in the trend towards increasing the complexity of the 
structures undergoing adaptation using the genetic algorithm.  The 
genetic programming paradigm provides a way to genetically breed a 
population of hierarchical computer programs to solve problems. 

In the genetic algorithm field, Cramer18 used the genetic algorithm 
operating on fixed length character strings to generate computer 
programs with a fixed structure (consisting of an operation and two 
operands in a hypothetical assembly language) and reported on the 
highly epistatic nature of the problem.   

Fujiki and Dickinson19 implemented analogs of the genetic 
operations in the conventional genetic algorithm operating on strings 
to manipulate the individual clauses of a LISP computer program 
consisting of a single conditional (COND) statement.  The individual 
if-then clauses of the Fujiki and Dickinson's COND statement were 
parts of a strategy for playing the iterated prisoner’s dilemma game.  

4. OVERVIEW OF THE GENETIC PROGRAMMING 
PARADIGM 

In Section 2, we showed that it was possible to reformulate a wide 
variety of seemingly different problems from a wide variety of 
different fields as problems of program induction.  In this section, we 
describe the recently developed genetic programming paradigm 
which provides a way to do program induction.   

In the genetic programming paradigm, populations of computer 
programs are genetically bred using the Darwinian principle of 
survival of the fittest and using a genetic crossover (recombination) 
operator appropriate for genetically mating computer programs.  The 
structures undergoing adaptation in the genetic programming 
paradigm are hierarchical computer programs of dynamically varying 
size and shape. 

The process of solving many problems can be reformulated as a 
search for a most fit individual computer program in the space of 
possible computer programs.  When viewed in this way, the process 
of solving these problems becomes equivalent to searching a space of 
possible computer programs for a highly fit individual computer 
program.  In particular, the search space is the hyperspace of 
computer programs composed of functions and terminals appropriate 
to the problem domain.   
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This simulated evolutionary process starts with an initial population 
of randomly generated computer programs composed of functions and 
terminals appropriate to the problem domain.  The functions may be 
standard arithmetic operations, standard programming operations, 
standard mathematical functions, logical functions, and domain-
specific functions.  Depending on the particular problem, the 
computer program may be Boolean-valued, integer-valued, real-
valued, complex-valued, vector-valued, symbolic-valued, or multiple-
valued. 

Each individual computer program in the population is measured in 
terms of how well it performs in the particular problem environment.  
We call this measure “fitness.” 

Typically the computer program is run over a number of different 
fitness cases so that fitness is averaged over a variety of 
representative different situations. 

Unless the problem is so small and simple that it can be solved by 
blind random search, the computer programs in the initial random 
generation will have exceedingly poor fitness. Nonetheless, some 
individuals in the population will turn out to be somewhat more fit 
than others. 

Then, the Darwinian principle of reproduction and survival of the 
fittest and the genetic operation of sexual recombination (crossover) 
are used to create a new population of offspring individual computer 
programs from the current population of individual computer 
programs.  In particular, a genetic process of sexual reproduction 
between two parental computer programs is used to create offspring 
computer programs. The two participating parental computer 
programs are selected in proportion to fitness.  The resulting offspring 
computer program are composed of sub-expressions (sub-trees, sub-
programs, sub-routines, “building blocks”) from their parents.  

Then, the new population of offspring (i.e. the new generation) 
replaces the old population of parents (i.e. the old generation).  

Each new individual in the new population of computer programs is 
then measured for fitness and the process is repeated. 

At each stage of this highly parallel, locally controlled, and 
decentralized process, the state of the process will consist only of the 
current population of individuals. Moreover, the driving force to this 
process will be the observed fitness of the individuals in the current 
population in grappling with their problem environment.  
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As will be seen, this algorithm will produce populations  of 
computer programs which, over a period of generations, tend to 
exhibit increasing average fitness in dealing with their environment. 
In addition, these populations  of computer programs will tend to 
robustly (i.e. rapidly and effectively) adapt to changes in the 
environment.  

Typically the single best individual in the population at the time of 
termination of a run is designated as the result produced by the 
genetic programming paradigm.  This is called “winner takes all”.  

The hierarchical character of the computer programs that are 
produced by the genetic programming paradigm is an important 
feature of the genetic programming paradigm.  The results of this 
genetic programming paradigm process are inherently hierarchical.  
And, in many cases, the results contain default hierarchies which 
solve the problem in a relatively understandable and parsimonious 
way. 

The dynamic variability of the computer programs that are 
developed along the way to a solution is also an important feature of 
the genetic programming paradigm.  In each case, it would be 
difficult and unnatural to try to specify and restrict the size and shape 
of the eventual solution in advance.  Moreover, the advance 
specification and restriction of the size and shape of the solution to a 
problem narrows the window by which the system views the world 
and might well preclude finding the solution to the problem at all. 

Another important feature of the genetic programming paradigm is 
the absence or relatively minor role of preprocessing of inputs and 
post-processing of outputs.  Both the inputs, intermediate results, and 
outputs are typically expressed directly in terms of the natural func-
tions and arguments from the problem domain.  The output of the 
genetic programming paradigm comes in the form of a computer 
program which takes the inputs appropriate to the problem and which 
produces the outputs required by the problem.  This makes the results 
highly comprehensible and intelligible in the terms of the problem 
domain. 

The genetic programming paradigm is a domain independent 
(“weak”) method.  It provides a single, unified approach to the 
problem of finding a computer program to solve a problem.  In this 
chapter, we show how to reformulate these seemingly different 
problems into a common form (i.e. a problem of induction of a 
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computer program) and, then, to describe a single, unified approach 
for solving problems formulated in this common form. 

In summary, the genetic programming paradigm genetically breeds 
computer programs to solve problems by executing the following 
three steps: 

(1) Generate an initial population of random compositions  of the 
functions and terminals of the problem (computer programs). 

(2) Iteratively perform the following sub-steps until the 
termination criterion has been satisfied: 
(a) Execute each program in the population and assign it a 

fitness value according to how well it solves the 
problem. 

(b) Create a new population of computer programs by 
applying the following two primary operations.  The 
operations are applied to computer program(s) in the 
population chosen with a Darwinian probability based 
on fitness. 

(i) Copy existing computer programs to the new 
population. 

(ii) Create new computer programs by genetically 
recombining randomly chosen parts of two existing 
programs. 

(3) The single best computer program in the population at the 
time of termination is designated as the result of the genetic 
programming paradigm.  This result may be a solution (or 
approximate solution) to the problem. 

Figure 1.1 is a flowchart showing the steps of the genetic 
programming paradigm. 
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4.1. CHOICE OF PROGRAMMING LANGUAGE 

Virtually any programming language (e.g. PASCAL, FORTRAN, 
C, FORTH, LISP, etc.) is capable of expressing and evaluating the 
compositions of functions and terminals necessary to implement the 
genetic programming paradigm.  It is possible to implement the 
genetic programming paradigm using any reentrant programming 
language that can manipulate computer programs as data and can then 
compile, link, and execute the new programs or can support an 
interpreter to execute the new programs created. 

We have chosen the LISP (LISt Processing) programming language 
for the work with the genetic programming paradigm for a number of 
reasons which we will discuss in detail below.  LISP is the most 
widely known and used example of a functional programming 
language.  All the examples in this chapter will use the Common 
LISP dialect of LISP herein. 

The LISP programming language has only two types of entities, 
namely atoms and lists.  The constant 7 and the variable TIME are 
examples of atoms in LISP.  Lists in LISP consist of an ordered set of 
items inside a pair of parentheses, such as (+ 1 2) and (FOO  BAR).   

The LISP compiler and operating system works so as to evaluate 
whatever it sees.  Constant atoms evaluate to themselves when seen 
by LISP while variable atoms evaluate to their current value.  When a 
list is seen by LISP, the list is evaluated by treating whatever is just 
inside the opening parenthesis as a function and then causing the 
application of the function to the remaining items of the list (which 
are treated as arguments to the function). 

We use the name symbolic expression (or, S-expression) for a list or 
atom in LISP.  The S-expressions are the programs of LISP.  In fact, 
S-expressions are the only syntactic form in the LISP programming 
language. 

For example, (+ 1 2) is a LISP S-expression.  In this S-expression, 
the addition function (+) appears just inside the opening parenthesis 
of the S-expression. This S-expression calls for the application of the 
addition function + to two arguments (namely, the atoms 1 and 2).  
The value returned as a result of the evaluation of the S-expression (+ 
1 2) is 3.   

If any of the arguments are themselves lists (rather than atoms that 
can be immediately evaluated), Common LISP first evaluates these 
unevaluated lists (in a recursive, depth-first way, starting from the 
left) before proceeding.  
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The LISP S-expression (+ (* 2 3) 4) illustrates the way that 
computer programs in LISP can be viewed as compositions of 
functions. This S-expression calls for the application of the addition 
function (+) to two arguments, namely, the sub-S-expression (* 2 3) 
and the constant atom 4.  In order to complete the evaluation of (+ (* 
2 3) 4), LISP must first evaluate (* 2 3). The S-expression (* 2 3) 
calls for application of the multiplication function (*) to the two 
constant atoms 2 and 3. The entire S-expression (+ (* 2 3) 4) 
illustrates the composition of functions. 

Now consider LISP symbolic expression (S-expression) 

(+ 1 2 (IF (> TIME 10) 3 4))  

This simple S-expression illustrates how functional languages, such 
as LISP, enable us to view computer programs (with their conditional 
actions) as compositions of functions and arguments.  In the sub-
expression (> TIME 10), the function > is applied to the variable 
atom TIME and the constant atom 10.  The sub-expression (> TIME 
10) then evaluates to either T (True) or NIL (False) depending on the 
current value of the variable atom TIME.  

The logical value returned by the sub-expression (> TIME 10) 
becomes the first argument of the function IF.  The function IF is a 
function of three arguments.  It returns the result of evaluating its 
second argument (i.e. the constant atom 3) if its first argument  
evaluates to T (True, non-NIL) and it returns the result of evaluating 
its third argument (i.e. the constant atom 4) if its first argument is 
NIL.  Thus, this S-expression evaluates to either 6 or 7 depending on 
whether the current value of the variable atom TIME is, or is not, 
greater than 10. 

Any LISP S-expression can be graphically depicted as a rooted, 
point-labeled tree with ordered branches.  The tree corresponding to 
this LISP S-expression is shown in Figure 1.2. 
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Figure 1.2  Rooted, point-labeled tree with ordered branches 
corresponding to the LISP S-expression  (+ 1 2 (IF (> TIME 

10) 3 4)) 
In this graphical depiction, the three internal points of the tree are 

labeled with functions (e.g. +, IF and >).  The six external points 
(leaves) of the tree are labeled with terminals (e.g. the variable atom 
TIME and the constant atoms 1, 2, 10, 3, and 4).  The root of the tree 
is labeled with the function (i.e.+) appearing just inside the opening 
parenthesis of the S-expression. 

Note that this tree form of a LISP S-expression is equivalent to the 
parse tree which many compilers construct internally to represent a 
given computer program.  

The reasons for choosing the LISP programming language for the 
work with the genetic programming paradigm are as follows:  

First, in the LISP programming language, both programs and data 
have the same form (i.e. the S-expressions).  Thus, it is both possible 
and convenient to treat a computer program in the genetic population 
as data so that it can first be genetically manipulated.  Then, it is both 
possible and convenient to immediately execute the result of the 
manipulation as a program. 

Second, the above-mentioned common form for both programs and 
data in LISP (i.e. the S-expressions) is equivalent to the parse tree for 
the computer program.  In spite of their outwardly different 
appearance and syntax, most “compiled” programming languages 
internally convert, at the time of compilation, a given program into a 
parse tree representing the underlying composition of functions and 
terminals of that program.  In most programming languages, this 
parse tree is not accessible (or at least not conveniently accessible) to 
the programmer.  And, if it were accessible, it would have a different 
appearance and syntax than the programming language itself.  We 
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need access to the parse tree because we want to genetically 
manipulate the parts of computer programs (i.e. sub-trees of the parse 
tree).  LISP gives us the ultimate in convenience of access to this 
parse tree because a LISP program is its own parse tree. 

Third, the EVAL function of LISP provides an almost effortless 
way of executing a computer program that was just created or 
genetically manipulated.  

Fourth, LISP facilitates the programming of structures whose size 
and shape change dynamically (rather than being predetermined in 
advance).  Moreover, LISP's dynamic storage allocation and garbage 
collection provide administrative support for programming of 
dynamically changing structures.  The underlying philosophy of all 
aspects of the LISP programming language is to impose no limitation 
on programs beyond the limitation inherently imposed by the physical 
and virtual memory limitations of the computer on which the program 
is being run.  While it is possible to handle structures whose size and 
shape change dynamically in many programming languages, LISP is 
especially well suited for this. 

Fifth, LISP facilitates the convenient handling of hierarchical 
structures. 

Sixth, software environments offering an unusually rich collection 
of programmer tools are commercially available for the LISP 
programming language. 

It is important to note that we did not choose the LISP programming 
language for the work described in this chapter involving the genetic 
programming paradigm because we intended to make any special use 
of the “list” data structure from LISP or the list manipulation 
functions peculiar to the LISP programming language (such as CAR 
or CDR). 

5. DETAILED DESCRIPTION OF THE GENETIC 
PROGRAMMING PARADIGM  

Adaptation involves the progressive modification of some structure 
so that it performs better in its environment.  Learning is a form of 
adaptation for which performance consists of solving a problem.  
Holland's Adaptation in Natural and Artificial Systems1 provides a 
general perspective on adaptation and identifies the key features 
common to every adaptive (or learning) system.  In the remainder of 
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this section, we use this perspective to describe the genetic 
programming paradigm, in detail, in terms of  

• the structures that undergo adaptation,  
• the initial structures,  
• the fitness measure which evaluates the structures  
• the operations that are performed to modify the structures,  
• the state (memory) of the system at each stage, 
• the method for designating a result, 
• the method for terminating the process, and  
• the parameters that control the process. 

5.1. THE STRUCTURES UNDERGOING ADAPTATION 

In every adaptive system or learning system, some structure or 
structures are undergoing adaptation.   

For non-genetic adaptive algorithms, the structure undergoing 
adaptation is typically a single point in the search space of the 
problem.  For conventional genetic algorithms and the genetic 
programming paradigm, the structures undergoing adaptation are the 
individual points, in a population of points, from the search space of 
the problem.  That is, the genetic approach involves a parallel search. 

The individual structures that undergo adaptation in the genetic 
programming paradigm are hierarchically structured computer 
programs.  The size, shape, and complexity of these computer 
programs can dynamically change during the process.  

The set of possible structures in the genetic programming paradigm 
is the set of all possible compositions of functions that can be 
composed recursively from the available set of Nfunc functions from 
the function set F = {f1, f2, ... , fNfunc

} and the available set of Nterm 

terminals from the terminal set T = {a1, a2, ... , aNterm
}.  Each 

particular function f in F takes a specified number z(f) of arguments 
b1, b2, ..., bz(f). 

The functions in the function set may be  
• arithmetic operations (+, -, *, etc.),  
• mathematical functions (such as Sin, Cos, Exp, etc.),  
• Boolean operations (such as AND, OR, NOT),   
• logical operators (such as If-Then-Else),  
• iterative operators (such as Do-Until), 
• functions permitting recursion, and 
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• domain-specific functions.  
The terminals are typically either constant atoms (such as the 

number 3) or variable atoms (representing, perhaps, the inputs, 
sensors, or state variables of some system).   

Consider the function set 

F = {AND, OR, NOT} 

and the terminal set 

T = {D0, D1}, 

where D0 and D1 are Boolean variable atoms that serve as arguments 
for the functions.  We can combine the set of functions and terminals 
into a combined set C as follows:                

C  =  F  ≈  T  =  {AND, OR, NOT, D0, D1}. 

Now consider the even parity function with two arguments.  This 
function returns T (True) if an even number (i.e. 0 or 2) of its 
arguments (i.e. D0 and D1) are T; otherwise, this function returns 
NIL (False).  This Boolean function can be expressed in disjunctive 
normal form (DNF) and represented by the following LISP S-
expression: 

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

The rooted, point-labeled tree with ordered branches corresponding 
to the above S-expression for the even parity function with two 
arguments is shown in Figure 1.3. 

OR

AND

NOT NOT

D0 D1

AND

D0 D1

 
Figure 1.3  Rooted, point-labeled tree corresponding to the 
LISP S-expression for the even-parity function (OR (AND 

(NOT D0) (NOT D1)) (AND D0 D1)) 
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In this graphical depiction, the five internal points of the tree are 
labeled with functions (e.g. OR, AND, NOT, NOT, and AND).  The 
four external points (leaves) of the tree are labeled with terminals 
(e.g. the Boolean variable atoms D0, D1, D0, and D1, respectively).  
The root of the tree is labeled with the function appearing just inside 
the outermost left parenthesis of the LISP S-expression (i.e. OR).  
This tree is equivalent to the parse tree which most compilers 
construct internally to represent a given computer program. 

The search space for the genetic programming paradigm is the 
hyperspace of valid LISP S-expressions that can be recursively 
created by compositions of the available functions and available 
terminals for the problem.  This search space can, equivalently, be 
viewed as the hyperspace of rooted point-labeled trees with ordered 
branches having internal points labeled with the available functions 
and external points (leaves) labeled with the available terminals. 

The structures that undergo adaptation in the genetic programming 
paradigm are different than the structures that undergo adaptation in 
the conventional genetic algorithm operating on strings.  The 
structures that undergo adaptation in the genetic programming 
paradigm are hierarchical structures.  The structures that undergo 
adaptation in the conventional genetic algorithm are one-dimensional 
linear strings. 

In using the genetic programming paradigm, the terminal set and 
function set should be selected so as to satisfy two requirements, 
namely, closure and sufficiency. 
CLOSURE 

As to the closure property, each function in the function set should 
be well defined for any combination of arguments that may be 
encountered.  These argument values may arise from either a terminal 
or a function.  

For example, if the function set consists of the Boolean functions 
AND and OR and the terminal set consists only of Boolean variables 
that can only assume the values of T or NIL, then the closure property 
will be satisfied.  On the other hand, if the arithmetic operation of 
division is in a function set along with terminals that can assume the 
numerical value of zero, the closure property will not be satisfied 
unless some arrangement is made to deal with the situation when 
division by zero is attempted.  One approach is to use the protected 
division function %.  The protected division function % returns one 
when division by zero is attempted, and, otherwise, returns the normal 
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quotient.  Similar arrangements may be required when the square root 
or logarithm function may be applied to a zero valued variable. 

If this closure property does not prevail, we must then address 
alternatives such as either (1) discarding individuals that do not 
evaluate to a result that is within the desired domain, or (2) assigning 
some penalty to the fitness to such individuals and somehow 
proceeding.   
SUFFICIENCY 

As to sufficiency, needless to say, the set of functions and terminals 
being used in a particular problem should be selected so as to be 
capable of solving the problem.   

For example, one would not be able to induce Kepler’s Third Law 
for the periods of the planets around the sun if the terminal set 
contained only the diameter of each planet (as opposed to its distance 
from the sun) or if the function set contained only addition and 
subtraction (instead of the functions needed to state the Third Law).   

The user of the genetic programming paradigm should know or 
believe that some composition of the functions and terminals he 
supplies can yield a solution to the problem.  In some domains (e.g. 
Boolean functions), the requirements are well known.  For example, 
removing the function NOT from the function set F = (AND, OR, 
NOT} creates an function set that is no longer sufficient for 
expressing many Boolean functions, including, for example, the even 
parity function.   

The choice of the set of available functions and terminals, of course, 
directly affects the character of the solutions that can be attained.  The 
available functions and terminals form the basis for generating 
potential solutions.  

For example, if one does symbolic regression on the absolute value 
function with a function set containing the If-Then-Else function and 
subtraction, one obtains a solution in the familiar form of a 
conditional test on x that returns either x or -x depending on whether 
x is greater or less than zero, respectively.  On the other hand, if one 
does symbolic regression on the absolute value function with a 
function set containing only the the cosines of odd harmonics and the 
ordinary arithmetic operations, one instead gets the first few terms of 
the familiar Fourier series approximation to the absolute value 
function.  
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5.2. THE INITIAL STRUCTURES 

The initial structures in the genetic programming paradigm consist 
of the individuals in the initial population of individual S-expressions 
for the problem.   

Generation of each individual S-expression in the initial population 
is done by randomly generating a rooted, point-labeled tree with 
ordered branches representing the S-expression.   

We begin by selecting one of the functions from the set F at random 
(using a uniform distribution) to be the label for the root of the tree. 
Note that we restrict selection of the label for the root of the tree to 
the function set F because we want to generate a hierarchical 
structure, not a degenerate structure consisting only of a single 
terminal.  For example, in Figure 1.4, the function + (taking two 
arguments) was selected from a function set F as the label for the root 
of the tree. 

+

 
Figure 1.4  Generation of a random tree might begin with 

labeling the root of the tree with the + function. 
Whenever a point of the tree is labeled with a function f from F, 

then z(f) lines, where z(f) is the number of arguments taken by the 
function f, are created to radiate out from that point.  Then, for each 
such radiating line, an element is randomly selected to be the label for 
the endpoint of that radiating line.    

If a function is chosen to be the label for any such endpoint, the 
generating process then continues recursively as just described above.  
For example, in Figure 1.5, the function * from the combined set C = 
F ≈  T of functions and terminals was selected as the label of the 
internal non-root point at the end of the first (leftmost) radiating line 
from the point with the function +.  This function * takes two 
arguments so we show two lines radiating out from the point with the 
function *. 
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+

*

 
Figure 1.5  Generation of a random tree might continue with 

labeling of an internal non-root point with the * function. 
On the other hand, if a terminal is chosen to be the label for any 

point, that point becomes an endpoint of the tree and the generating 
process is terminated for that point.  For example, in Figure 1.6, the 
terminal A from the terminal set T was selected to be the label of the 
first line radiating from the point labeled with the function *. 

+

*

A
 

Figure 1.6  Generation of a random tree might continue with 
labeling of an external point with the terminal A. 

This generative process can be implemented in several different 
ways resulting in initial random trees of different sizes and shapes. 

The generative method we believe does best over a broad range of 
problems is a method we call “half ramping.”  It produces a mixture 
of trees of various sizes and shapes.  This method is used on all 
problems presented herein.  This generative method involves creating 
an equal number of trees of each depth between two and some 
maximum depth (which is six for all problems presented herein).  The 
depth of a tree is the length of the longest path from the root to an 
endpoint.  

Then, for each value of depth, 50% of the trees of that depth are 
created in each of two ways, namely: 

• 50% of the trees of the specified depth are “full” in that the length 
of paths between every endpoint and the root are equal to the 
maximum.  This is accomplished by restricting the random 
selection of the label for points of the tree at depths smaller than 
the maximum to the function set F, and restricting the random 
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selection of the label for points at depths equal to the maximum to 
the terminal set T.   

• 50% of the trees of the specified depth are “variably shaped” in 
that the length of paths between an endpoint and the root is no 
greater than the  specified maximum.  This is accomplished by 
making the random selection of the label for points of the tree at 
depths smaller than the maximum from the combined set C = F ≈  
T consisting of the union of the function set F and the terminal set 
T, while restricting the random selection of the label for points at 
depths equal to the maximum to the terminal set T.  

We use a uniform random probability distribution to make the 
above selections from the above sets.   

Duplicate individuals are unproductive deadwood which waste 
computational resources and undesirably reduce the genetic diversity 
of the population.  In the genetic programming paradigm, duplicate 
random individuals are created relatively often when the tree size is 
small or when the size of the terminal set happens to be large relative 
to the size of the function set.  Thus, after a given individual S-
expression is created using the above generative procedure, but before 
it is actually inserted into the initial population, it is compared to the 
S-expressions already in the initial population.  If the S-expression is 
a duplicate, it is rejected.  The generating process continues until the 
desired number of unique S-expressions is created.  

The variety of a population is the percentage of individuals for 
which no exact duplicate exists in the population.  The variety of the 
initial random population is 100%.   

5.3. FITNESS 

Each individual in a population is assigned a numerical fitness 
value as a result of its interaction with its environment.  Fitness is the 
driving force of Darwinian selection in nature.  It is, likewise, the 
driving force for both genetic algorithms and the genetic 
programming paradigm.  In this section we describe four different 
measures of fitness, namely raw fitness, standardized fitness, adjusted 
fitness, and normalized fitness. 

Raw fitness is the measure of fitness that is stated in the natural 
terminology of the problem itself.  Raw fitness is usually, but not 
always, evaluated over a set of fitness cases.  These fitness cases 
provide a basis for evaluating the fitness of the S-expressions in the 
population over different representative situations so that a range of 
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different numerical raw fitness values can be obtained.  The fitness 
cases are typically a small finite sample of the domain space (which is 
usually very large or infinite).  Therefore, the  fitness cases must be 
representative of the domain space as a whole because they form the 
basis for generalizing the results obtained to the entire domain space. 

The definition of raw fitness depends on the problem.  For many 
problems, raw fitness can be defined as the sum of the distances (i.e. 
errors), taken over all the fitness cases, between the point in the range 
space returned by the S-expression for the set of arguments for the 
particular fitness case and the correct point in the range space for the 
particular fitness case.  The S-expression may be, for example, 
Boolean-valued, integer-valued, real-valued, complex-valued, or sym-
bolic-valued.  If the S-expression is integer-valued or real-valued, the 
sum of distances is the sum of absolute values of the differences (or, 
if desired, the sum of the squares of the differences) between the 
numbers involved.  When raw fitness is error, the raw fitness r(i,t) of 
an individual S-expression i in the population of size M at any 
generational time step t is 

r(i,t) = ∑
j=1

Ne

 S(i,j) - C(j)   

where S(i,j) is the value returned by S-expression i for fitness case j 
(of Ne cases) and where C(j) is the correct value for fitness case j.   

If the S-expression is Boolean-valued or symbolic-valued, the sum 
of distances is equivalent to the number of mismatches.  

For other problems, raw fitness may be something other than error.  
For example, in optimal control problems, raw fitness may be the cost 
of an individual control strategy (as measured in time, distance, 
dollars, etc.).  In some problems, raw fitness is a score of some kind 
(e.g. amount of points scored, benefit achieved, food eaten, subgoals 
satisfied, etc.). 

Note that because raw fitness is stated in the natural terminology of 
the problem, the better value may either be smaller (as when raw 
fitness is error) or larger (as when raw fitness is food eaten, benefit 
achieved, etc.). 

The standardized fitness s(i,t) restates the raw fitness so that a lower 
numerical value is better.  If a lower value of raw fitness is better (e.g. 
when raw fitness represents error), then standardized fitness 

s(i,t) = r(i,t). 
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If a higher value of raw fitness is better (e.g. when food is being 
eaten), standardized fitness equals the maximum possible value of 
raw fitness rmax minus the observed raw fitness.  That is,  

s(i,t) = rmax - r(i,t). 
We now define adjusted fitness a(i,t). The adjusted fitness measure 

a(i,t) is computed from the standardized fitness s(i,t). The adjusted 
fitness a(i,t) is  

a(i,t) = 
1

(1+s(i,t))   

where s(i,t) is the standardized fitness for individual i at time t.  
The adjusted fitness lies between 0 and 1. Unlike standardized 

fitness, the adjusted fitness is bigger for better individuals in the 
population. 

If no upper bound rmax is known (making the above computation of 
standardized fitness impossible), this step can be omitted and adjusted 
fitness can be computed directly from raw fitness.  

It is not necessary to use adjusted fitness in the genetic 
programming paradigm.  We believe this adjustment is generally 
helpful and, therefore, we use it consistently on all problems in this 
chapter.  Adjusted fitness has the benefit of exaggerating the 
importance of small differences in the value of standardized fitness as 
these values start approaching zero in later generations of a run.  
Adjusted fitness is especially beneficial if the standardized fitness 
actually reaches zero when a perfect solution to the problem is found 
(e.g. as in symbolic regression problems where an error of zero 
denotes a perfect fit).   

We now define normalized fitness n(i,t).  The normalized fitness 
n(i,t) is computed from the adjusted fitness value a(i,t). The 
normalized fitness n(i,t) is 

n(i,t) = 
a(i,t)

∑
k=1

M
  a(k,t)

  

Normalized fitness has three desirable characteristics. 
• It ranges between 0 and 1.  
• It is larger for better individuals in the population.   
• The sum of the normalized fitness values is one.  
When we use the phrases proportional to fitness or fitness 

proportionate in this chapter, we are referring to normalized fitness. 
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As will be seen, it is also possible for the fitness function to give 
some weight to secondary factors.  Examples of such secondary 
factors are the efficiency of the S-expression (Section 16.2) and 
compliance with the initial conditions of a differential equation 
(Section 15.1). 

5.4. OPERATIONS FOR MODIFYING STRUCTURES 

The two primary operations for modifying the structures undergoing 
adaptation in the genetic programming paradigm are (1) Darwinian 
fitness proportionate reproduction and (2) crossover (sexual 
recombination).   
5.4.1. REPRODUCTION 

The operation of reproduction for the genetic programming 
paradigm is the basic engine of Darwinian reproduction and survival 
of the fittest. Each time this operation is performed, it operates on 
only one parental S-expression and produces only one offspring S-
expression. That is, it is an asexual operation.  

The operation of reproduction consists of two steps.  First, a single 
S-expression is selected from the population according to some 
selection rule based on fitness. Second, the individual is copied from 
the current population into the new population (i.e. the new 
generation). 

There are many different selection rules based on fitness. The most 
popular selection rule (and the one used herein) is fitness 
proportionate selection.  

When fitness proportionate selection is used as the selection rule in 
the reproduction operation, if f(si(t)) is the fitness of individual si in 
the population at generation t, then, each time the reproduction 
operation is performed, each individual in the population has a 
probability of being copied into the next generation of 

f(si(t))

∑
j=1

M
f(sj(t))

  

When the reproduction operation is performed using fitness 
proportionate selection as the rule of selection, it is called fitness 
proportionate reproduction.  

Note that the parent remains in the population while selection is 
performed during the current generation.  That is, the selection is 
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done with replacement (i.e. re-selection) allowed.  Parents can be 
selected, and, in general, are selected, more than once for 
reproduction during the current generation.  Indeed, the differential 
rate of survival and reproduction for more fit individuals is an 
essential part of genetic algorithms. 
5.4.2. CROSSOVER (RECOMBINATION) 

The crossover (sexual recombination) operation for the genetic 
programming paradigm creates variation in the population by 
producing new offspring that consist of parts taken from each parent. 
The crossover operation starts with two parental S-expressions and 
produces two offspring S-expressions. That is, it is a sexual operation. 

In general, at least one parent is chosen from the population with a 
probability equal to its normalized fitness. In this chapter, both 
parents are so chosen. 

The operation begins by independently selecting, using a uniform 
probability distribution, one random point in each parent to be the 
crossover point for that parent. Note that the number of points in the 
two parents typically are not equal because the S-expressions in the 
population are of various shapes and sizes.  

 The  crossover fragment for a particular parent is the rooted sub-
tree whose root is the crossover point for that parent and where the 
sub-tree consists of the entire sub-tree lying below the crossover point 
(i.e. more distant from the root of the original tree).  Viewed in terms 
of lists in a LISP S-expression, the crossover fragment is the sub-list 
starting at the crossover point. 

The first offspring S-expression is produced by deleting the 
crossover fragment of the first parent from the first parent and then 
inserting the crossover fragment of the second parent at the crossover 
point of the first parent.  The second offspring is produced in a 
symmetric manner. 

As will be seen, the crossover operation is well-defined and 
syntactically legal for any two S-expressions and any two crossover 
points. 

For example, consider the two parental LISP S-expressions shown 
in Figure 1.7.  The functions appearing in these two S-expressions are 
the Boolean AND, OR, and NOT functions.  The terminals appearing 
are the Boolean arguments D0 and D1.  Each point of the two S-
expressions in this figure has been numbered in a depth-first, left-to-
right way. 
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Figure 1.7  Two parental LISP S-expressions 

Equivalently, in terms of LISP S-expressions, the two parents are 

(OR (NOT D1) (AND D0 D1)) 

and  

(OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT D1)) 

Assume that the points of both trees above are numbered in a depth-
first way starting at the left. Suppose that the second point (out of the 
six points of the first parent) is randomly selected as the crossover 
point for the first parent.  The crossover point of the first parent is 
therefore the NOT function.  Suppose also that the sixth point (out of 
the 10 points of the second parent) is selected as the crossover point 
of the second parent. The crossover point of the second parent is 
therefore the AND function.  The underlined and emboldened 
portions of the two parental S-expressions above are the crossover 
fragments.  Figure 1.8 shows these two crossover fragments. 

NOT

D1

AND

NOT NOT

D0 D1
  

Figure 1.8  Two crossover fragments selected from the 
parents from Figure 1.7 

Figure 1.9 shows the two offspring resulting from crossover. 
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Figure 1.9  Two offspring produced by the crossover 
operation using the parents from Figure 1.7 and the 

crossover fragments from Figure 1.8. 
Note that the first offspring above happens to be a perfect solution 

for the even parity function, namely 

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

The second offspring is 

(OR (OR D1 (NOT D0)) (NOT D1)). 

Note that because entire sub-trees are swapped and because of the 
closure property of the functions themselves, this genetic crossover 
(recombination) operation produces syntactically legal LISP S-
expressions as offspring in all situations. 

If the root of one parental S-expression happens to be selected as 
the crossover point, the crossover operation will insert the entire first 
parent into the second parent at the crossover point of the second 
parent. That is, in this event, the entire first parent will become a sub-
tree within the second parent. In addition, in this event, the crossover 
fragment of the second parent will then become the second offspring.  

If the roots of two parents both happen to be chosen as crossover 
points, the crossover operation simply degenerates to an instance of  
reproduction on those two parents. 

Note that if an individual mates with itself or two identical 
individuals mate, the two resulting offspring will generally be 
different (because the crossover points selected are, in general, 
different for the two parents). This is in contrast with conventional 
genetic algorithms that operate on fixed length character strings 
where the one selected crossover point applies to both parents. 
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If a terminal is located at the crossover point in precisely one 
parent, then the sub-tree from the second parent is inserted at the 
location of the terminal in the first parent and the terminal from the 
first parent is inserted at the location of the sub-tree in the second 
parent.  In this event, the crossover operation often has the effect of 
increasing the depth of one tree and decreasing the depth of the 
second tree.  

If terminals are located at both crossover points selected, the 
crossover operation merely swaps these terminals from tree to tree.  
The effect of crossover, in this event, is akin to a point mutation.  
Thus, occasional point mutation is an inherent part of the crossover 
operation. 

A maximum permissible size (measured via the depth of the tree) is 
established for offspring created by the crossover operation.  This 
limit prevents large amounts of computer time being expended on a 
few extremely large individual S-expressions.  Of course, if we could 
execute all the individual S-expressions in the population in parallel 
(as nature does) in a manner such that the infeasibility of one 
individual in the population does not disproportionately jeopardize 
the resources needed by the population as a whole, we would not need 
such a size limitation.  If a crossover between two parents would 
create an offspring of impermissible size, the contemplated crossover 
operation is aborted for that offspring and the first of its parents is 
arbitrarily chosen to be reproduced into the new population. 

5.5. THE STATE OF THE SYSTEM 

The state of the genetic programming paradigm at any point during 
the process consists only of the current population of individuals in 
the population.  There is no additional memory or centralized 
bookkeeping necessary. 

5.6. RESULT DESIGNATION 

The single best individual in the population at the time of 
termination of the genetic programming paradigm is typically 
designated as the result produced by the genetic programming 
paradigm.  This method of results designation is sometimes called 
“winner takes all” and is used herein.   
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Note that the very best individual is not guaranteed to be present in 
the population at the time of termination unless some specific effort is 
made to preserve this individual (the so-called “elitist” strategy).  

Alternately, the entire population at the time of termination of the 
genetic programming paradigm can be designated as the result 
produced by the genetic programming paradigm.  

5.7. TERMINATION 

As for termination, as Yogi Berra once said, “It ain't over until it's 
over, and even then, it's not over.”  The genetic programming 
paradigm parallels nature in that it is a continuing process.  As a 
practical matter, the genetic programming paradigm terminates when 
either a pre-specified maximum number Ngen of generations have 
been run or when some termination criterion is satisfied.   

One possible termination criterion is that the standardized fitness of 
some individual in the population either equals zero or is within a pre-
established neighborhood of zero.   

5.8. CONTROL PARAMETERS 

The genetic programming paradigm is controlled by various 
parameters, including two major parameters and five minor 
parameters. 

The two major parameters that are used to control the process are 
the population size M and the number of generations Ngen to be run. 

First, unless otherwise indicated, the population size was 500 for all 
problems in this chapter. 

Second, unless otherwise indicated, the number of generations was 
51 (i.e. an initial random generation plus 50 subsequent generations) 
for all problems in this chapter.  Note, if termination is under control 
of a problem specific termination criterion, this parameter merely 
provides an overall maximum number of generations. 

Five minor parameters are used to control the process. Two of them 
control the frequency of performing the genetic operations; one of 
them controls the percentage of internal (function) points chosen as 
crossover points; and two of them help conserve computer time.  

The values of the five minor parameters are the same for all 
problems herein. 

First, crossover was performed on 90% of the population for each 
generation.  That is, if the population size is 500, then 450 individuals 
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(225 pairs) from each generation were selected with a probability 
equal to their normalized fitness (with reselection allowed) to 
participate in crossover.  

Second, fitness proportionate reproduction was performed on 10% 
of the population on each generation. That is, if the population size is 
500, 50 individuals from each generation were selected with a 
probability equal to their normalized fitness (with reselection 
allowed).  

Third, in selecting crossover points, we used a probability 
distribution that allocates 90% of the crossover points equally 
amongst the internal (function) points of each tree and allocates the 
remainder (i.e. 10%)  equally amongst the external (terminal) points 
of each tree. We believe this distribution promotes the recombining of 
larger structures. In contrast, a uniform distribution over all points 
might do an inordinate amount of mere swapping of terminals from 
tree to tree in a manner more akin to point mutation than the desired 
recombining of “building block” substructures. 

Fourth, a maximum depth of 17 was established for S-expressions 
created by the crossover operation.   

Fifth, a maximum depth of 6 was established for the random 
individuals generated for the initial population.  

6. LEARNING OF A BOOLEAN FUNCTION 

In the previous sections, we have discussed the background and 
details of the genetic programming paradigm.   

This section, and the remaining sections of this chapter, illustrate 
the use of the genetic programming paradigm.  In each such section, 
we show how we approached each problem so that it could be solved 
using the genetic programming paradigm. 

The examples have been selected to illustrate a variety of different 
types of problems from various different areas.  The sample problems 
selected involve functions that are integer-valued, real-valued, 
Boolean-valued, and symbolic-valued.  Some of the problems require 
iteration for their solution.  Some of the problems involve functions 
whose real functionality is the side effects they cause on the state of 
the system involved, rather than the actual value returned by the 
function.  

Many of the problems described are benchmark problems that have 
been the subject of previous study in machine learning, artificial 
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intelligence, induction, neural nets, decision trees, and classifier 
systems.   

Since the genetic programming paradigm is probabilistic, we almost 
never get the precisely same result twice.  Moreover, we almost never 
get the solution to the problem in the form we contemplated (although 
these solutions may be equivalent to what we contemplated).  For 
each illustrative problem, we first show the result from one particular 
run.  The showing of one particular run serves to illustrate the 
representation scheme and the general appearance of results one gets 
from the genetic programming paradigm.  No one particular run and 
no particular result is truly typical or representative of all runs.  In 
choosing the particular result for each problem, we have avoided 
showing the “prettiest” result and we have similarly avoided showing 
the most convoluted result.   

We show the amount of computer processing required to produce a 
solution with 99% probability over a series of runs for selected 
problems herein.  All of the problems presented herein have been 
repeatedly solved on  dozens or hundreds of occasions. 

For each problem herein, the author believes that sufficient 
information is provided herein (or via references) to allow the 
experiment to be independently replicated to produce substantially 
similar results (within the limits inherent in any process involving 
stochastic operations).   

We present the first problem below in especially great detail. 

6.1. BOOLEAN 11-MULTIPLEXER 

The problem of machine learning of a Boolean function requires 
developing a composition of functions that can return the correct 
value of the function after seeing examples of particular combinations 
of arguments associated with the correct value of the function.  This 
problem is a special case of the general problem of symbolic function 
identification (symbolic regression) that will be discussed later in 
connection with real valued functions. 

Boolean functions provide an especially useful test bed for machine 
learning for several reasons.   

First, it is intuitively easy to see how the structural components of 
the S-expression for a Boolean function contribute to the overall 
performance of the Boolean expression.  This direct connection 
between structure and performance is much harder to comprehend for 
many of the other problems.   
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Second, there are fewer practical computer implementation 
obstacles for Boolean functions than for other problems.  For 
example, with Boolean functions, there is no need to be concerned 
with error conditions (such as floating point overflows and 
underflows) arising from randomly generated computer programs and 
genetically recombined computer programs.   

Third, Boolean problems have an easily quantifiable search space. 
Let us first consider the problem of learning the Boolean 11-

multiplexer function. 
The solution of this problem using the genetic programming 

paradigm will serve to show the interplay in the genetic programming 
paradigm of  

• the genetic variation inevitably created in the initial random 
generation,  

• the small improvements for some individuals in the population via 
localized hill-climbing from generation to generation,  

• the way particular individuals become specialized and able to 
correctly handle certain sub-cases of the problem (case-splitting), 

• the creative role of crossover in recombining valuable parts of 
more fit parents, and  

• How the nurturing of a large population of alternative solutions to 
the problem (rather than a single point in the solution space) helps 
avoid false peaks in the search for the solution to the problem. 

This problem will also serve to illustrate the importance of 
hierarchies in solving problems and making the ultimate solution 
understandable.  Moreover, the progressively changing size and shape 
of the various individuals in the population in various generations 
shows the importance of not determining in advance the size and 
shape of ultimate solution or the intermediate results that may 
contribute to the solution. 

The input to the Boolean N-multiplexer function consists of k 
address bits ai and 2k data bits di, where N = k + 2k.  That is, the input 

to the Boolean multiplexer function consists of the k+2k bits 
ak-1, ... , a1, a0,  d2k-1, ... , d1,  d0.  

The value of the Boolean multiplexer function is the Boolean value 
(0 or 1) of the particular data bit that is singled out by the k address 
bits of the multiplexer.  For example, for the Boolean 11-multiplexer 
(where k = 3), if the three address bits a2a1a0 are 110, the multiplexer 
singles out data bit number 6 (i.e. d6) to be the output of the 
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multiplexer.  Figure 1.10 shows a Boolean 11-multiplexer with an 
input of 11001000000 and the corresponding output of 1.   

a2
a1
a0

d7
d6
d5
d4
d3
d2
d1
d0

Output1

1
1
0

0
1
0
0
0
0
0
0

 
Figure 1.10  Boolean 11-multiplexer 

There are five major steps involved in using the genetic 
programming paradigm.  These are outlined below. 

(1) the set of terminals, 
(2) the set of functions,  
(3) the fitness function, 
(4) the parameters for running the algorithm, and 
(5) the criterion for designating a result and terminating a run.  
The first major step in setting up the genetic programming paradigm 

is to select the set of terminals that will be available for constructing 
the computer programs (S-expressions) that will try to solve the 
problem. This choice is especially straight-forward for this problem. 
The terminal set for this problem has 11 elements which correspond 
to the 11 inputs to the Boolean 11-multiplexer. That is, the terminal 
set is  

T = {A0, A1, A2, D0, D1, ... , D7}. 

None of these eleven terminals are distinguished as being either 
address lines or data lines. 

The second major step in setting up the genetic programming 
paradigm is to select the set of functions that will be available for 
constructing the computer programs (S-expressions) that will try to 
solve the problem. The set of available functions for this problem is  

F = {AND, OR, NOT, IF} 

having 2, 2, 1, and 3 arguments, respectively.  The IF function is the 
Common LISP function that performs the IF-THEN-ELSE operation.  
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That is, the IF function returns the results of evaluating its third 
argument (the “else” clause) if its first argument is NIL (False) and 
otherwise returns the results of evaluating its second argument (the 
“then” clause). 

Note that this step (performed by the user) of determining the set of 
primitive functions in the genetic programming paradigm is 
equivalent to a similar required step in other machine learning 
paradigms.  For example: 

• This same determination of primitive functions occurs in the 
induction of decision trees using ID3 (and its variants) when the 
user selects the set of attribute-testing functions that can appear at 
the internal points of the decision tree.   

• This same determination occurs in neural net problems when the 
user selects the external functions that are to be activated by the 
output of a neural network.  

• This same user determination occurs in conventional genetic 
algorithms operating on strings when the user determines how 
certain external function are to be activated by a chromosome in 
the user's chosen representation scheme.   

• This same user determination occurs in genetic classifier systems 
when the user selects the external functions that are to be 
activated by the output interface of the classifier system.   

This omnipresent user determination occurs in other machine 
learning paradigms under various different guises, but is often not 
explicitly identified as a necessary step by researchers using other 
paradigms because the researcher often considers the choice of 
functions to be inherent in the statement of the problem (a view which 
is especially understandable if the researcher is focusing on only one 
specific problem in one specific area). 

The above function set F of basic logical functions satisfies the 
closure property.  Moreover, this set is known to be sufficient to 
realize any Boolean function.  For this problem and most of the 
problems herein, the function set is not only minimally sufficient to 
solve the problem at hand, but contains additional functions.   

The search space for this problem is the set of all LISP S-ex-
pressions that can be recursively composed of functions from the 
function set and terminals from the terminal set. Another way to look 
at the search space is that the Boolean multiplexer function with k+2k 
arguments is a particular one of 2k+2k possible Boolean functions of 
k+2k arguments.  For example, when k=3, then  k+2k = 11 and this 
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search space is of size 2 2 11. That is, the search space is of size  22048, 
which is approximately 10616.  Note that there are about 1068 particles 
in the universe.  Every possible Boolean function of k+2k arguments 
can be realized by at least one LISP S-expression composed from the 
functions and terminals above (for example, disjunctive normal 
form). 

The third major step in setting up the genetic programming 
paradigm is to identify the fitness function for the problem.  Fitness is 
often evaluated over a number of fitness cases.  The set of fitness 
cases must be representative of the problem as a whole.  The reader 
may find it helpful to think of these fitness cases as the 
“environment” in which the genetic population of computer programs 
must adapt.  There are 211 = 2048 possible combinations of the 11 
arguments a0a1a2d0d1d2d3d4d5d6d7 along with the associated correct 
value of the 11-multiplexer function.  For this particular problem, we 
use the entire set of 2048 combinations of arguments as the fitness 
cases for evaluating fitness.  That is, we do not use sampling.  

We begin by defining raw fitness in the simplest way that comes to 
mind using the natural terminology of the problem.  The raw fitness 
of a LISP S-expression in this problem is simply the number of 
fitness cases (taken over all 2048 fitness cases) where the Boolean 
value returned by the S-expression for a given combination of 
arguments is the correct Boolean value.  Thus, the raw fitness of an S-
expression can range over 2049 different values between 0 and 2048. 
A raw fitness of 2048 denotes a 100% correct individual S-
expression.  We define the auxiliary hits measure for this problem to 
be equal to the raw fitness. 

After defining raw fitness for the problem, we proceed to define 
standardized fitness.  Since a bigger value of raw fitness is better, 
standardized fitness is different from raw fitness for this problem.  In 
particular, standardized fitness equals the maximum possible value of 
raw fitness rmax (i.e. 2048) minus the observed raw fitness. The 
standardized fitness can also be viewed as the sum, taken over all 
2048 fitness cases, of the Hamming distances between the Boolean 
value returned by the S-expression for a given combination of 
arguments and the correct Boolean value.  The Hamming distance is 
zero if the Boolean value returned by the S-expression agrees with the 
correct Boolean value and is one if it disagrees.  Thus, the sum of the 
Hamming distances is equivalent to the number of mismatches. 
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The fourth major step in using the genetic programming paradigm is 
selecting the values of certain parameters.  A population of size 4000 
was chosen for this problem. 

Finally, the fifth major step in using the genetic programming 
paradigm is the criterion for designating a result and terminating a 
run.  In this problem we have a way to recognize a solution when we 
find it.  When the raw fitness is 2048 (i.e. the standardized fitness is 
zero), we have a 100% correct solution to this problem.  Thus, we 
terminate a run after a specified maximum number of generations 
Ngen (e.g. 51) or earlier if we find an individual with a raw fitness of 
2048.  For all the problems in this chapter, we will terminate a given 
run either after 51 generations and we designate the best single 
individual in the population at the time of termination as the result of 
the genetic programming paradigm.  This is called “winner takes all.” 

We now illustrate the genetic programming paradigm by discussing 
one particular run of the Boolean 11-multiplexer in detail.  

The process begins with the generation of the initial random 
population (i.e. generation 0). 

Predictably, the initial random population includes a variety of 
highly unfit individuals.  Many individual S-expressions in this initial 
random population are merely constants, such as the contradictory 
(AND A0 (NOT A0)). Other individuals are passive and merely 
pass an input through as the output, such as (NOT (NOT A1)).  
Other individuals are inefficient, such as (OR D7 D7). Some of 
these initial random individuals base their decision on precisely the 
wrong arguments, such as (IF D0 A0 A2).  This individual uses 
the data bit D0 to decide what output to take.  Many of the initial 
random individuals are partially blind in that they do not incorporate 
all 11 arguments that are known to be necessary to solve the problem.  
Some S-expressions are just nonsense, such as  

(IF (IF (IF D2 D2 D2) D2 D2) D2 D2). 

Nonetheless, even in this highly unfit initial random population, 
some individuals are somewhat more fit than others.  In the valley of 
the blind, the one-eyed man is king.  For this particular run, the 
individuals in the initial random population had values of 
standardized fitness ranging from 768 mismatches (i.e. 1280 matches 
or hits) to 1280 mismatches (i.e. 768 matches). 
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The worst individual in the population for the initial random 
generation was 

(OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3))). 

This individual had a standardized fitness of 1280 (i.e. raw fitness 
of only 768).  

As it happens, a total of 23 individuals out of the 4000 in this initial 
random population tied with the highest score of 1280 matches (i.e. 
hits) on generation 0. One of these 23 high scoring individuals was 
the S-expression 

 (IF A0 D1 D2). 

This individual scores 1280 matches by scoring 512 matches for the 
one quarter (i.e. 512) of the 2048 fitness cases for which A2 and A1 
are both NIL and by scoring an additional 768 matches on 50% of the 
remaining three quarters (i.e. 1536) of the fitness cases. 

This individual has obvious shortcomings.  Notably, it is partially 
blind in that it uses only 3 of the 11 necessary terminals of the 
problem.  As a consequence of this fact alone, this individual cannot 
possibly be a correct solution to the problem.  This individual 
nonetheless does some things right.  For example, this individual uses 
one of the three address bits (A0) as the basis for its action.  It could 
easily have done this wrong and used one of the eight data bits. In 
addition, this individual uses only data bits (D1 and D2) as its output. 
It could have done this wrong and used address bits. Moreover, if A0 
(which is the low order binary bit of the 3-bit address) is T (True), 
this individual selects one of the three odd numbered data bits (D1) as 
it output.  Moreover, if A0 is NIL, this individual selects one of the 
three even numbered data bits (D2) as its output. In other words, this 
individual correctly links the parity of the low order address bit A0 
with the parity of the data bit it selects as its output.  This individual 
is far from perfect, but it is far from being without merit. It is more fit 
than 3977 of the 4000 individuals in the population. 

The average standardized fitness for all 4000 individuals in the 
population for generation 0 is 985.4.  This value of average 
standardized fitness for the initial random population forms the 
baseline and serves as a useful benchmark for monitoring later 
improvements in the average standardized fitness of the population as 
a whole. 
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The hits histogram is a useful monitoring tool based on the auxiliary 
hits measure. This histogram provides a way of viewing the 
population as a whole for a particular generation. The horizontal axis 
of the hits histogram is the number of hits (i.e. matches, for this 
problem) and the vertical axis is the number of individuals in the 
population scoring that number of hits.  Fifty different levels of 
fitness are represented in the hits histogram for the population at 
generation 0 of this problem. In order to make this histogram legible 
for this problem, we have divided the horizontal axis into buckets of 
size 64.  For example, 1553 individuals out of 4000 (i.e. about 39%) 
had between 1152 and 1215 matches (hits).  This well-populated 
range includes the mode of the distribution which occurs at 1152 
matches (hits).  There are 1490 individuals with 1152 matches (hits). 
Figure 1.11 shows the hits histogram of the population for generation 
0 of this run of this problem.  
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Figure 1.11   Hits histogram for generation 0 

The Darwinian reproduction operation and the genetic crossover 
operation are then applied to parents selected from the current 
population with probabilities proportionate to fitness to breed a new 
population.   When these operations are completed, the new 
population (i.e. the new generation) replaces the old population. 

In going from the initial random generation (generation 0) to 
generation 1, the genetic programming paradigm works with the 
inevitable genetic variation existing in an initial random population.  
The initial random generation is an exercise in blind random search.  
The search is a parallel search of the search space because there are 
4000 individual points involved. 

Although the vast majority of the new offspring are again highly 
unfit, some of them tend to be somewhat more fit than others.  
Moreover, over a period of time and many generations, some of them 
tend to be slightly more fit than those existing in the earlier 
generation.  The average standardized fitness of the population 
immediately begins improving (i.e. decreasing) from the baseline 
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value of 985.4 for generation 0 to about 891.9 for generation 1.  We 
typically see this kind of generally improving trend in average 
standardized fitness from generation to generation.  As it happens, in 
this particular run of this particular problem, the average standardized 
fitness improves (i.e. decreases) monotonically between generation 2 
and generation 9 and assumes values of 845, 823, 763, 731, 651, 558, 
459, and 382, respectively.  We usually see a generally improving 
trend in average standardized fitness from generation to generation, 
but not necessarily a monotonic improvement. 

In addition, we similarly usually see a generally improving trend in 
the standardized fitness of the best single individual in the population 
from generation to generation.  As it happens, in this particular run of 
this particular problem, the standardized fitness of the best single 
individual in the population improves (i.e. decreases) monotonically 
between generation 2 and generation 9.  In particular, it assumes 
values of 640, 576, 384, 384, 256, 256, 128, and 0 (i.e. a perfect 
score), respectively.   

On the other hand, the standardized fitness of the worst single 
individual in the population fluctuates considerably.  For this 
particular run, the standardized fitness of the worst individual starts at 
1280, fluctuates considerably between generations 1 and 9, and then 
deteriorates (increases) to 1792 by generation 9. 

Figure 1.12 shows the standardized fitness (i.e. mismatches) for 
generations 0 through 9 of this run for  

• the best single individual in the population,  
• the worst single individual in the population, and  
• the average for the population.  
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Figure 1.12  Standardized fitness of worst-of-generation 

individual, average standardized fitness of population, and 
standardized fitness of best-of-generation individual for 

generation 0 through 9.  
In generation 1, the raw fitness for the best single individual in the 

population rises to 1408 matches (i.e. standardized fitness of 640).  
Only one individual in the population attained this high score of 1408 
in generation 1, namely  

(IF A0 (IF A2 D7 D3) D0). 

Note that this individual performs better than the best individual from 
generation 0 for two reasons. First, this individual considers two of 
the three address bits (A0 and A2) in deciding which data bit to 
choose as output, whereas the best individual in generation 0 
considered only one of the three address bits (A0). Second this best 
individual from generation 1 incorporates three of the eight data bits 
as its output, whereas the best individual in generation 0 incorporated 
only two of the eight potential data bits as output.  Although still far 
from perfect, the best individual from generation 1 is less blind and 
more complex than the best individual of the previous generation.  
This best-of-generation individual consists of 7 points, whereas the 
best-of-generation individual from generation 0 consisted of only 4 
points. 

In generation 2, the best raw fitness remained at 1408; however, the 
number of individuals in the population sharing this high score rose 
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from 1 to 21.  The high point of the hits histogram advanced from 
1152 for generation 0 to 1280 for generation 2. There are 1620 
individuals with 1280 hits. 

In generation 3, one individual in the population attained a new 
high score of 1472 matches (i.e. standardized fitness of 576). This 
individual has 16 points and is 

(IF A2 (IF A0 D7 D4) 
       (AND (IF (IF A2 (NOT D5) A0) D3 D2) D2)). 

Generation 3 shows further advances in fitness for the population as a 
whole.  The number of individuals with 1280 hits (the high point for 
generation 2) has risen to 2158 for generation 3.  Moreover, the center 
of gravity of the fitness histogram has shifted significantly from left 
to right. In particular, the number of individuals with 1280 hits or 
better has risen from 1679 in generation 2 to 2719 in generation 3. 

In generations 4 and 5, the best single individual has 1664 hits. This 
score is attained by only one individual in generation 4, but is attained 
by 13 individuals in generation 5.  One of these 13 individuals is 

(IF A0 (IF A2 D7 D3) 
       (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))). 

Note that this individual uses all three address bits (A2, A1, and 
A0) in deciding upon the output.  It also uses five of the eight data 
bits.  By generation 4, the high point of the histogram has moved to 
1408 with 1559 individuals. 

In generation 6, four individuals attain a score of 1792 hits. The 
high point of the histogram has moved to 1536 hits.   

In generation 7, 70 individuals attain this score of 1792 hits. 
In generation 8, there are four best-of-generation individuals.  They 

all attain a score of 1920 hits.  The mode (high point) of the histogram 
has moved to 1664.  1672 individuals share this value.  Moreover, an 
additional 887 individuals score 1792.  

In generation 9, one individual emerges with a l00% perfect score 
of 2048 hits. That individual is 

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0)) 
              (IF A0 (IF A1 (IF A2 D7 D3) D1) D0)) 
       (IF A2 (IF A1 D6 D4) 
              (IF A2 D4 (IF A1 D2 (IF A2 D7 D0))))) 

Figure 1.13 shows the 100% correct individual from generation 9. 
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Figure 1.13  100% correct individual from generation 9 

This 100% correct individual from generation 9 is a hierarchical 
structure consisting of 37 points (i.e. 12 functions and 25 terminals).   

Note that the size and shape of this solution emerged from the 
genetic programming paradigm.  This particular size and this 
particular hierarchical structure was not specified in advance.  
Instead, it evolved as a result of reproduction, crossover, and the 
relentless pressure of fitness.  In generation 0, the best single 
individual in the population had 12 points.  The number of points in 
the best single individual in the population varied from generation to 
generation.  It was 4 in generation 0, while it was 37 for generation 9. 

This 100% correct individual can be simplified to 

(IF A0 (IF A2 (IF A1 D7 D5) (IF A1 D3 D1)) 
       (IF A2 (IF A1 D6 D4) (IF A1 D2 D0))). 

When so rewritten, it can be seen that this individual correctly 
performs the 11-multiplexer function by first examining address bits 
A0, A2, and A1 and then choosing the appropriate one of the eight 
possible data bits. 

Figure 1.14 shows, side by side, the hits histograms for generations 
3, 5, 7, and 9 of this run.  As one progresses from generation to 
generation, note the left-to-right “slinky” undulating movement of the 
center of mass of the histogram and the high point of the histogram.  
This movement reflects the improvement of the population as a whole 
as well as the best single individual in the population.  There is a 
single 100% correct individual with 2048 hits at generation 9; 
however, because of the scale of the vertical axis of this histogram, it 
is not visible in a population of size 4000.  
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Figure 1.14: Hits histograms for generations 3, 5, 7, and 9 

for the Boolean 11-multiplexer problem  
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Further insight can be gained by studying the genealogical audit 
trail of the process.  This audit trail consists of a complete record of 
the details of each genetic operation that is performed.  For the op-
erations of fitness proportionate reproduction and crossover, the 
details consist of the individual(s) chosen for the operation and, for 
crossover, the particular points chosen within both participating indi-
viduals. 

Construction of the audit trail starts with the individuals of the 
initial random generation (generation 0). Certain additional 
information such as the individual’s rank location in the population 
(found by sorting by normalized fitness) and its standardized fitness is 
also carried along as a convenience in interpreting the genealogy. 
Then, as each operation is performed to create a new individual for 
the next generation, a list is recursively formed consisting of the type 
of the operation performed, the individual(s) participating in the 
operation, the details of that operation (e.g. crossover point selected), 
and, finally, a pointer to the audit trail previously assembled for the 
individual(s) participating in that operation. 

An individual occurring at generation h has up to 2h+1 ancestors.  
The number of ancestors is less than 2h+1 to the extent that operations 
other than crossover are involved and to the extent that an individual 
crosses over with itself.  For example, an individual occurring at 
generation 9 has up to 1024 ancestors. Note that a particular ancestor 
often appears more than once in this genealogy because all selections 
of individuals to participate in the basic genetic operations are skewed 
in proportion to fitness with re-selection allowed.  Moreover, even for 
a modest sized value of h, 2h+1 will typically be greater than the 
population size. This repetition, of course, does nothing to reduce the 
size of the genealogical tree. Even with the use of pointers from 
descendants back to ancestors, construction of a complete ge-
nealogical audit trail is exponentially expensive in both computer 
time and memory space. Note that the audit trail must be constructed 
for each individual of each generation because the identity of the 
l00% correct individual(s) eventually solving the problem is not 
known in advance. Thus, there are 4000 audit trails. By generation 9, 
each of these 4000 audit trails recursively incorporates information 
about operations involving up to 1024 ancestors. The audit trail for 
the single 100% correct individual of interest in generation 9 alone 
occupies about 27 densely-printed pages. 
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The creative role of crossover and case-splitting is illustrated by an 
examination of the genealogical audit trail for the l00% correct 
individual emerging at generation 9. 

The l00% correct individual emerging at generation 9 is the child 
resulting from the most common genetic operation used in the 
process, namely crossover.  The first parent from generation 8 had 
rank location of 58 (out of 4000, with a rank of 0 being the very best) 
in the population and scored 1792 hits (out of 2048).  The second 
parent  from generation 8 had rank location 1 and scored 1920 hits.  
Note that it is entirely typical that the individuals selected to 
participate in crossover have relatively high rank locations in the 
population since crossover is performed among individuals in a 
mating pool created proportional to fitness. 

The first parent from generation 8 (scoring 1792) was 

(IF A0 (IF A2 D7 D3) 
       (IF A2 (IF A1 D6 D4) 
              (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))))). 

Figure 1.15 shows this first parent  from generation 8 . 
IF
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Figure 1.15  First parent (scoring 1792 hits) from generation 

8 for 100% correct individual in generation 9 
Note that this first parent starts by examining address bit A0.  If A0 

is T, the emboldened and underlined portion then examines address 
bit A2.  It then, partially blindly, makes the output equal D7 or D3 
without even considering address bit A1.  Moreover, the emboldened 
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and underlined portion of this individual does not even contain data 
bits D1 and D5.  

On the other hand, when A0 is NIL, this first parent is 100% 
correct.  In that event, it examines A2 and, if A2 is T, it then 
examines A1 and makes the output equal to D6 or D4 according to 
whether A1 is T or NIL.  Moreover, if A2 is NIL, it twice retests A2 
(unnecessarily, but harmlessly) and then correctly makes the output 
equal to (IF A1 D2 D0).  Note that the 100% correct portion of 
this first parent, namely, the sub-expression 

(IF A2 (IF A1 D6 D4) 
       (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))) 

is itself a 6-multiplexer.   
This embedded 6-multiplexer tests A2 and A1 and correctly selects 

amongst D6, D4, D2, and D0.  This fact becomes clearer if we 
simplify this sub-expression by removing the two extraneous tests and 
removing the D7 (which is unreachable).  This sub-expression 
simplifies to the following: 

(IF A2 (IF A1 D6 D4) 
       (IF A1 D2 D0)) 

In other words, this imperfect first parent handles part of its 
environment correctly and part of its environment incorrectly.  In 
particular, this first parent handles the even-numbered data bits 
correctly. This first parent is partially correct in handling the odd-
numbered data bits. 

The tree representing this first parent has 22 points. The crossover 
point chosen at random at the end of generation 8 was point 3 and 
corresponds to the second occurrence of the function IF. That is, the 
crossover fragment consists of the incorrect, emboldened and 
underlined sub-expression  

(IF A2 D7 D3).    

The second parent from generation 8 (scoring 1920 hits) was 

(IF A0 (IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0))  
                      (IF A0 (IF A1 (IF A2 D7 
                                              D3) 
                                      D1) 
                              D0))  
              (IF A1 D6 D4)) 
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       (IF A2 D4 
              (IF A1 D2 (IF A0 D7 (IF A2 D4 D0)))))) 

Figure 1.16 shows the second parent from generation 8. 
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Figure 1.16  Second parent (scoring 1920 hits) from 

generation 8 for 100% correct individual in generation 9 
The tree representing this second parent has 40 points.  The 

crossover point chosen at random for this second parent was point 5.  
This point corresponds to the third occurrence of the function IF.  
That is, the crossover fragment consists of the emboldened and under-
lined sub-expression of this second parent.  

This sub-expression of this second parent 100% correctly handles 
the case when A0 is T (i.e. the odd numbered addresses).  This sub-
expression makes the output equal to D7 when the address bits are 
111; it makes the output equal to D5 when the address bits are 101; it 
makes the output equal to D3 when the address bits are 011; and it 
makes the output equal to D1 when the address bits are 001.  

Note that the 100% correct portion of this second parent, namely, 
the sub-expression 

(IF A2 (IF A1 D7 (IF A0 D5 D0))  
       (IF A0 (IF A1 (IF A2 D7 D3) D1) D0)) 

is itself a 6-multiplexer.   
This embedded 6-multiplexer in this second parent tests A2 and A1 

and correctly selects amongst D7, D5, D3, and D1 (i.e. the odd 
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numbered data bits).  This fact becomes clearer if we simplify this 
sub-expression of this second parent to the following: 

(IF A2 (IF A1 D7 D5)  
       (IF A1 D3 D1) 

In other words, this imperfect second parent handles part of its 
environment correctly and part of its environment incorrectly.  This 
second parent does not do as well when A0 is NIL (i.e. the even 
numbered data bits).  In other words, this second parent correctly 
handles the odd-numbered data bits and incorrectly handles the even-
numbered data bits. 

Even though neither parent is perfect, these two imperfect parents 
contain complementary, co-adapted portions which, when mated 
together, produce a 100% correct offspring individual.  In effect, the 
creative effect of the crossover operation blends the two cases of the 
implicitly “case-split” environment into a single 100% correct 
solution. 

Figure 1.17 shows this case splitting by showing the 100% correct 
offspring from generation 9 as two 6-multiplexers: 

A0

IF

6-Multiplexer from 
second parent using 
A2 and A1 to select 
amongst D7, D5, 

D3 and D1

6-Multiplexer from 
first parent using 

A2 and A1 to select 
amongst D6, D4, 

D2 and D0

 
Figure 1.17  Simplified 100% correct individual from 

generation 9 shown as a hierarchy of two 6-multiplexers 
Figure 1.18 also shows this simplified version of the 100% correct 

individual from generation 9. 



54 

IF

A1 D7 D5

IF

A1 D3 D1

A2 A2 IF

A1 D6 D4

IF

A1 D2 D0
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IF

 
Figure 1.18  Simplified 100% correct individual from 

generation 9 shown as a hierarchy of two 6-multiplexers 
Of course, not all crossovers between individuals are useful and 

productive.  In fact, a large fraction of the individuals produced by the 
genetic operations are useless.  But the existence of a population of 
alternative solutions to a problem provides the ingredients with which 
genetic recombination (crossover) can produce some improved 
individuals. The relentless pressure of natural selection based on 
fitness then causes these improved individuals to be preserved and to 
proliferate. Moreover, genetic variation and the existence of a 
population of alternative solutions to a problem makes it unlikely that 
the entire population will become trapped on local maxima. 

Interestingly, the same crossover that produced the 100% correct 
individual also produced a runt scoring only 256 hits.  In this 
particular crossover, the two crossover fragments not used in the 
100% correct individual combined to produce an unusually unfit 
individual.  This is one of the reasons why there is considerable 
variability from generation to generation in the worst single 
individual in the population. 

As one traces the ancestry of the 100% correct individual created in 
generation 9 deeper back into the genealogical audit tree (i.e. towards 
earlier generations), one encounters parents scoring generally fewer 
and fewer hits.  That is, one encounters more S-expressions that 
perform irrelevant, counterproductive, partially blind, and incorrect 
work.  But if we look at the sequence of hits in the forward direction, 
we see localized hill-climbing in the search space occurring in 
parallel throughout the population as the creative operation of 
crossover recombines complementary, co-adapted portions of parents 
to produce improved offspring. 
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6.2. HIERARCHIES AND DEFAULT HIERARCHIES  

Note that the result of the genetic programming paradigm is always 
hierarchical.  As we saw above, the solution to the 11-multiplexer 
problem was a hierarchy consisting of two 6-multiplexers.  In one run 
where we applied the genetic programming paradigm to the simpler 
Boolean 6-multiplexer, we obtained the following 100% correct 
solution  

(IF (AND A0 A1) D3 (IF A0 D1 (IF Al D2 D0))). 

This solution to the 6-multiplexer is also a hierarchy.  It is a 
hierarchy that correctly handles the particular fitness cases where 
(AND A0 A1) is true and then correctly handles the remaining cases 
where (AND A0 A1) is false. 

Default hierarchies often emerge from the genetic programming 
paradigm.  A default hierarchy incorporates partially correct sub-rules 
into a perfect overall procedure by allowing the partially correct 
(default) sub-rules to handle the majority of the environment and by 
then dealing in a different way with certain specific exceptional cases 
in the environment.  The S-expression above is also a default 
hierarchy in which the output defaults to  

(IF A0 D1 (IF Al D2 D0)) 

three quarters of the time.  However, in the specific exceptional 
fitness case where both address bits (A0 and A1) are both T, the 
output is the data bit D3.   

Default hierarchies are considered desirable in induction problems 
(Holland11, Holland et. al.12) because they are often parsimonious 
and they are a human-like way of dealing with situations.  Wilson’s13 
noteworthy BOOLE experiments originally found a set of eight if-
then classifier system rules for the Boolean 6-multiplexer that 
correctly (but tediously) handled each particular subcase of the 
problem.  Subsequently, Wilson14 modified the credit allocation 
scheme and successfully produced a default hierarchy.   

6.3. RESULTS OVER A SERIES OF RUNS 

In the previous section we described one particular run of the 
genetic programming paradigm in which we obtained a solution to the 
Boolean 11-multiplexer problem. 
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A basic statistic associated with runs of the genetic programming 
paradigm (and the genetic algorithm) is the probability of success ps 
that a particular run produces a desired result within a specified 
number of generations Ngen with a population of size M.  We obtain 
this statistic ps by making a substantial number of runs.   

Note that this value of ps depends strongly on the choices of 
• the population size M  
• the maximum number of generations Ngen to be run,  
• the secondary parameters of the genetic algorithm, and  
• all the fixed minor details of our implementation of the algorithm.  
Figure 1.19 shows the probability of success ps over 200 

generations for 309 runs of the Boolean 6-multiplexer problem.  This 
graph rises monotonically since the probability is cumulative from 
generation 0.  This graph approaches 100% asymptotically as the 
number of generations grows.  There is a point after which additional 
generations produce only small increases in the probability of success 
ps.  For example, in this graph, at generation 51, ps is about 67%.  At 
generation 101, ps is 83%.  At generation 151, ps is 87%.  At 
generation 201, ps is 89%.  
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Figure 1.19  Probability of success for runs of Boolean 6-

multiplexer for 200 generations 
Neither conventional genetic algorithms operating on fixed length 

character strings nor the genetic programming paradigm always 
produce the desired results on a particular run of the algorithm.  



57 

For one thing, genetic algorithms inherently involve probabilistic 
steps.  Because of these probabilistic steps, anything can happen on a 
given run and nothing is guaranteed.  In particular, some runs simply 
do not produce the desired results within a particular amount of time.  
For example, genetic algorithms may prematurely converge (i.e. 
converge to a sub-optimal result).  The exponentially increasing 
allocation of future trials on the basis of the current estimates of the 
fitness of the population is both the strength and a weakness of 
genetic algorithms.  This allocation is a strength because it is the 
fundamental reason why genetic algorithms work in the first place.  
This allocation is a weakness because it may result in premature 
convergence.   

The effects of randomness, premature convergence, unfortuitous 
initial conditions, and other chaotic affects on genetic algorithms can 
be minimized by making entirely separate multiple independent runs.  
These separate multiple independent runs, of course, lend themselves 
to parallel computer architectures and yield virtually perfect linear 
speed-up, but that is not the point here.  The best single individual 
from all of these multiple independent runs is then designated as the 
solution to the problem. 

One way to measure the amount of computational resources 
required by the genetic programming paradigm (or the genetic 
algorithm in general) is to determine the likely number of 
independent runs needed to produce a desired result with a certain 
probability, say,  z = 99%.  Once we determine the likely number of 
independent runs required, we can then multiply this number by the 
amount of processing required for each run.  The amount of 
processing required for each run is generally proportional to the 
product of the population size and the number of generations 
executed.  

Once we have obtained the probability of success ps by 
measurement, we can say that the probability of achieving the desired 
result at least once within K runs is 1 - (1-ps)K.  If we are seeking to 
achieve the desired result with a probability of, say,  z = 1 - ε = 99%, 
then the number K of independent runs (niches) required is the result 
of 

 
log(1-z)
log(1-ps)  = 

log ε
log(1-ps) , where  ε=  1 - z. 
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rounded up to the next highest integer.  For example, if ps is 90%, 
then K is 2. 

We can measure the number of individuals that need to be 
processed by a genetic algorithm to solve a particular problem.  For 
example, we ran 54 runs of the Boolean 11-multiplexer problem with 
a population size M of 4,000 and for a maximum number of 
generations Ngen of 201 (i.e. generation 0 plus 200 additional 
generations).   

Figure 1.20 shows the probability of success ps of a run for various 
numbers of generations for a population size M of 4000.  For 
example, the graph shows that by generation 10, only about 28% of 
the runs produced at least one individual with a perfect score of 2048 
matches.  By generation 15, 78% of the runs produced a perfect 
solution.  By generation 20, 90% of the runs produced a perfect 
solution. 
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Figure 1.20  Probability of success for runs of 11-multiplexer 

problem with population size M of 4000 
With a probability of success ps = 90% by generation 20, the 

formula above indicates that K = 2 independent runs are required to 
assure a 99% probability of solving the problem.  Therefore, the 
number of individuals that need to be processed to assure a 99% 
probability of solving this problem is no more than 160,000 
individuals (i.e. 2 times 20 times 4000).  This 160,000 does not reflect 
the fact that some successful runs would, in actual practice, be 
terminated without executing all 20 generations.  The size of the 
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search space (22048) for the 11-multiplexer is very large in relation to 
the number of individuals processed that need to be processed (i.e. no 
more than 160,000). 

In the Boolean 11-multiplexer problem described above,  we chose 
an unusually large and decidedly non-optimal population size (i.e. 
4000) so as to produce a solution in a sufficiently small number of 
generations (i.e. 9) to allow us to economically run a genealogical 
audit trail.   

In general, the selection of the optimal population size is a difficult 
problem for both the genetic programming paradigm and the 
conventional genetic algorithm operating on strings.  The number of 
individuals that must be processed to give a 99% probability of 
finding a solution is a complex function of all the factors that 
influence the probability of success ps.  These factors include the 
population size M, maximum number Ngen of generations to be run, 
the various secondary parameters, and all the other choices (e.g. 
method of creating the initial population) that are involved in the run.   

Figure 1.21, for example, shows the probability of success ps of a 
run of the 6-multiplexer problem for various numbers of generations 
for population sizes of 500, 1000, and 2000.  Clearly, the optimal 
population size for the 6-multiplexer problem is not 500, but is, 
instead, some larger number in the neighborhood of 1000 to 2000. 
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Figure 1.21  Probability of success for runs of the 6-

multiplexer problem for population size M of 500, 1000, and 
2000 
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6.4. NON-RANDOMNESS OF RESULTS 

The number of possible compositions using the set of available 
functions and the set of available terminals is very large.  In 
particular, the number of possible trees representing such 
compositions increases rapidly as a function of the number of points 
in the tree.  This is true because of the large number of ways of 
labeling the points of a tree with functions and terminals.  The 
number of possible compositions of functions is, in particular, very 
large in relation to the 40,000 individuals processed in generations 0 
through 9 in the particular run of the genetic programming paradigm 
described above.  

There is a theoretic possibility that the probability of a solution to a 
given problem may be low in the original search space of the Boolean 
11 Multiplexer problem (i.e. all Boolean functions of 11 arguments), 
but that the probability of randomly generating a composition of 
functions that solves the problem might be significantly higher in the 
space of randomly generated compositions of functions.  The Boolean 
11-multiplexer function is a unique function out of the 2211 (i.e. 22048) 
possible Boolean functions of 11 arguments and one output.  The 
probability of randomly choosing zeroes and ones for the 211 lines of 
a truth table so as to create this particular Boolean function is only 1 
in  2211 (i.e. 22048).  However, there is a theoretic possibility that the 
probability of randomly generating a composition of the functions 
AND, OR, NOT, and IF that performs the 11-multiplexer function 
might be better than 1 in 22048. 

There is no a priori reason to believe that this is the case.  That is, 
there is no a priori reason to believe that compositions of functions 
that solve the Boolean multiplexer problem are denser in the space of 
randomly generated compositions of functions than solutions to the 
problem in the original search space of the problem.  Nonetheless, 
there is a possibility that this is the case, even though there is no a 
priori reason to think that it is the case.   

To test against this possibility, we performed the following control 
experiment for the Boolean 11-multiplexer problem.  We generated 
5,000,000 random S-expressions to check if we could randomly 
generate a composition of functions that solved the problem.  For this 
control experiment, we used the same algorithm and parameters used 
to generate the initial random population in the normal runs of the 
problem.  No 100% correct individual was found in this blind search.  
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In addition, on the first 1,000,000 random S-expressions, we 
computed an entire hits histogram of raw fitness values.  The high 
score in this histogram was only 1408 hits (out of a possible 2048) 
and the low score was 704 hits.  Moreover, only 10 individuals 
achieved this high score of 1408.  The high point of the hits histogram 
distribution came at 1152 hits; the second highest point came at 896 
hits; and the third highest point came at 1024 hits.  The size of the 
search space (22048) for the 11-multiplexer is very large in relation to 
the number of individuals processed in a typical run solving the 11-
multiplexer. 

A similar control experiment was conducted for the Boolean 6-
multiplexer problem (with a search space of 226 = 264) involving 
10,000,000 individuals.  As before, no 100% correct individual was 
found in this blind random search.  In fact, no individual had more 
than 52 (of 64 possible) hits.  As with the 11-multiplexer, the size of 
the search space (264) for the 6-multiplexer is very large in relation to 
the number of individuals processed in a typical run solving the 6-
mutliplexer. 

We conclude that solutions to these problems in the space of 
randomly generated compositions of functions are not denser than 
solutions in the original search space of the problem.  Therefore, we 
conclude that the results described herein are not the fruits of random 
search.  

As a matter of fact, we have evidence suggesting that the solutions 
to many functions are appreciably sparser in the space of randomly 
generated compositions of functions than solutions in the original 
search space of the problem.  

Consider, for example, the odd-2-parity function with two Boolean 
arguments (i.e. exclusive-or function).  The odd-2-parity function of k 
Boolean arguments returns T (True) if the number of arguments equal 
to T is odd and returns NIL (False) otherwise.  There are only 222 = 
24 = 16 possible Boolean functions with two Boolean arguments and 
one output.  Thus, in the search space of truth tables for Boolean 
functions, the probability of randomly choosing T's and NIL's for the 
16 lines of a truth table that realizes this particular Boolean function 
is only 1 in 16.  

First, we generated 100,000 random individuals using a function set 
consisting of the three Boolean functions F = {AND, OR, NOT}.  If 
randomly generated compositions of the basic Boolean functions that 
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realize the exclusive-or function were as dense as solutions are in the 
original search space of the problem (i.e. the space of truth tables for 
Boolean functions of 2 arguments), we would expect about about 
6250 in 100,000 (i.e. 1 in 16) random compositions of functions to 
realize the exclusive-or function.  Instead, we found that only 110 out 
of 100,000 randomly generated compositions that realized the 
exclusive-or function.  This is a frequency of only 1 in 909.  In other 
words, randomly generated compositions of functions realizing the 
exclusive-or function are about 57 times sparser than solutions in the 
original search space of truth tables for Boolean functions.   

Second, we generated an additional 100,000 random individuals 
using a function set consisting of the different function set F = {AND, 
OR, NOT, IF}.  We found that only 116 out of 100,000 randomly 
generated compositions realized the exclusive-or function (i.e. a 
frequency of 1 in 862).  That is, with this second function set, 
randomly generated compositions of functions realizing the 
exclusive-or function are about 54 times sparser than solutions in the 
original search space of truth tables for Boolean functions.  

Third, we generated 100,000 random individuals using a function 
set consisting of four functions taking two arguments each, namely,  F 
= {AND, OR, NAND, NOR}.  We found that only 118 out of 100,000 
randomly generated compositions realized the exclusive-or function 
(i.e. a frequency of 1 in 846).  That is, with this third function set, 
randomly generated compositions of functions realizing the 
exclusive-or function are about 53 times sparser than solutions in the 
original search space of truth tables for Boolean functions. 

In other words, solutions to the odd parity (exclusive-or) function 
with two arguments appear to be 53 to 57 times sparser in the space 
of randomly generated compositions of functions than solutions in the 
original search space of the problem. 

We then performed similar experiments on two Boolean functions 
with three Boolean arguments and one output, namely, the odd-3-
parity function and the 3-multiplexer function (i.e. the If-Then-Else 
function).  There are only  223 = 28 = 256 Boolean functions with 
three Boolean arguments and one output.  The probability of 
randomly choosing a particular combination of T's and NIL's for the 
28 = 256 lines of a truth table is 1 in 256.  If the probability of 
randomly generating a composition of functions realizing a particular 
Boolean function with three arguments equaled 1 in 256, we would 
expect about 39,063 random compositions per 10,000,000 to realize a 
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particular Boolean function.  However, after randomly generating 
10,000,000 compositions of the functions AND, OR, and NOT, we 
found only 730 3-multiplexers and no odd-3-parity functions.  That is, 
our randomly generated compositions of functions realizing the 3-
multiplexer function are about 54 times sparser than solutions in the 
original search space of Boolean functions.  We cannot make the 
comparison for the odd-3-parity function, but it is presumably tens of 
thousands of times scarcer than one in 256. 

These three results concerning the odd-3-parity function, the 3-
multiplexer function, and the odd-2-parity (exclusive-or) function 
should not be too surprising since the parity and multiplexer functions 
have long been identified by researchers as functions that often pose 
difficulties for paradigms for machine learning, artificial intelligence, 
neural nets, and classifier systems (Wilson13,14, Quinlan20, Barto et. 
al.21).  

In summary, as to these benchmark Boolean functions, 
compositions of functions solving the problem are substantially less 
dense than solutions are in the search space of the original problem. 

The reader would do well to remember the origin of the concern 
that compositions of functions solving a problem might be denser 
than solutions to the problem are in the search space of the original 
problem.  In Lenat's22 work on discovering mathematical laws via 
heuristic search and other related work23, the mathematical laws 
being sought were stated, in many cases, directly in terms of the list, 
i.e. the primitive data type of the LISP programming language.  In 
addition, the lists in Lenat's artificial mathematician (AM) laws were 
manipulated by list manipulation functions that are unique or peculiar 
to LISP.  Specifically, in many experiments in Lenat*22, the 
mathematical laws sought were stated directly in terms of lists and list 
manipulation functions such as, CAR (which returns the first element 
of a list), CDR (which returns the tail of a list), etc.  In Lenat's mea 
culpa article “Why AM and EURISKO appear to work” (Lenat and 
Brown24), Lenat recognized that LISP syntax may have overly 
facilitated discovery of his previously reported results, namely, 
mathematical laws stated in terms of LISP's list manipulation 
functions and LISP's primitive object (i.e. the list).  

In contrast, the problems described herein are neither stated nor 
solved in terms of objects or operators unique or peculiar to LISP.  
The solution to the Boolean multiplexer function is expressed in 
terms of ordinary Boolean functions (such as AND, OR, NOT, and 
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IF).  The solutions to the numerical problems discussed herein (such 
as symbolic regression, broom balancing) are expressed in terms of 
the ordinary arithmetic operations (such as addition, subtraction, 
multiplication, and division).  The solutions to the planning problems 
(such as block stacking) are expressed in terms of ordinary iteration 
operations and various domain-specific robotic actions (such as 
robotic actions that move a block from one place to another).   

Virtually any programming language could be used to express the 
solutions to these problems.  The LISP programming language was 
chosen for use in the genetic programming paradigm primarily 
because of the many convenient features of LISP (most importantly, 
the fact that data and programs have the same form in LISP and that 
this common form corresponds to the parse tree of a computer 
program).  The LISP programming language was not chosen because 
of the presence in LISP of the list as a primitive data type or because 
of LISP's particular functions for manipulating lists (e.g. CAR and 
CDR). In fact, neither lists nor list manipulation functions are 
involved in any of the problems described herein (except in the 
irrelevant and indirect sense that the LISP programming language 
uses lists to do things, unseen by the user, that other programming 
languages do in different ways).  

In summary, there is no a priori reason (nor any reason we have 
since discovered) to think that there is anything about the syntax of 
the programs generated by the genetic programming paradigm, nor 
the syntax of the programming language we used to implement the 
genetic programming paradigm (i.e. LISP) that makes it easier to 
discover solutions to problems involving ordinary (i.e. non-list) 
objects and ordinary (i.e. non-list) functions.  In addition, the control 
experiments verify that the results obtained herein are not the fruits of 
a random search. 

7. ARTIFICIAL ANT PROBLEM  

As a second illustration of the genetic programming paradigm, we 
consider a task devised by Jefferson et. al.25 for an artificial ant 
attempting to find the food lying along an irregular trail.   

The setting for the problem is a square 32 by 32 toroidal grid in the 
plane.  The John Muir trail (and the somewhat more difficult Santa Fe 
trail designed by Christopher Langton) is an irregular winding trail 
with food in 89 of the 1024 cells.  The Santa Fe rail has single gaps, 
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double gaps, 
single gaps at 
corners, double 
gaps (knight 
moves) at corners, 
and triple gaps 
(long knight 
moves) at corners.  
The artificial ant 
begins in the cell 
identified by the 
coordinates (0,0) 
and is facing in a 
designated 
direction (i.e. 
east).   

The Santa Fe 
trail is shown in 
Figure 1.22.  Food 
is represented by 
solid black 
squares, while gaps in the trail are represented by gray squares.  The 
numbers identify key features of the trail in terms of the number of 
pieces of food occurring up to that feature.  For example, the number 
3 highlights the first corner.  It appears after 3 pieces of food.  
Similarly, the number 11 highlights the first gap in the trail.  The 
number 38 highlights the first knight's move. 

Figure 1.22  Santa Fe trail for the artificial ant problem with 
the 89 pieces of food shown in black 

The goal of this problem is to find a computer program for 
performing the task of following the trail and eating all of the food. 

The artificial ant has a very narrow and limited view of the world.  
In particular, the ant has a sensor that can see only the single 
immediately adjacent cell in the direction the ant is currently facing.  
In addition, the ant is limited to three very simple, local actions.  
Specifically, at each time step, the ant can execute one of following 
four functions: 

• RIGHT turns the ant right (and does not move the ant).  
• LEFT turns the ant left (and does not move the ant).  
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• MOVE moves the ant forward  in the direction it is facing.  When 
an ant moves into a square, it eats the food, if any, in that square 
(thus eliminating food from that square). 

• IF-FOOD-HERE senses the contents of the single immediately 
adjacent cell in the direction the ant is facing and allows one of 
two alternative actions to be taken based on whether food is 
present. 

The ant's goal is to traverse the entire trail and collect all of the food 
within a reasonable limited number of time steps. 

When Jefferson et. al. used the conventional genetic algorithm 
operating on strings to find the finite state automaton to solve this 
problem, it was first necessary to develop a representation scheme to 
convert the state transition table of the potential automaton into 
binary strings of length 453.  In the genetic programming paradigm, 
the problem can be approached and solved in a more natural and 
direct way. 

The first and second major steps in using the genetic programming 
paradigm are to identify the set of terminals and functions.  We adopt 
the four operators defined and used by Jefferson, namely, IF-FOOD-
HERE, MOVE, RIGHT, and LEFT.  

In this problem, we are not primarily concerned with the three overt 
state variables of the ant (i.e. the vertical and horizontal position of 
the ant on the grid and the direction the ant is facing).  Instead, we are 
concerned with finding food.  And, to find food, we must make use of 
the information that the ant's very limited sensor provides about food 
in the outside world. In this problem, the information we want to 
process is the information coming in from the outside world via the 
ant's sensor.  Thus, one natural approach to this problem using the 
genetic programming paradigm is to put the sensing function IF-
FOOD-HERE into the function set.  The IF-FOOD-HERE function 
has two arguments and executes the first argument if the ant’s sensor 
senses food, or, otherwise, executes the second argument. 

If the function set for this problem contains the one operation that 
processes information, the terminal set should then contain the actions 
which the ant should take given the outcomes of this information 
processing. Thus, the terminal set for this problem is  

T = {MOVE, RIGHT, LEFT}. 

These three terminals are actually functions that operate via their side 
effects on the ant’s state (i.e. the ant's horizontal and vertical position 
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on the grid and the ant's facing direction).  These terminals are 
functions with no arguments.  

The IF-FOOD-HERE function is the only essential function for the 
function set of this problem; however, it is often useful to include 
some connective glue in the function set to facilitate the formation of 
sequences of operations.  

The PROGN function is the Common LISP connective function that 
sequentially executes its arguments from left to right as individual 
steps in a program.  For example, the 2-step PROGN function  

(PROGN (RIGHT) (LEFT))  

turns the ant to the right and then turns the ant to the left.  It is often 
useful to include the PROGN function in the function set with both two 
and three arguments.  

Thus, the function set for this problem is  

F = {IF-FOOD-HERE, PROGN, PROGN} 

taking 2, 2, and 3 arguments, respectively.   
The third major step in using the genetic programming paradigm is 

to identify the fitness function.  The natural measure of fitness of a 
given computer program in this problem is the amount of food found 
by an ant executing the given program.  We allowed the ant 400 time 
steps for a given program.  Thus, the raw fitness of a computer 
program for this problem is the amount of food (ranging from 0 to 89) 
that the ant has found within the maximum allowed amount of time. 

For this problem, a bigger value of raw fitness (i.e. amount of food 
eaten) is better.  Thus, standardized fitness for this problem is the 
maximum value of raw fitness (i.e. 89) minus raw fitness. 

Note that there are no explicit fitness cases in this problem.  The 
implicit fitness cases are the various states of the ant (i.e. its position 
and facing direction) that arise along the ant's actual trajectory.  These 
are sufficiently representative for this particular problem to allow the 
ant to learn to solve this problem.   

The genetic programming paradigm starts with the generation of 
500 random computer programs recursively composed from the 
available functions and terminals.  

Predictably, this initial population of random computer programs 
includes a wide variety of highly unfit computer programs. The most 
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common type of individual in the initial random population for this 
problem fails to move at all. For example, the computer program 

(PROGN (RIGHT) (LEFT)) 

unconditionally turns the ant right and left while not moving the ant 
anywhere. Similarly, the program 

(IF-FOOD-HERE (RIGHT) (LEFT)) 

senses some information from the outside world and then 
conditionally turns the ant various ways while still not moving. Both 
of these highly unfit individuals get 0 of the 89 pieces of food when 
they are mercifully terminated by the expiration of the allotted time. 

Some randomly generated computer programs move without 
turning. For example: 

(MOVE) 

shoots across the grid from west to east without either looking or 
turning. This highly active, albeit undirected, behavior finds 3 of the 
89 pieces of food. 

Another highly unfit random computer program (which we call the 
“quilter” because it traces a quilt-like pattern across the toroidal grid) 
moves and turns without looking. 

(PROGN (RIGHT) 
       (PROGN (MOVE) (MOVE) (MOVE)) 
       (PROGN (LEFT) (MOVE))) 

Another randomly generated computer program (which we call the 
“looper”) finds the first 11 pieces of food on the trail and then goes 
into an infinite loop when it encounters the first single gap in the trail.  
One randomly generated computer program (which we call the 
“avoider”) actually correctly takes note of some of the food along the 
trail until the first gap in the trail.  Then, it actively avoids this food 
by carefully moving around it until it eventually returns to its starting 
point.  The S-expression for the avoider is 

(IF-FOOD-HERE (RIGHT) 
              (IF-FOOD-HERE (RIGHT) 
                            (PROGN (MOVE) (LEFT)). 

The avoider's path is marked by X's in Figure 1.23. 
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Figure 1.23  Avoider's path along Santa Fe trail 

In one run, the best single individual in the initial random 
population was able to find 32 of the 89 pieces of food, whereas the 
worst single individual in the population found none of the food. The 
average amount of food found was about 3.5 pieces. 

The Darwinian reproduction operation and the genetic crossover 
operation were then applied to parents selected from the current 
population with probabilities proportionate to fitness to breed a new 
population of offspring computer programs. Although the vast 
majority of the new offspring computer programs are again highly 
unfit, some of them tend to be somewhat more fit than others. 
Moreover, over a period of time and many generations, some of them 
tend to be slightly more fit than those existing in earlier generations. 

Figure 1.24 shows the standardized fitness of the worst single 
individual, the standardized fitness of the best single individual, and 
the average standardized fitness of the population between 
generations 0 and 21 of one particular run of the artificial ant.  As can 
be seen, the standardized fitness of the best single individual 
generally improves (i.e. trends towards zero) from generation to 
generation, although this improvement is not monotonic.  The average 
value of standardized fitness value starts at about 85.5 (i.e. 3.5 pieces 
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of food found) and then generally improves from generation to 
generation.  Note that there is at least one individual in the population 
at every generation that finds no food at all so that the worst-of-
generation plot runs horizontally across the top of the graph with a 
fitness value of 89 (i.e. zero pieces of food).   
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Figure 1.24  Standardized fitness of worst-of-generation 

individual, average standardized fitness of population, and 
standardized fitness of best-of-generation individual for the 

artificial ant problem. 
The individual computer program scoring 89 out of 89 that emerged 

on generation 21 is shown below: 

(IF-FOOD-HERE (MOVE) 
              (PROGN (LEFT) 
                     (PROGN (IF-FOOD-HERE (MOVE) 
                                          (RIGHT)) 
                            (PROGN (RIGHT) 
                                   (PROGN (LEFT) 
                                          (RIGHT)))) 
                     (PROGN (IF-FOOD-HERE (MOVE) 
                                          (LEFT)) 
                            (MOVE)))) 

This individual S-expression has 18 points and is graphically 
depicted in Figure 1.25. 
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Figure 1.25  Solution to artificial ant problem from 

generation 21 
This individual LISP S-expression is a 100% correct solution to this 

problem.  The interpretation of this S-expression is as follows:  The 
test IF-FOOD-HERE senses whether there is any food in the square 
that the ant is facing.  If food is present, the left branch of the IF-
FOOD-HERE test is executed and the ant MOVES forward. When 
the ant moves onto a place on the grid with food, the food is eaten and 
the ant receives credit for the food. 

If the IF-FOOD-HERE test at the beginning of the S-expression 
senses no food, the ant enters the 3-step PROGN sequence 
immediately below the IF-FOOD-HERE test.  The ant first turns 
LEFT.  Then, a 2-step PROGN sequence begins with the test IF-
FOOD-HERE.  If food is present, the ant MOVES forward.  If not, 
the ant turns RIGHT.  Then, the ant turns RIGHT again.  Then, the 
ant pointlessly turns LEFT and RIGHT in another 2-step PROGN 
sequence.  The net effect is that the ant is now facing right relative to 
its initial facing direction. The ant next executes the final 2-step 
PROGN subtree at the far right of the figure.  If the ant now senses 
food via the IF-FOOD-HERE test, the ant MOVES forward.  
Otherwise, the ant turns LEFT.  The ant has now returned to its initial 
facing direction.  The ant now unconditionally MOVES. Note that 
there is no testing of the backwards directions.  The repeated 
application of this control program allows the ant to negotiate all of 
the gaps and irregularities of the trail and to collect all of the food in 
the allotted time. 
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In summary, we have shown how to use the genetic programming 
paradigm to genetically breed a computer program that successfully 
navigates the artificial ant so as to find 100% of the food along the 
Santa Fe trail. 

Note that in the genetic programming paradigm, we made no 
assumption in advance about the size, shape, or complexity of the 
eventual solution.  The solution found above in generation 21 had 18 
points.  We did not specify that the solution would have 18 points nor 
did we specify the shape or content of the S-expression.  The size, 
shape, and content of the S-expression that solves this problem 
evolved in response to the selective pressure provided by the fitness 
measure (i.e. amount of food eaten). 

Figure 1.26 shows the probability of success ps (computed from 55 
runs) that at least one S-expression causes the artificial ant to traverse 
the entire trail and collect all 89 pieces of food (before timing out) as 
a function of the number of generations for population sizes of 500, 
1000, and 2000.  In particular, the probability of success ps by 
generation 10 with a population size of 2000 is 40%.  With  ps = 40%, 
K is 9, and no more than 180,000 individuals (i.e. 9 times 2000 times 
10) need to be processed to assure a 99% probability of solving the 
problem.  
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Figure 1.26  Probability of success for the artificial ant 

problem for population sizes of 500, 1000, and 2000 
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8. SOLVING A PAIR OF LINEAR EQUATIONS 

As a third illustration of the genetic programming paradigm, 
consider the problem of finding a formula for solving a pair of linear 
equations. 

In particular, suppose we want to solve a pair of consistent, non-
indeterminate linear equations 

a11x1 + a12x2 = b1 
a21x1 + a22x2 = b2  

for the first of its two real-valued variables (x1).  In other words, we 
are seeking a computer program that takes a11, a12, a21, a22, b1, and b2 
as its inputs and produces x1 as its output.  Without loss of generality, 
we can assume that the coefficients of the equations were 
prenormalized so the determinant is one. The solution to this problem 
can be viewed as a search for a mathematical expression (S-
expression) from a hyperspace of possible mathematical expressions 
that can be composed from a set of available functions and 
arguments.  

The first major step in using the genetic programming paradigm is 
to identify the set of terminals.  In the previous problems, the terminal 
set consisted of the information which the mathematical expression 
must process in order to solve the problem. In this problem, the 
information that must be processed by a computer program to find x1 
are the values of a11, a12, a21, a22, b1, and b2. Thus, the terminal set  is 

T = {A11, A12, A21, A22, B1, B2}.  

The second major step in using the genetic programming paradigm 
is to identify the set of functions.  The set of functions that are used to 
generate the mathematical expressions that attempt to fit the given 
finite sample of data. The function set for this problem might consist 
of addition (+), subtraction (-), multiplication (*), and the protected 
division function (%) described previously. Thus, the function set is 

F = {+, -, ∗, %}. 

Each of these four functions takes two arguments. 
The third major step in using the genetic programming paradigm is 

to identify the fitness function.  The fitness cases that will be used to 
evaluate the fitness of any proposed S-expression are 10 randomly 
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generated pairs of consistent, non-indeterminate linear equations (i.e. 
set of values of  a11, a12, a21, a22, b1, and b2 and the associated 
correct values of x1 and x2).  In this problem, the raw fitness is 
measured by the erroneousness of the S-expression.  Each genetically 
produced S-expression is evaluated for fitness in the following way:  
First, the value of the first unknown variable  x1 produced by the 
genetically produced S-expression as the solution to equation pair i 
(i.e. xg1i) is substituted into one equation of the pair i to find the 
corresponding value of the second unknown variable x2 (i.e. xg2i).  
Second, we determine the Euclidean distance in the plane between the 
genetically produced solution point (xg1i, xg2i) for equation pair i and 
the actual solution point (xs1i, xs2i) for equation pair i.  Third, these 
distances are summed over all 10 pairs of equations.  The sum of 
these distances is the raw fitness of the S-expression.  If the S-
expression were a correct general formula for solving a pair of linear 
equations, the sum of these distances would be zero.  Thus, 
standardized fitness equals raw fitness for this problem.   

The auxiliary hits measure is defined such that we score one hit if 
the distance between the genetically produced solution point and the 
actual solution point for a particular pair of equations is less than .01.  

Figure 1.27 shows, for i of 1 and 2 only, the distance (error) 
between the solution point (xg1i, xg2i) produced by a genetically 
produced S-expression and the actual solution point (xs1i, xs2i) for 
equation pair i.  The lines in the figure connect the two points 
applying to a given equation pair.  As such, the lines graphically 
represent the error.  If the S-expression were the correct general 
formula for solving a pair of linear equations, the two points would 
overlap and there would be no line shown (i.e. the error would be 
zero). 
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Figure 1.27  The line in the top half of this figure connects 
the actual solution point for equation pair 1 with the 

genetically produced solution point for equation pair 1.  This 
line represents the error associated with equation pair 1.  

The line in the bottom half of this figure represents for error 
for equation pair 2. 

Predictably, this initial population of random S-expressions 
includes a wide variety of highly unfit S-expressions. 

The worst individual from the initial random population (i.e. 
generation 0) has a raw fitness value of 119051.  

The average raw fitness for generation 0 (the initial random 
generation) is 2622.  This value serves as a baseline by which to 
measure future (non-random) performance.  

The Darwinian reproduction operation and the genetic crossover 
operation are then applied to parents selected from the current 
population with probabilities proportionate to fitness to breed a new 
population of offspring computer programs. Although the vast 
majority of the new offspring computer programs are again highly 
unfit, some of them tend to be somewhat more fit than others. 
Moreover, over a period of time and many generations, some of them 
tend to be slightly more fit than those existing in earlier generations. 
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The average raw fitness of the population immediately begins 
improving from the baseline value for generation 0 of 2622 to 632, 
341, 342, 309, etc. In addition, the worst individual in the population 
also begins improving  from 119051 for generation 0 to 68129, 2094, 
etc.  

The single best individual S-expression from generation 0 had a raw 
fitness value of 125.8 and is shown below: 

(+ (- A12 (* A12 B2)) (+ (* A12 B1) B2)). 

This S-expression is equivalent to  
a12b1 + b2 + a12 – a12b2 

The best individual begins improving and has a fitness value of 106 
for generations 1 and 2, 103 for generation 3 through 5, 102 for 
generations 6 through 16, and 102 for generations 17-20.   

The best single S-expression in generations 21 and 22 had a fitness 
value of 62 and is shown below: 

 (+ (- A12 (* A12 B2)) (* A22 B1)) 

This S-expression is equivalent to 
a22b1 + a12 – a12b2 

This individual differed from the known correct solution only by one 
term, namely + A12.  

The best single S-expression in generations 23 through 26 had a raw 
fitness value of 58 and is shown below: 

(+ (- A22 (* A12 B2)) (* A22 B1))  

This S-expression is equivalent to 
a22b1 + a22 – a12b2 

This individual differed from the known correct solution only by one 
term, namely + A22. 

Starting with generation 27, a perfect solution for x1 emerges, 
namely  

(- (* A22 B1) (* A12 B2)). 

This S-expression is equivalent to 
a22b1 - a12b2. 
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Figure 1.28 shows the probability of success ps (based on 122 runs) 
that at least one S-expression scores 10 hits (i.e. the error is less than 
.01 for all 10 pairs of equations) as a function of the number of 
generations for a population size M = 500.  Since the probability of 
success ps by generation 15 is 44%, K is 8. 
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Figure 1.28  Probability of success for the linear equations 

problem for a population size of 500 

9. RANDOMIZER 

The problem of writing a computer program that generates a stream 
of pseudo-random numbers illustrates another way of measuring 
fitness. 

Numbers “chosen at random” are useful in a variety of scientific, 
mathematical, engineering, and industrial applications, including 
Monte Carlo simulations, sampling, decision theory, game theory, 
instant lottery ticket production, etc.  However, random numbers are 
difficult to create. 

Our goal is to genetically breed a computer program to convert a 
sequence of consecutive integers into a sequence of random binary 
digits.  The input to our randomizer will merely be an argument J 
running consecutively from 1 to 16,384 (214).  In other words, each 
random binary digit as output will be a function of a consecutive 
integer J as input. 

The first major step in using the genetic programming paradigm is 
to identify the terminal set.  The set of terminals (along with the set of 
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functions) are the ingredients from which the S-expressions are 
composed.  The only variable in each S-expression for a randomizer 
is the argument J.  The terminal set for this problem also contains 
several small integers so that 

T = {J, 0, 1, 2, 3}. 

The second major step in using the genetic programming paradigm 
is to identify the function set.  Since we anticipate creation of a 
randomizer consisting of steps similar to those used in congruential 
randomizers,  the function set for this problem is  

F = {+, –, *, QUOT%, MOD%}  

taking two arguments each.  The protected modulus function MOD% 
uses the protected division function % in computing the modulus.  
The protected integer quotient function QUOT% uses the protected 
division function % in computing the integer quotient. 

An S-expression composed of the above functions and terminals 
will always produce a numerical value.  Since we want binary digits 
as output, we wrap the S-expression in an output interface (which we 
call the wrapper) which specifies that any positive numerical output 
will be interpreted as a binary one while any other output will be 
interpreted as a binary zero.   

The third major step in using the genetic programming paradigm is 
to identify the fitness function.  This problem has l6,384 fitness cases, 
namely, the values of J ranging between 0 and 16,383.  The fitness 
measure for this problem will be a number computed from the entire 
sequence of 16,384 binary digits.  There are numerous possible 
approaches to measuring the randomness of sequences (Knuth27).  
Our goal is to have statistical independence among the sequence of 
binary digits.  In particular, we desire that, for any integer N (where N 
runs from 1 to infinity), the probabilities of each of the 2N possible 
sub-sequences of length N should all be equal to 
1

2N (within an acceptably small error ε≥0) .  No finite sequence can 
satisfy the above test.  However, if the window size N is then limited 
to some finite fixed integer Nmax, then “only” 2Nmax probabilities 
must be estimated when N = Nmax.   

More importantly, these 2Nmax separate probabilities can be 
conveniently summarized into a scalar quantity by using the concept 



79 

of entropy for this set of events and probabilities.  The entropy (which 
is measured in bits) is maximal when the probabilities of all the 
possible events are equal.  The entropy Eh for the set of 2h 
probabilities for the 2h possible sub-sequences of length h, equals 

Eh = – ∑
j

  Phj log2 Phj . 

The index j in this summation ranges over the 2h possible sub-
sequences of length h.  By convention, log2 0 is 0 when computing 
entropy.  This sum attains its maximum value of h precisely when the 
probabilities of all the 2h possible sub-sequences of length h are equal 
to 1

2h . 

As h runs from 1 to Nmax, it is convenient to further summarize the 
Nmax separate scalar values of entropy into a single scalar value by 
summing them to obtain Etotal as follows:  

Etotal = ∑
h=1

Nmax 
   





 – ∑

 j
   Phj log2 Phj    

When Etotal attains the maximal value of 

∑
h=1

Nmax 
    h = Nmax(Nmax – 1), 

then the sequence may be viewed as being random (in this sense).  
If we choose Nmax = 7, then the maximum raw fitness associated 

with the best result will be 28 bits.  Standardized fitness is 28 minus  
raw fitness. 

In one particular run, the best single S-expression of the 500 
individuals in the initial random generation scored 20.920 bits.  This 
S-expression consisted of 63 points.  When simplified, this best-of-
generation individual is equivalent to 

(+ J (* (* (MOD% J 3) 3) (QUOT% (+ J 1) 4))). 

This best-of-generation individual does a credible job of 
randomizing bits when the window is narrow.  In particular, it gets a 
perfect 1.000 bits out of a possible 1.000 bits for sub-sequences of 
length 1, and it gets 1.918 out of a possible 2.000 bits for sub-
sequences of length 2.  In contrast, this best-of-generation individual 
gets only 4.002 bits out of a possible 6.000 for sub-sequences of 
length 6 (i.e. only 67% of the possible score), and it gets only 4.252 
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bits out of a possible 7.000 for sub-sequences of length 7 (i.e. only 
61% of the possible score). 

In Figure 1.29, the horizontal axis ranges over the 27 = 128 possible 
sub-sequences of length 7.  The vertical axis is the number of 
occurrences of each of the 128 possible sub-sequences for the best-of-
generation individual for generation 0 for 16,384 values of J.  A 
maximal entropy randomizer would have 16,384

128   = 128 occurrences 
of each of the 128 possible sub-sequences for 16,384 values of J.  As 
can be seen, the best-of-generation individual from the initial random 
generation has about 1365 occurrences each for 12 of the 128 possible 
sub-sequences of length 7.   
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Figure 1.29  Best-of-generation randomizer for generation 0 

showing the frequencies of the 128 different 7 bit patterns 
After 2 generations of this run, the entropy of the best-of-generation 

individual improved to 22.126 bits. 
After 4 generations, the entropy of the best-of-generation individual  

improved to 26.474 bits.  
Figure 1.30 shows the best-of-generation individual for generation 

4.  As can be seen, after only 4 generations, many more of the 128 
possible sub-sequences of length 7 are now represented.   
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Figure 1.30  Best-of-generation randomizer for generation 4 

showing the frequencies of the 128 different 7 bit patterns 
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Figure 1.31 shows the progress, from generation to generation, of 
each of the 7 components (i.e. for h = 1 through 7) of Etotal for the 
best-of-generation individual for generations 0 through 14.  As can be 
seen, entropy for short sub-sequence lengths reaches its maximum 
level after just a few generations, while entropy for the longer sub-
sequence lengths requires additional generations.   
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Figure 1.31  The seven components of total entropy Etotal for 
the best-of-generation individual for generations 0 through 

14 
Between generations 5 and 13, entropy attained and slowly 

improved within the 27.800 to 27.900 area. 
Figure 1.32 shows that by generation 7 all 128 sub-sequences of 

length 7 are generated by the best-of-generation randomizer.  The 
number of occurrences are, however, far from equal at this stage. 
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Figure 1.32  Best-of-generation randomizer for generation 7 

showing the frequencies of the 128 different 7 bit patterns 
On generation 14, we obtained an individual S-expression that 

attained a nearly maximal entropy of 27.996.  This S-expression has 
153 points, but simplifies to the following individual with only 87 
points: 

(- J (QUOT% (+ (+ (+ J J) J) (* (+ J 2) J)) (+ (MOD% 
(* (- 2 1) (QUOT% (QUOT% (+ (* J J) (QUOT% (- (QUOT% 
(* J (MOD% (QUOT% J 3) (MOD% J J))) (QUOT% (* 3 2) 
(QUOT% 2 1))) (- 3 (QUOT% (+ (* J J) (- 2 1)) 3))) (* 
3 (+ (MOD% 1 0) J)))) 3) 3)) (+ (- 2 J) 1)) (+ (QUOT% 
(MOD% J 3) (- (MOD% 2 0) (MOD% (MOD% 0 J) J))) (- 3 
3))))) 

Figure 1.33 shows the simplified version (with 41 points) of the 
best-of-generation individual from generation 14 (with entropy of 
27.996) for the randomizer problem. 
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Figure 1.33  Simplified version of best-of-generation 

individual from generation 14 of randomizer problem (with 
entropy of 27.996) 

In scoring 27.996, this randomizer achieved a maximal value of 
entropy of 1.000, 2.000, 3.000, 4.000, 5.000, and 6.000 bits for 
sequences of lengths 1, 2, 3, 4, 5, and 6, respectively, and a near-
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maximal value of 6.996 for the 128 (27) possible sequences of length 
7.  

Figure 1.34 shows that each of the 128 possible sub-sequences.of 
length 7 are generated by the best-of-generation individual from 
generation 14 (with entropy of 27.996).  The number of occurrences 
of each sub-sequence is in the neighborhood of 128.    
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Figure 1.34  Best-of-generation randomizer for generation 

14 showing the frequencies of the 128 different 7 bit patterns 
Note that the progressive change in size and shape of the 

individuals in the population is a characteristic of the genetic 
programming paradigm.  The size (153 points) and shape of the best 
scoring individual from generation 14 differs from the size (63 points) 
and shape of the best scoring individual from generation 0.  The size 
and particular hierarchical structure of the best scoring individual 
from generation 14 was not specified in advance.  Instead, the entire 
structure evolved as a result of reproduction, crossover, and the 
relentless pressure of the fitness measure (i.e. entropy).  Note that 
achieving better entropy requires a more complex computation. 

Figure 1.35 shows the probability of success ps (based on 10 runs) 
of a run with a population size of M = 500 and with success defined 
as attaining entropy of 27.990 or better.  The probability of success ps 
= 0.90 by generation 15.  Thus, in order to assure a 99% probability 
of solving the problem, we need K = 2 independent runs with a 
population of 500 for 15 generations.  That is, no more than 15,000 
individuals need be processed.  
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Figure 1.35  Probability of success for randomizer problem 

with population size of 500 
We now compare the genetically produced randomizer with the 

following five randomizers: 
• The Park-Miller congruential randomizer described in Anderson26 

xi = 75 xi–1  mod  [231 – 1]. 

• IBM's URN08 (RANDU)  congruential randomizer 

xi = 65539 xi–1   mod  231. 

• The SR[3,28,31] shift register randomizer starting with a seed 
value x0 and then producing subsequent elements of the random 
sequence recursively in a shift register (end off, with zero fill) in a 
31-bit shift register.  

     temp =(XOR xi–1 (SHIFT-RIGHT xi 3)) 
     xi =(XOR temp (SHIFT-LEFT temp 28). 

where XOR is the exclusive-or operation. 
• The two-sequence shuffling randomizer SHUFFLE using the 

Park-Miller multiplicative congruential randomizer to produce an 
initial set of uniformly distributed random numbers between 0.0 
and 1.0 and then using the shift register randomizer SR[3,28,31] 
to call out particular numbers from this set of numbers and 
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additional calls on the Park-Miller randomizer to replace the 
numbers called out . 

• The RANDOM randomizer from Texas Instruments. 
The table below compares the shortfall in entropy from the maximal 

28.000 bits for the genetically bred randomizer and the five 
commercial randomizers described earlier.  We used the same 
16,384 points and look-back of h = 7. 

Randomizer Entropy Shortfall 
Park-Miller .009 
IBM RANDU .010 
Shift-Register .010 
SHUFFLE .015 
TI RANDOM .009 
Genetic .004 
As can be seen, the genetically bred randomizer has precisely the 

characteristic for which it was bred (i.e. high entropy).  With respect 
to that particular measure of randomness, it exceeded the performance 
of the other five randomizers.  

10. SEQUENCE INDUCTION 

Sequence induction involves discovering a mathematical expression 
(computer program, LISP S-expression) that can generate any arbi-
trary element in an infinite sequence  

S = S0,S1,...,Sj,...  
after seeing only a relatively small finite number of specific examples 
of the values of the sequence.  

For example, suppose one is given 
S = 1, 2, 5, 10, 17, 26, 37, 50, 65, ...  

as the first nine values of an unknown sequence.  If the index j starts 
at zero, one would easily induce the computational procedure j2 + 1 
as the way to compute the sequence element Sj for any specified 
index j.  

Of course, there is no one correct answer to an induction problem.  
There are an infinity of sequences which agree with the finite number 
of specific examples in the given sequence.  Nonetheless, induction is 
at the heart of learning and the ability to correctly perform induction 
is widely viewed as an important component of human intelligence. 
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Consider the following example of sequence induction.  Suppose 
one is given the first 20 values of the simple non-recursive sequence 
of integers 

S = 1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, 
35983, 54321, 78915, 111049, 152127, 203673, 
267331, 344865, 438159, 549217, 680163, ... 

The goal is to identify a mathematical expression that produces this 
sequence of integers. 

Sequence induction is symbolic regression (symbolic function 
identification) where the domain (i.e. independent variable) ranges 
over the integers 0, 1, 2, and 3.... 

The terminal set for this problem consists of the index J (i.e. the 
independent variable) and small integers such as 0, 1, 2, and 3.  That 
is, 

T = {J, 0, 1, 2, 3} 

The function set for this problem is 

F = {+, -, *}. 

The fitness cases for this problem consist of the first 20 elements of 
the given sequence.  Raw fitness is the sum, taken over the 20 fitness 
cases, of the absolute value of the difference between the value 
produced by the S-expression for sequence position J and the actual 
value of the sequence for position J.  Standardized fitness equals raw 
fitness for this problem.  The auxiliary hits measure is defined so as to 
count an exact match as a hit.  Thus, the number of hits can range 
between 0 and 20. 

Note that the values of this sequence range over more than five 
orders of magnitude 

In the initial random generation of one run, the raw fitness of the 
worst single individual in the population was about 3 x 1013; the 
average raw fitness of the initial random generation was about 6 x 
1010; and the raw fitness of the best single individual was  l43,566. 

By generation 38, the raw fitness of the best-of-generation 
individual had improved to 2740.   

For generation 42, the raw fitness (i.e. error) of the best-of-
generation individual had improved to 20.  In a sequence whose 
largest element is 680,163, an error of only 20 is nearly perfect.  This 
S-expression was 
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(+ (+ (- (* (* 0 1) (- (* 3 J) (+ (* 0 1) J))) 2) (* 
(* (* 2 J) (+ 1 J)) (* (+ J J) (- J 2)))) 
(- (- (+ 2 0) (* (* 1 J) (- (- (- (+ (- (* 2 J) (+ 2 
0)) (- J 3)) (- J 1)) (* (* 3 J) (+ J 1))) (- (- (+ J 
J) (* (- (- (+ J (+ 0 J)) (- J 2)) (* (* 3 J) (+ J 
1))) 3)) (* (- J 2) (- 2 J)))))) (* (- (+ 2 J) (* J 
2)) (* (* J J) (- J 3))))). 

When simplified, this S-expression  for generation 42 is equivalent 
to 

5j4 + 4j3 + 3j2 + 2j +0. 
Then, the following 100% correct individual S-expression emerged 

on generation 43: 

(+ (+ (- (* (* 0 1) (- (* 3 J) (+ (* 0 1) J))) 2) (* 
(* (* 2 J) (+ 1 J)) (* (+ J J) (- J 2)))) 
(- (- (+ 3 0) (* (* 1 J) (- (- (- (+ (- (* 2 J) (+ 2 
0)) (- J 3)) (- J 1)) (* (* 3 J) (+ J 1))) (- (- (+ J 
J) (* (- (- (+ J (+ 0 J)) (- J 2)) (* (* 3 J) (+ J 
1))) 3)) (* (- J 2) (- 2 J)))))) (* (- (+ 2 J) (* J 
2)) (* (* J J) (- J 3))))) 

When simplified, this S-expression  for generation 43 is equivalent 
to 

5j4 + 4j3 + 3j2 + 2j +1. 
This is the desired mathematical expression. 

Note that there is only one difference between the S-expressions in 
generation 42 and generation 43.  The difference is that the 
emboldened and underlined (+ 2 0) sub-expression in generation 42 
becomes (+ 3 0) in generation 43.  This difference corresponds to a 
difference of the constant one in the simplified expressions.  This 
difference corresponds to a numerical difference of one which, over 
the 20 fitness cases, accounts for the difference of 20 in raw fitness 
(i.e. sum or errors). 

Induction of recursive sequences, such as the Fibonacci sequence 
and Hofstadter sequence, using the genetic programming paradigm is 
discussed in Koza28. 

11. SIMPLE SYMBOLIC REGRESSION 

The learning of the Boolean multiplexer function (Section 5) and 
the induction of sequences (Section 9) are both examples of the 
general problem of symbolic function identification (symbolic 
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regression).  In this section, we discuss symbolic regression as 
applied to real-valued functions over real-valued domains. 

In ordinary linear regression, one is given a set of values of various 
independent variable(s) and the corresponding values for the 
dependent variable(s). The goal is to discover a set of numerical 
coefficients for a linear combination of the independent variable(s) 
which minimizes some measure of error (such as the square root of 
the sum of the squares of the differences) between the given values 
and computed values of the dependent variable(s). Similarly, in 
quadratic regression, the goal is to discover a set of numerical coef-
ficients for a quadratic expression which similarly minimizes error.  
In Fourier “regression”, the goal is to discover a set of numerical 
coefficients for sine and cosine functions of various periodicities 
which similarly minimizes error.  

Of course, it is left to the researcher to decide whether to do a linear 
regression, quadratic regression, a higher order polynomial 
regression, or whether to try to fit the data points to some non-
polynomial family of functions (e.g. sines and cosines of various 
periodicities, etc.). But, often, the issue is deciding what type of 
function most appropriately fits the data, not merely computing the 
numerical coefficients after the type of function for the model has 
already been chosen.  In other words, the real problem is often both 
the discovery of the correct functional form that fits the data and the 
discovery of the appropriate numeric coefficients that go with that 
functional form. We call the problem of finding a function, in 
symbolic form, that fits a given finite sample of data by the name 
“symbolic regression.” It is “data to function” regression. 

For example, suppose we are given a sampling of the numerical 
values from an unknown curve over 20 points in some domain, such 
as the real interval [-1.0, +1.0]. That is, we are given a sample of data 
in the form of 20 pairs (xi, yi), where xi is a value of the independent 
variable in the interval [-1.0, +1.0] and yi is the associated value of 
the dependent variable. For example, these 20 pairs (xi, yi) might 
include pairs such as  

(-0.40, -0.2784) 
(+0.25, 0.3320) 

.................... 
(+0.50, 0.9375) 
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These 20 pairs (xi, yi) are the fitness cases that will be used to 
evaluate the fitness of any proposed S-expression.   

The goal is to find a function, in symbolic form, that is a good fit or 
perfect fit to the 20 pairs of numerical data points.  The solution to 
this problem of finding a function in symbolic form that fits a given 
sample of data can be viewed as a search for a mathematical 
expression (S-expression) from a hyperspace of possible S-
expressions that can be composed from a set of available functions 
and arguments.  

The first major step in using the genetic programming paradigm is 
to identify the set of terminals.  In the artificial ant problem, the 
computer program processed information about whether food was 
present immediately in front of the ant in order to move the ant 
around the grid. In this problem, the information which the 
mathematical expression must process is the value of the independent 
variable X.  Thus, the terminal set  is 

T = {X}. 

The second major step in using the genetic programming paradigm 
is to identify the set of functions that will will be used to generate the 
mathematical expressions that attempt to fit the given finite sample of 
data.  The function set for this problem might consist of addition (+), 
subtraction (-), multiplication (*), the protected division function (%) 
described previously, the sine function SIN, the cosine function COS, 
the exponential function EXP, and the protected logarithm function 
RLOG. The protected logarithm function RLOG returns 0 for an 
argument of 0 and otherwise returns the logarithm of the absolute 
value of the argument.  Thus, the function set is 

F = {+, -, *, %, SIN, COS, EXP, RLOG} 

taking 2, 2, 2, 2, 1, 1, 1, and 1 arguments, respectively. 
The third major step in using the genetic programming paradigm is 

to identify the fitness function.  The raw fitness for this problem is the 
sum, taken over the 20 fitness cases, of the the absolute value of the 
difference (distance, error) between the value in the real-valued range 
space produced by the S-expression for a given value of the 
independent variable xi and the correct yi in the range space.  In other 
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words, fitness in this problem is the sum of the errors.  This method 
of measuring fitness is the single most common method used herein. 

The closer this sum is to zero, the better the computer program.  
Standardized fitness is, therefore, equal to raw fitness for this 
problem. 

The genetic programming paradigm starts with the generation of 
500 random S-expressions recursively composed from the available 
functions and terminals.  Predictably, this initial population of 
random S-expressions includes a wide variety of highly unfit S-
expressions. 

In one run, the worst single individual in the initial random 
population (generation 0) was the S-expression 

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X X))))). 

The sum of the absolute values of the differences between this 
worst single individual and the 20 data points was as big as 
Avagadro's number, i.e. about 1023.  That is, the raw fitness of this 
worst individual was about 1023. 

The median individual in the initial random population was 

(COS (COS (+ (- (* X X) (% X X)) X))). 

This median individual is equivalent to  

Cos [Cos (x2 + x -1)].  

The sum of the absolute values of the differences between this 
median individual and the 20 data points was merely 23.67.  That is, 
its raw fitness was 23.67.  In other words, the distance between the 
curve for this median individual and the unknown curve (which 
actually is the quartic function x4+x3+x2+x) averaged 1.2 for each of 
the 20 data points.  Figure 1.36 shows that the curve for the median 
individual and the correct quartic curve are somewhat close. 
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Figure 1.36  Comparison of the median individual from 

generation 0 and the correct quartic curve for the symbolic 
regression problem  

The second best individual in the initial random population, when 
simplified, was 

x + [RLog 2x + x] * [Sin 2x + Sin x2] 

The sum of the absolute values of the differences between this 
second best individual and the 20 data points was 6.05.  That is, its 
raw fitness was 6.05.  The average distance between the curve for this 
second best individual and the unknown curve x4+x3+x2+x for the 20 
points was about 0.3 per data point.  Figure 1.37 shows that the curve 
for the second best individual is considerably closer to the target 
curve than the median individual above. 
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Figure 1.37  Comparison of the second best individual from 
generation 0 and the correct quartic curve for the symbolic 

regression problem  
The best single individual in the population at generation 0 was the 

S-expression below with 19 points: 

(* X (+ (+ (- (% X X) (% X X)) (SIN (- X X))) 
        (RLOG (EXP (EXP X))))). 

This S-expression is equivalent to xex.  
The sum of the absolute value of the differences between this best-

of- generation individual and the unknown curve x4+x3+x2+x for the 
20 data points was 4.47  That is, its raw fitness was 4.47.  The 
average distance between the curve for this best individual and the 
unknown curve x4+x3+x2+x for the 20 points is about 0.22 per data 
point.  Figure 1.38 shows that this best-of-generation individual is 
considerably closer to the target curve than the second best individual 
above. 
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Figure 1.38  Comparison of the best-of-generation individual 

from generation 0 and the correct quartic curve for the 
symbolic regression problem  

For this problem, we define a hit to be a fitness for which the 
absolute error between the S-expression and the correct curve is ≤ 
0.01.  The best-of-generation individual from the initial random 
population (namely xex) came within this hits criterion for 2 of the 20 
fitness cases.  That is, it scored 2 hits.  All the other individuals in the 
population scored only one or zero hits.  

Although xex is not a particularly good fit (much less a perfect fit) 
to the unknown curve x4+x3+x2+x, this individual is nonetheless 
better than the worst individual in the initial random population.  It is 
better than the median individual.  And, it is better than the second 
best individual.  When graphed, xex bears some similarity to the 
unknown target curve x4+x3+x2+x.  First, both xex and x4+x3+x2+x 
are zero when x is zero.  The exact agreement of the two curves at the 
origin  accounts for one of the two hits scored by xex and the 
closeness of the two curves for another value of x near zero accounts 
for the second hit.  Secondly, when x approaches +1.0, xex 
approaches 2.7, while x4+x3+x2+x approaches the somewhat nearby 
value of 4.0.  Also, when x is between 0.0 and about -0.7, xex and 
x4+x3+x2+x are very close.  

As usual, the Darwinian reproduction operation and the genetic 
crossover operation are then applied to parents selected from the 
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current population with probabilities proportionate to fitness to breed 
a new population of offspring computer programs.  Although the vast 
majority of the new offspring computer programs are again highly 
unfit, some of them tend to be somewhat more fit than others. 
Moreover, over a period of time and many generations, some of them 
tend to be slightly more fit than those existing in earlier generations. 

By generation 2, the best single individual in the population was the 
S-expression below with 23 points: 

(+ (* (* (+ X (* X (* X (% (% X X) (+ X X)))) 
         (+ X (* X X)) 
      X) 
   X) 

This best-of-generation individual from generation 2 is equivalent 
to 

x4 + 1.5x3 + 0.5x2 + x.  

The sum of the absolute value of the differences between this best 
individual from generation 2 and the unknown curve x4+x3+x2+x for 
the 20 data points was 2.57  That is, the raw fitness of this best-of-
generation individual improved to 2.57 for generation 2 as compared 
to 4.47 from generation 0.  This is an average of about 0.13 per data 
point. This best-of-generation individual from generation 2 scored 5 
hits as compared to only 2 hits for the best-of-generation individual 
from generation 0.  

This best-of-generation individual from generation 2 bears much 
greater similarity to the target function than any of the predecessors 
discussed above. It is, for example, a polynomial. Moreover, it is a 
polynomial of the correct order (i.e. 4). Moreover, the coefficients of 
two of the four terms of this polynomial are correct (namely the 
coefficient of the quartic term x4 and the coefficient of the linear term 
x). In addition, the incorrect coefficients (1.5 for the cubic term and 
0.5 for the quadratic term) are not too different from the correct 
coefficients (1.0 and 1.0).  

Notice that even though no numerical coefficients were explicitly 
provided in the terminal set, the rational coefficient 0.5 for the 
quadratic term x2 was created by the process by first creating 
1

2X (by dividing XX = 1 by X+X = 2X)  and then multiplying by X. 
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Similarly, the fractional rational coefficient 1.5 for the cubic term x3 
was created. 

By generation 34, the sum of the absolute values of the differences 
between the best single individual and the unknown curve 
x4+x3+x2+x for the 20 data points was 0.0.  That is, the raw fitness of 
the best single individual in the population for generation 34 attained 
the perfect value of 0.0.  This individual, of course, also scored 20 
hits.   

This best-of-generation individual for generation 34 was the S-
expression 

(+ X (* (+ X (* (* (+ X (- (COS (- X X)) (- X X))) X) 
                X)) 
        X)) 

Note that the cosine term (COS (- X X)) evaluates merely to 1.0.  
This entire S-expression is equivalent to x4+x3+x2+x, which is, of 
course, the unknown curve. 

The best-of-generation individual from generation 34 is graphically 
depicted in the Figure 1.39. 
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Figure 1.39  Solution from generation 34 of the symbolic 

regression problem 
Note that the best-of-generation individual from generation 0 is not 

only not the correct solution, but it is not even of the correct 
functional form.  Nonetheless, the genetic programming paradigm did 
not get trapped in this local optima (nor any subsequent local optima).  
Instead, the genetic programming paradigm was able to break out 
from sub-optimal areas of the search space and discover the correct 
solution to the problem. 

The best-of-generation S-expression from generation 34 has 20 
points.  Note that there were varying numbers of points in the best-of-
generation S-expression from the various intermediate generations.  
We did not specify that the solution would have 20 points nor did we 
specify the shape or content of the S-expression.  The size, shape, and 
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content of the S-expression that solves this problem evolved in 
response to the selective pressure provided by the fitness (error) 
measure. 

In summary, we have shown how to use the genetic programming 
paradigm to find a quartic function, in symbolic form, that perfectly 
fits this given finite sample of data.  This was achieved in spite of the 
fact that the function set contained numerous extraneous functions 
(e.g. -, %, RLOG, EXP, SIN, and COS). 

12. SYMBOLIC REGRESSION WITH CONSTANT 
CREATION 

Symbolic regression is one form of symbolic function 
identification.  Problems in the area of symbolic function 
identification require finding a function, in symbolic form, that fits a 
given finite sampling of data points 

In the previous example of symbolic regression where the unknown 
curve was x4+x3+x2+x, the terminal set T consisted only of the inde-
pendent variable X.  There was no explicit facility for creating a 
numerical constant.  Nonetheless, the constant 1.0 was created 
indirectly on two occasions via the expressions (% X X) and (COS (- 
X X)) and constants such as 0.5, 1.5, and other small rational 
constants were created with similar expressions.  However, the 
process of symbolic regression requires a general method for 
discovering the appropriate numeric coefficients.  

The problem of constant creation can be solved by expanding the 
terminal set by one terminal (called the ephemeral random constant 
←).  Thus, the terminal set for a symbolic regression problem with 
one independent variable would become  

T = {X, ←}. 

During the creation of the initial random population (i.e. generation 
0), whenever the ephemeral random constant ← is chosen for any 
point of the tree, a random number of a specified type in a specified 
range is generated and attached to the tree at that point.   

For example, in the real-valued symbolic regression problem at 
hand, the ephemeral random constants are of floating point type and 
their range is between -1.0 and +1.0.   In a problem involving integers 
(e.g. induction of a sequence of integers), random integers over a 
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specified range (such as -5 to +5) are created for the ephemeral 
random constants “←”.   

Note that this random generation is done anew each time when an 
ephemeral “←” terminal is encountered so that the initial random 
population contains a variety of different random constants of the 
specified type.  Once generated and inserted into the S-expressions of 
the initial random population, these constants remain fixed thereafter. 

After the initial random generation, the numerous different random 
constants arising from the ephemeral “←” terminals will then be 
moved around from tree to tree by the crossover operation. These 
random constants will become embedded in various sub-trees that 
then carry out various operations on them.  

This “moving around” of the random constants is not at all haphaz-
ard, but, instead, is driven by the overall goal of achieving ever better 
levels of fitness.  For example, a symbolic expression that is a 
reasonably good fit to a target function may become a better fit if a 
particular constant is, for example, decreased slightly.  A slight 
decrease can be achieved in several different ways. For example, 
there may be a multiplication by 0.90, a division by 1.10, a 
subtraction of 0.08, or an addition of -0.004.  If a decrease of 
precisely 0.09 in a particular constant would produce a perfect fit, a 
decrease of 0.07 is usually more fit than a decrease of only 0.05.  
Thus, the relentless pressure of the fitness function in the natural 
selection process determines both the direction and magnitude of the 
adjustments in numerical constants  

Constant creation is illustrated in the next section. 

13. EMPIRICAL DISCOVERY 

An important problem area in virtually every area of science is 
finding the relationship underlying empirically observed values of the 
variables measuring a system. In practice, the observed data may be 
noisy and there may be no known way to express the relationships 
involved in a precise way.   

The problem of discovering empirical relationships from actual 
observed data is illustrated by the well-known non-linear econometric 
exchange equation  

P=
MV
Q  .  
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This equation states the relationship between the gross national 
product Q of an economy, the price level P, the money supply M, and 
the velocity of money V.   

Suppose that our goal is to find the econometric model expressing 
the relationship between quarterly values of the price level P and the 
quarterly values of the three other quantities appearing in the 

equation. That is, our goal is to rediscover that P=
MV
Q   from the 

actual observed noisy time series data.  Many economists believe that 
inflation (which is the change in the price level) can be controlled by 
the central bank via adjustments in the money supply M. 

In particular, suppose we are given the 120 actual quarterly values 
(from 1959:1 to 1988:4) of following four econometric time series: 

• The annual rate for the United States Gross National Product in 
billions of 1982 dollars (conventionally called GNP82). 

• The Gross National Product Deflator (normalized to 1.0) for 1982 
(called GD).  

• The monthly values of the seasonally adjusted money stock M2 in 
billions of dollars, averaged for each quarter (called M2). 

• The monthly interest rate yields of 3-month Treasury bills, 
averaged for each quarter (called FYGM3).   

The four time series used here were obtained from the CITIBASE 
data base of machine-readable econometric time series (Citibank29).  

The actual long-term historic postwar value of the M2 velocity of 
money in the United States is 1.6527 (Hallman et. al.30). Thus, the 
correct exchange equation for the United States in the postwar period 
is the multiplicative (non-linear) relationship 

GD = 
(1.6527 * M2)

GNP82   

The sum of the squared errors between the actual gross national 
product deflator GD from 1959:1 to 1988:4  and the fitted GD series 
calculated from the above model over the entire 30-year period 
involving 120 quarters (1959:1 to 1988:4) was 0.077193. The 
correlation R2 was 0.993320. 
MODEL DERIVED FROM FIRST TWO-THIRDS OF DATA 

We first divide the 30-year, 120-quarter period into a 20-year, 80-
quarter in-sample period running from 1959:1 to 1978:4 and a 10-
year, 40-quarter out-of-sample period running from 1979:1 to 1988:4.  
This allows us to use the first two-thirds of the data to create the 
model and to then use the last third of the data to test the model. 
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The first major step in using the genetic programming paradigm is 
to identify the set of terminals.  The terminal set for this problem is  

T = {GNP82, FM2, FYGM3, ←}. 

The terminals GNP82, FM2, and FYGM3 correspond to the 
independent variables of the model and provide access to the values 
of the time series.  The ← is the ephemeral random constant terminal 
allowing various random floating point constants to be inserted at 
random amongst the initial random LISP S-expressions.  In effect, the 
terminals for this problem are functions of the unstated, implicit time 
variable which ranges over the various quarters.  

The second major step in using the genetic programming paradigm 
is to identify a set of functions.  The set of functions chosen for this 
problem is  

F = {+, -, *, %, EXP, RLOG}  

taking 2, 2, 2, 2, 1, and 1 arguments, respectively.  
Notice that we are not told a priori whether the unknown functional 

relationship between the given observed data (the three independent 
variables) and the target function (the dependent variable, GD) is 
linear, multiplicative, polynomial, exponential, logarithmic, or 
otherwise.  The unknown functional relationship could be any 
combination of these types of functions. Notice also that we are also 
not given the known constant value V for the velocity of money. 

We are not told that the addition, subtraction, exponential, and 
logarithm function contained in the function set and the 3-month 
Treasury bill yields (FYGM3) contained in the terminal set are all 
irrelevant to finding the econometric model for the dependent variable 
GD of this problem.  

The third major step in using the genetic programming paradigm is 
identification of the fitness function for evaluating how good a given 
computer program is at solving the problem at hand. 

The fitness of an S-expression is the sum, taken over the 80 in-
sample quarters, of squares of differences between the value of the 
price level produced by S-expression and the target value of the price 
level given by the GD time series. 

The initial random population (generation 0) was, predictably, 
highly unfit.  In one run, the sum of squared errors between the single 
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best S-expression in the population and the actual GD time series was 
1.55. The correlation R2 was 0.49. 

As before, after the initial random population was created, each 
successive new generation in the population was created by applying 
the operations of fitness proportionate reproduction and genetic 
recombination (crossover). 

In generation 1, the sum of the squared errors for the new best 
single individual in the population improved to 0.50.  

In generation 3, the sum of the squared errors for the new best 
single individual in the population improved to 0.05.  This is 
approximately a 31-to-1 improvement over the initial random 
generation.  The value of R2 improved to 0.98.  In addition, by 
generation 3, the best single individual in the population came within 
1% of the actual GD time series for 44 of the 80 in-sample points. 

In generation 6, the sum of the squared errors for the new best 
single individual in the population improved to 0.027. This is 
approximately a 2-to-1 improvement over generation 3.  The value of 
R2 improved to 0.99. 

In generation 7, the sum of the squared errors for the new best 
single individual in the population improved to 0.013.  This is 
approximately a 2-to-1 improvement over generation 6.  

In generation 15, the sum of the squared errors for the new best 
single individual in the population improved to 0.011.  This is an 
additional improvement over generation 7 and represents 
approximately a 141-to-1 improvement over generation 0.  The 
correlation R2 was 0.99. 

In one run, the best single individual had a sum of squared errors of 
0.009272 over the in-sample period.  Figure 1.40 graphically depicts 
the best-of-generation individual. 
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Figure 1.40  Best result for exchange equation 

This individual is equivalent to 

GD = 
(1.634 * M2)

GNP82   
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The table below shows the sum of the squared errors and R2 for the 
entire 120-quarter period, the 80-quarter in-sample period, and the 
40-quarter out-of-sample period: 

Data Range 1- 120 1 - 80 81 - 120 
R2 0.993480 0.997949 0.990614          
Sum of Squared Error 0.075388 0.009272 0.066116 
Figure 1.41 shows both the gross national product deflator GD from 

1959:1 to 1988:4 and the fitted GD series calculated from the above 
genetically produced model for 1959:1 to 1988:4.  The actual GD 
series is shown as a line with dotted points.  The fitted GD series 
calculated from the above model is a simple line.   
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Figure 1.41  Gross national product deflator and fitted series 

computed from genetically produced model 
Figure 1.42 shows the residuals from the fitted GD series calculated 

from the above genetically produced model for 1959:1 to 1988:4. 
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Figure 1.42  Residuals between the gross national product 
deflator and fitted series computed from genetically 

produced model  
In Koza31, we divide the 30-year, 120-quarter period into a 10-year, 

40-quarter out-of-sample period running from 1959:1 to 1968:4 and a 
20-year, 80-quarter in-sample period running from 1969:1 to 1988:4 
and obtain a virtually identical model. 

14. SYMBOLIC INTEGRATION AND 
DIFFERENTIATION 

Symbolic integration (and differentiation) involve finding the 
mathematical expression which is the integral (or derivative), in 
symbolic form, of a given curve.  Symbolic integration and 
differentiation are direct extensions of the symbolic regression 
process described in the previous section. 

Symbolic integration involves finding the mathematical expression 
which is the integral, in symbolic form, of a given curve.  The given 
curve may be presented either as 

• a mathematical expression in symbolic form or 
• a discrete sampling of data points (i.e. the symbolic form of the 

given curve is not explicitly specified).   
If the given curve is presented as a mathematical expression, we 

first convert it into a finite sample of data points.  We do this by 
taking a random sample of values {xi} of the independent variable 
appearing in the given mathematical expression over some 
appropriate domain.  We then pair each value of the independent 
variable xi with the result yi of evaluating the given mathematical 
expression for that value of the independent variable.  

Thus, regardless of the form in which the given curve is presented, 
we can begin the process of symbolic integration with a given finite 
sampling of pairs of numerical values (xi, yi).  If there are, say, 50 (xi, 
yi) pairs (for i between 0 and 49), then, for convenience, we assume 
that the values of xi have been sorted so that xi < xi+1 for i between 0 
and 48.  The domain values xi lie in some appropriate interval. 

The goal is to find, in symbolic form, a mathematical expression 
which is a perfect fit (or good fit) to the integral of the given curve 
using only the given 50 pairs of numerical points.  

For example, if the given curve happens to be  
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Cos x + 2x + 1,  
the goal would be to find its integral, in symbolic form, namely,  

Sin x + x2 + x 
given the 50 pairs (xi, yi).  The domain appropriate to this example 
might be the interval [0, 2 π ]. 

Symbolic integration is, in fact, merely symbolic regression with an 
additional preliminary numerical integration step.  Specifically, we 
numerically integrate the curve defined by the given set of 50 points 
(xi, yi) over the interval starting at x0 and running to x49. The integral 
I(xi) is a function of xi. The value of this integral I(x0) for the first 
point x0 is zero. For any other point xi, where i is between 1 and 49, 
we perform a numerical integration by adding up the areas of the i 
trapezoids lying between the point x0 and the point xi.  We thereby 
obtain an approximation to the value for the integral I(xi) of the given 
curve for each point xi.  We therefore obtain 50 new pairs (xi, I(xi)) 
for i between 0 and 49.  These 50 pairs are the fitness cases for this 
problem. 

We then perform symbolic regression in the same manner as 
described in Section 11 to find the mathematical expression for the 
curve defined by the 50 new pairs (xi, I(xi)).  This mathematical 
expression is the integral, in symbolic form, of the curve defined by 
the original 50 given points (xi, yi). 

In applying the genetic programming paradigm to this problem, we 
first define the terminal set to be 

T = {X}. 

Secondly, we define the function set for this problem to be 

F = {+, -, *, %, SIN, COS, EXP, RLOG} 

taking 2, 2, 2, 2, 1, 1, 1, and 1 arguments, respectively. 
As each individual genetically produced function fj is generated, we 

evaluate fj(xi) so as to obtain 50 pairs (xi, fj(xi)).  The raw fitness of 
an individual genetically produced function is the sum of the absolute 
value of difference between the value fj(xi) of the individual 
genetically produced function fj at domain point xi and the value of 
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the numerical integral I(xi).  Standardized fitness equals raw fitness 
for this problem.  A hit for this problem occurs when fj(xi) comes 
within 1% of the target value I(xi). 

In one run, the best single S-expression in generation 4 was the 
following: 

(+ (+ (- (SIN X) (- X X)) X) (* X X))  

This S-expression scored 50 hits and had standardized fitness of 
virtually zero.  The standardized fitness (error) does not reach zero 
exactly due to the fact that the integral is merely a numerical 
approximation and because of the small errors inherent in floating 
point calculations. 

This S-expression is equivalent to  
Sin x + x2 + x. 

which is the symbolic integral of  
Cos x + 2x + 1.  

One could, of course, add a constant of integration, if desired. 
In another run, x4 + x3 + x2 + x was obtained as the symbolic 

integral of 4x3 + 3x2+ 2x+ 1. 
Symbolic differentiation involves finding the mathematical 

expression which is the derivative, in symbolic form, of a given 
curve. The approach is similar to that of symbolic integration except 
that numerical differentiation is involved.  

In symbolic differentiation, it is desirable to have a larger number of 
points for numerical differentiation (e.g. 200 points) than for 
numerical integration (e.g. 50 points) because of the relative 
inaccuracy of numerical differentiation as compared to numerical 
integration.  Specifically, we numerically differentiate the curve 
defined by the given set of 200 points (xi, yi) over the interval starting 
at x0 and running to x199.  The derivative D(xi) is a function of xi.  
For any point xi other than the endpoints x0 and x199, we take the 
derivative to be the average of the slope of the curve between point 
xi-1 and xi and the slope of the curve between point xi and xi+1.  For 
the two endpoints  x0 and x199 of the domain, the derivative is the 
unaveraged slope of the curve.  We thereby obtain a value for the 
derivative D(xi) of the given curve for each point xi.  We therefore 
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obtain 200 new pairs (xi, D(xi)) for i between 0 and 199.  These 200 
pairs are the fitness cases for this problem. 

15. SOLVING EQUATIONS 

The genetic programming paradigm can be used to solve equations 
where the solution comes in the form of a function that satisfies the 
given equation.  In particular, the genetic programming paradigm can 
be used to solve differential equations (with given initial conditions), 
integral equations, general functional equations, and inverse 
problems.  

Without loss of generality, we will assume that all equations have 
been transformed so that the right hand side is zero. 

15.1. DIFFERENTIAL EQUATIONS 

For some differential equations, it is possible, using exact analytic 
methods, to find the exact function which solves the equations.  
However, for most differential equations, only numerical 
approximation methods are available. 

The problem of solving a differential equation may be viewed as the 
search in a hyperspace of compositions of functions and arguments  
for a particular composition (i.e. LISP S-expression, computer 
program) which satisfies the equation and its initial conditions.   
EXAMPLE 1  

Consider the simple differential equation 
dy
dx  + y Cos x = 0 

having an initial value of y ^  of 1.0 for an initial value of x ^  of 0.0.  
The goal is to find a function which satisfies this equation and its 

initial condition, namely,  the function e-Sin x. 
We start by generating 200 random values of the independent 

variable xi over some appropriate domain, such as the unit interval [0, 
1].  We sort the 200 xi into ascending order.   

We are seeking a function f(x) such that, for every one of the 200 
values xi of the variable x, we get zero when we perform the 
following computation:  The computation is to add the derivative 
f’(xi) at the point xi (i.e., dy

dx ) to the product of f(xi) at point xi (i.e., y) 
and the cosine of xi.  This rewording of the problem immediately 
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suggests an orderly general procedure for genetically finding the 
function f(x) that satisfies the given differential equation. 

Given the set of 200 ascending values of xi, we define a “curve 
resulting from applying the function g” to be the 200 pairs (xi, g(xi)), 
where g is some operation.  

When the j-th individual genetically produced function fj in the 
population (i.e. S-expression) is generated by the genetic 
programming paradigm, we apply this function (i.e. S-expression) fj 
to generate a curve.  Specifically, we obtain 200 values of fj(xi) 
corresponding to the 200 values of xi.  We call these 200 pairs (xi, 
fj(xi)) the “curve resulting from applying the genetically produced 
function fi.”  

We then numerically differentiate this curve (xi, fj(xi)) with respect 
to the independent variable xi.  That is, we apply the function of 
differentiation to obtain a new curve.  Specifically, we obtain a new 
set of 200 pairs (xi, fj’(xi)) which we can call the “curve resulting 
from applying the differentiation function” or “the derivative curve”.  

We then apply the cosine function to obtain yet another curve.  
Specifically, we take the cosine of the 200 random values of xi to 
obtain a  new set of 200 pairs (xi,Cos xi) which we may call the 
“curve resulting from applying the cosine function” or “the cosine 
curve.” 

We then apply the multiplication function to the cosine curve and 
the y curve to obtain still another curve.  In particular, we multiply 
the curve consisting of the set of 200 pairs (xi, Cos xi) by fj(xi) so as 
to obtain a new curve consisting of the set of 200 pairs (xi, fj(xi)*Cos 
xi).   

We then apply the addition function to this new curve and the 
derivative curve to obtain a new curve consisting of the set of 200 
pairs (xi, fj’(xi) + fj(xi)*Cos xi). 

To the extent that all 200 values of fj’(xi) + fj(xi)*Cos xi are close to 
the right hand side of the given differential equation (i.e. the zero 
curve) for the 200 values of xi, the genetically produced function fj is 
a good approximation to the solution of the given differential 
equation.  Equivalently, to the extent that the curve consisting of the 
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200 pairs (xi, fj’(xi) + fj(xi)*Cos xi) is close to the “zero curve” (i.e. 
the curve consisting of the 200 pairs (0, 0), the genetically produced 
function fj is a good approximation to the solution to the given 
differential equation.  

Note that the problem of solving the given differential equation is 
now equivalent to a symbolic regression problem over the set of 
points (xi, fj’(xi) + fj(xi)*Cos xi ). 

In solving differential equations, the fitness of a particular 
individual genetically produced function is expressed in terms of two 
components.  The first component is how well the function satisfies 
the differential equation as just described above.  The second 
component is how well the function satisfies the initial condition of 
the differential equation.  The first component should receive the 
majority of the weight in calculating fitness.  We assign it 75% of the 
weight in the examples below.  The second component receives the 
remainder of the weight. 

The first component in computing the raw fitness of a genetically 
produced function fj is the sum of the absolute values of the 
differences between the zero function (i.e. the right hand side of the 
equation) and fj’(xi) + fj(xi)*Cos xi  for i between 0 and 199, namely 

∑
i=0

199
  fj’(xi) + fj(xi)*Cos xi  

The closer this sum of differences is to zero, the better.   
Computation of the second component in the raw fitness of a 

genetically produced function fj starts with the absolute value of the 
difference between the value of the genetically produced function 
fj(x

 ^)  for the particular given initial condition point x ^  and the given 
value 
y

 
^  for the initial condition.  Since this difference is constant over all 
200 points, we multiply this difference by 200 to obtain this second 
component.  The closer this value is to zero, the better.  

For differential equations, the raw fitness of a genetically produced 
function fj is 75% of the first component plus 25% of the second 
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component.  The closer this overall sum is to zero, the better.  Thus, 
standardized fitness equals raw fitness for this problem. 

We now apply the above method to solving the given differential 
equation. 

The first major step in using the genetic programming paradigm is 
to identify the set of terminals.  The terminal set here is  

T = {X}. 

The second major step in using the genetic programming paradigm 
is to identify a set of functions. The function set for this problem is  

F = {+, -, *, %, SIN, COS, EXP, RLOG} 

taking 2, 2, 2, 2, 1, 1, 1, and 1 arguments, respectively. 
In one run, the best individual S-expression in the initial random 

population (generation 0) was, when simplified, equivalent to 
e 1 - ex. 

Its raw fitness was 58.09.  Only 3 of the 200 points were hits.  As it 
happens, this individual satisfies the initial condition (i.e. 
y

 
^ = 1.0 when 
x

 
^ = 0.0).  This non-zero raw fitness of 58.09 (averaging 0.29 for each 
of the 200 points) comes entirely from the 75% component of raw 
fitness representing non-satisfaction of the differential equation. 

 By generation 2, the best-of-generation individual in the population 
was, when simplified, equivalent to 

e1 - e Sin x 
Its raw fitness was 44.23.  Only 6 of the 200 points were  hits.  Since 
this individual happens to satisfy the initial condition perfectly, this 
raw fitness of 44.23 (i.e. 0.221 for each of the 200 points) comes 
entirely from non-satisfaction of the equation.   

Although this best-of-generation individual from generation 2 is not 
a solution to the differential equation, it is a better approximation to 
the solution than the best-of-generation individual from generation 0. 

By generation 6, the best single individual S-expression in the 
population was, when simplified, equivalent to 
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e-Sin x. 
The raw fitness of this best-of-generation individual is down to a 

mere 0.057.  Moreover, 199 of the 200 points are hits.  Note that we 
do not necessarily get exactly 200 hits because of errors associated 
with numerical differentiation (particularly at the endpoints of the 
interval).  Since this individual happens to satisfy the initial condition 
perfectly, this raw fitness of 0.057 (i.e. approximately 0.0003 for each 
of the 200 points) comes entirely from non-satisfaction of the 
equation.   

This function is, in fact, the exact solution to the differential 
equation and its initial conditions. 

The following three illustrative abbreviated tabulations of 
intermediate values for the best-of-generation individuals from 
generation 0, 2, and 6 will further clarify the above process.  In each 
simplified calculation, we use only five equally spaced xi points in the 
interval [0, 1], instead of 200 randomly generated points.  These five 
values of xi are shown in line 1. 

The first calculation applies to the best-of-generation individual 
from generation 0, namely 

e 1 - e x 

 
1 xi 0.0 .25 .50 .75 1.0 

2 y = e 1 - e x 1.00 .753 .523 .327 .179 

3 Cos xi 1.00 .969 .876 .732 .540 

4 y * Cos xi 1.00 .729 .459 .239 .097 

5 dy
dx   

-.989 -.955 -.851 -.687 -.592 

6 dy
dx  + y * Cos x 

.011 -.225 .392 -.447 -.495 

Line 2 shows the value of this best-of-generation individual from 
generation 0 for the five values of xi.  Line 3 shows the cosine of each 
of the five values of xi.  Line 4 is the product of line 2 and line 3 and 
equals y * Cos xi for each of the five values of xi.  

Line 5 shows the numerical approximation to the derivative dy
dx  for 

each of the five values of xi.  For the three xi points that are not 
endpoints of the interval [0, 1], this numerical approximation to the 
derivative is the average of the slope to the left of the point xi and the 
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slope to the right of the point xi.  For the two endpoints of the interval 
[0, 1], the derivative is the slope to the nearest point.   

Line 6 is the sum of line 4 and line 5 and is an approximation to the 
value of the left hand side of the differential equation for the five 
values of xi.  Recall that if the S-expression were a solution to the 
differential equation, line 6 would be all zero or approximately zero 
(to match the right hand side of the equation).  Of course, this best-of-
generation individual from generation 0 is not a solution to the 
differential equation.  We did not expect the values on line 6 to be 
zero. 

The second table applies to the best-of-generation individual from 
generation 2, namely 

e 1 - e Sin x 
 

1 xi 0.0 .25 .50 .75 1.0 

2 y =e 1 - e Sin x 1.00 .755 .541 .376 .267 

3 Cos xi 1.00 .969 .878 .732 .540 

4 y * Cos xi 1.00 .732 .474 .275 .144 

5 dy
dx   

-.979 -.919 -.758 -.547 -.437 

6 dy
dx  + y * Cos x 

.021 -.187 -.283 -.271 -.292 

 
Lines 1 through 5 are calculated using this best-of-generation 

individual from generation 2 in the same manner as above.  Again, 
line 6 is an approximation to the value of the left hand side of the 
differential equation for the five values of xi.  The sum of the absolute 
value of the three non-endpoint values of line 6 is 0.74.  Their 
average magnitude is 0.247.  If we multiply this number by 200, we 
get 49.4.  This value of 49.5 is close to the more accurate raw fitness 
of 44.23 obtained above with 200 points even though we are using 
only five xi points here (instead of 200) and the ∆x here is 0.25 
(instead of an average of only 0.005).  Of course, this best-of-
generation individual from generation 2 is not a solution to the 
differential equation.  We did not expect the values on line 6 to be 
zero.  

The third calculation applies to the best-of-generation individual 
from generation 6, namely 
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e - Sin x 
 

1 xi 0.0 .25 .50 .75 1.0 

2 y =e - Sin x 1.0 .781 .619 .506 .431 

3 Cos xi 1.0 .969 .878 .732 .540 

4 y * Cos xi 1.0 .757 .543 .370 .233 

5 dy
dx   

-.877 -.762 -.550 -.376 -.299 

6 dy
dx  + y * Cos x 

0.123 -.005 -.007 -.006 -.067 

 
Line 6 is an approximation to the value of the left hand side of the 

differential equation for the five values of xi.  Note that the three non-
endpoint values in line 6 are  

-.005, -.007, -.006.   
That is, they are each very close to zero.  The appearance of these 
near zero numbers in line 6 indicates that we have at least a good 
approximation to a solution to the differential equation.  As 
mentioned above, when we use 200 points (instead of just five), the 
values on line 6 approximately average a mere 0.0003 for generation 
6. 

In summary, we solved the given differential equation for a function 
which satisfied the differential equation and its initial conditions.  
EXAMPLE 2 

A second example of a differential equation is  
dy
dx   -  2y  + 4x = 0 

with initial condition such that y ^ = 4 when x ^ = 1. 
In one run, the best single individual S-expression in generation 28 

was 

(+ (* (EXP (- X 1)) (EXP (- X 1))) (+ (+ X X) 1)). 

This is equivalent to 
e-2e2x  + 2x +1, 

which is the exact solution to the differential equation. 
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15.2. INTEGRAL EQUATIONS 

Integral equations are equations that involve the integral of the 
unknown function. Integral equations can be solved by the genetic 
programming paradigm using the same general approach and tools as 
described above. Of course, at some point, we take the integral of the 
genetically produced function,instead of a derivative. 

An example of an integral equation is 

y(t) - 1 + 2 ⌡⌠
r=0

r=t
 Cos(t-r) y(r) dr  = 0. 

In one run, we found the solution to this integral equation, namely, 
y(t) = 1 - 2te-t 

15.3. INVERSE PROBLEMS 

The problem of finding the inverse function is simply a problem of 
symbolic regression with the values of the original independent 
variable interchanged with the values of the original dependent 
variable.   

15.4. GENERAL FUNCTIONAL EQUATIONS 

General functional equations can be solved by the genetic 
programming paradigm using the same general approach and same 
tool kit as for differential equations. 

16. PLANNING — BLOCK STACKING 

Planning in artificial intelligence and robotics requires finding a 
plan that receives information from sensors about the state of the 
various objects in a system and then uses that information to select a 
sequence of actions to change the state of the objects in that system.  
We have previously seen planning in the artificial ant problem.  The 
planning problem in this section involves an explicit iterative 
operation. 

The block stacking problem is a robotic planning problem involving 
rearranging uniquely labeled blocks into a specified order on a single 
target tower.  In the version of the problem involving nine blocks, the 
blocks are labeled with the nine different letters of “FRUITCAKE” or 
“UNIVERSAL.”  The goal is to automatically generate a plan 
(Genesereth and Nilsson32) that solves this problem.  This problem 
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illustrates the use of an iterative operator DU (“Do Until”) in the 
solution of the problem.  

The STACK is the ordered set of blocks that are currently in the 
target tower (where the order is important).  The TABLE is the set of 
blocks that are currently not in the target tower (where the order is not 
important).  The initial configuration consists of certain blocks in the 
STACK and the remaining blocks on the TABLE (see Figure 1.43).  
The desired final configuration consists of all the blocks being in the 
STACK in the desired order (i.e. “UNIVERSAL”) and no blocks 
remaining on the TABLE. 
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Figure 1.43  A possible Initial State and the Goal State for 

the Block Stacking Problem 
Three sensors dynamically track the system.  The sensor CS 

dynamically specifies the top block of the STACK.  The sensor TB 
(“Top correct Block”) dynamically specifies the top block on the 
STACK such that it and all blocks below it are in the correct order.  
The sensor NN (“Next Needed”) dynamically specifies the block 
immediately after TB (“Top Correct Block”) in the goal 
“UNIVERSAL” (regardless of whether or not there are incorrect 
blocks in the STACK). 

Figure 1.44 shows the STACK consisting of URSAL, the sensor CS 
is U, while the sensor TB (the top correct block) is R since RSAL are 
in the correct order.  The sensor NN (next needed) is E since E is the 
block that belongs on top of RSAL. 
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Figure 1.44  The Initial Values for the Sensor Variables NN, 

TB and CS. 
The first major step in using the genetic programming paradigm is 

to identify the set of terminals.  The terminal set T for this block 
stacking problem consists of the three sensors, namely, 

T = {TB, NN, CS}. 

Each of these terminals is a variable atom that may assume, as its 
value, one of the nine block labels or NIL. 

The second major step in using the genetic programming paradigm 
is to identify a set of functions.  The function set F contains five 
functions 

F = {MS, MT, DU, NOT, EQ} 

having 1, 1, 2, 1, and 2 arguments, respectively.   
The three functions MS, MT, and DU are described below.  
The function MS (“Move to the Stack”) has one argument. The S-

expression (MS  x) moves block x to the top of the STACK if x is on 
the TABLE. This function MS does nothing if x is already on the 
STACK, if the table is empty, or if x itself is NIL. Both this function 
and the function MT described below return NIL if they do nothing 
and T if they do something; however, their real functionality is their 
side effects on the STACK and TABLE, not their return values. 

The function MT (“Move to the Table”) has one argument. The S-
expression (MT  x) moves the top item of the STACK to the TABLE 
if the STACK contains x anywhere in the STACK. This function MT 
does nothing if x is on the TABLE, if the STACK is empty, or if x 
itself is NIL.  
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The iterative operator DU (“Do Until”) has two arguments.  The S-
expression (DU  work  predicate) iteratively does the WORK until the 
predicate becomes satisfied (i.e. becomes non-NIL).  The DU 
operator is similar to the “REPEAT...UNTIL” loop found in many 
programming languages. Note that the iterative DU operator differs 
from the typical LISP S-expression in that the work and predicate 
arguments are not evaluated outside the DU operator and then passed 
to the DU operator when the DU operator is evaluated. Instead, these 
arguments are evaluated dynamically inside the DU operator on each 
iteration. First, the work is evaluated inside the DU operator.  Then 
the predicate is evaluated inside the DU operator. These two separate 
evaluations are performed, in sequence, as if the LISP function EVAL 
were operating inside the DU operator. Note that in an iterative 
construction, the execution of the work will often change some 
variable that will then be tested by predicate.  Indeed, that is usually 
the purpose of the loop.  Thus, it is important to suppress premature 
evaluation of the work and predicate arguments of the DU operator.  

The genetic programming paradigm involves executing randomly 
generated computer programs and genetically manipulated computer 
programs.  As a result, individual S-expressions in this problem can 
contain an unsatisfiable termination predicate.  Thus, it is a practical 
necessity (when working on a serial computer) to place a limit on the 
number of iterations allowed by any one execution of a DU operator.  
Moreover, since the individual S-expressions in the genetic 
population often contain complicated and deep nestings of numerous 
DU operators, a similar limit must be placed on the total number of 
iterations allowed for all DU functions that may be evaluated in the 
process of evaluating any one individual S-expression for any one 
case.  In particular, the DU operator times out if there have been more 
than 25 iterations for an evaluation of a single DU operator or if there 
have been a total of more than 100 iterations for all DU operators that 
are evaluated for a particular individual S-expression for a particular 
fitness case.  Of course, if we could execute all the individual LISP S-
expressions in parallel (as nature does) so that the infeasibility of one 
individual in the population does not bring the entire process to a halt, 
we would not need these limits.  

Note that even when a DU operator times out, it nevertheless 
returns a value. This explicit return value resulting from the 
evaluation of the DU operator is, of course, in addition to the side 
effects that may have already been performed by the arguments to the 
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DU function on the state variables of the system.  The return value is 
a Boolean value that indicates whether the predicate was successfully 
satisfied or whether the DU operator timed out.   

If the predicate of a DU operator is satisfied when the operator is 
first called, then the DU operator does no work at all and simply 
returns T.  

Note that the fact that each function returns some value under all 
conditions (in addition to whatever side effects it has on the STACK 
and TABLE).  This guarantees closure of the function set so that 
every possible S-expression that might be created can be executed. 

The third major step in using the genetic programming paradigm is 
the identification of the fitness function for evaluating how good a 
given computer program is at solving the problem at hand.  The raw 
fitness of a particular individual plan (i.e. computer program) for the 
block stacking problem is the number of initial conditions (i.e. fitness 
cases) for which the particular plan produces the desired final 
configuration of blocks after the plan is executed.  For this problem, 
there are millions of different fitness cases of N blocks distributed 
between the STACK and the TABLE.  Sampling of the fitness cases 
is required in order to solve evaluate the fitness of a plan in a 
reasonable amount of time. 

Thus, we construct a structured sampling of fitness cases for 
measuring fitness. In particular, if there are N blocks, there are N+1 
fitness cases in which the blocks, if any, in the initial STACK are all 
in the correct order and in which there are no out-of-order blocks on 
top of the correctly-ordered blocks in the initial STACK. There are 
also N-1 additional fitness cases where there is precisely one out-of-
order block in the initial STACK on top of whatever number of  
correctly-ordered blocks, if any, happen to be in the initial STACK. 
There are additional fitness cases with more than one out-of-order 
block in the initial STACK on top of various numbers of correctly-
ordered blocks in the initial STACK. In lieu of the millions of 
possible fitness cases, we construct a structured sampling of fitness 
cases for measuring fitness consisting of the following 166 fitness 
cases:  

• the l0 cases where the 0-9 blocks in the STACK are already in 
correct order,  

• the 8 cases where there is precisely one out-of-order block in the 
initial STACK on top of whatever number of correctly-ordered 
blocks, if any, happen to be in the initial STACK, and  
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• a structured random sampling of 148 additional cases with 
between zero and eight correctly-ordered blocks in the initial 
STACK and a random number (between two and eight) of out-of-
order blocks on top of the correctly-ordered blocks.  

Raw fitness is the number of fitness cases (out of 166) that the plan 
(computer program) correctly handles.  A plan correctly handles a 
fitness case if the STACK contains nine blocks spelling 
“UNIVERSAL” when it is finished.  

Raw fitness ranges between 0 and 166. Standardized fitness, in turn, 
equals 166 minus raw fitness. A standardized fitness of zero 
corresponds to 166 correctly handled cases.  

Obviously, the construction of a sampling such as this must be done 
so that the process is not misled into producing solutions that 
correctly handle some unrepresentative subset of the entire problem 
but cannot correctly handle the entire problem.  

16.1. CORRECTLY STACKING BLOCKS 

The first version of the block-stacking problem we consider 
involves finding a plan (i.e. computer program) which can correctly 
stack the nine blocks onto the STACK in the desired order after 
starting with any of the 166 fitness cases. Each plan is executed 
(evaluated) once for each of the 166 cases. 

The initial random population of plans contains a variety of 
complicated, inefficient, pointless, and counter-productive plans. One 
initial random plan  

(EQ (MT CS) NN) 

unconditionally moves the top of the STACK to the TABLE and then 
performs the useless Boolean comparison between the sensor value 
NN and the return value of the MT function.  

Another initial random plan  

(MS TB). 

futilely attempts to move the block TB (which already is in the 
STACK) from the TABLE to the STACK.   

Many initial random plans are so ill-formed that they perform no 
action at all on the STACK and the TABLE.  These plans score a raw 
fitness of one (out of a maximum of 166) because they leave the 
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STACK untouched in the one fitness case consisting of an already 
perfectly arranged STACK.   

Other initial random plans are even more unfit and even disrupt a 
perfectly arranged initial STACK.  

Some idiosyncratic initial random plans achieve modest fitness 
levels, but have no utility in general.  They  contain particular action 
sequences that happen to work on a specific two, three, or four of the 
fitness cases.  For example, the plan  

(EQ (MS NN) (EQ (MS NN) (MS NN))) 

moves the next needed block (NN) from the TABLE to the STACK 
three times.  This plan works in the four particular specific fitness 
cases where the initial STACK consists of six, seven, eight, or nine 
correct blocks and no out-of-order blocks.  

In one run, an individual plan emerged in generation 5 that correctly 
handled 10 of the 166 fitness cases. This plan correctly handles the 10 
fitness cases in the first group itemized above where the blocks, if 
any, initially on the STACK happen to already be in the correct order 
and where there are no out-of-order blocks on top of these correctly-
ordered blocks. This plan was 

 (DU (MS NN) (NOT NN)). 

This plan uses the iterative operator DU to do the work (MS NN) of 
moving the needed block onto the STACK from the TABLE until the 
predicate (NOT NN) is satisfied.  This predicate is satisfied when 
there are no more blocks needed to finish the STACK (i.e. the “next 
needed” sensor NN is NIL).   

Figure 1.45 shows this partially correct plan moving five needed 
blocks (E, V, N, I, and U) to a STACK containing four blocks (R, S, 
A, and L) that are already in the correct order. 
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Figure 1.45  Five blocks  to go on top of RSAL being moved 
from TABLE to STACK 

This plan, of course, does not produce a correct final STACK if any 
block initially on the STACK was incorrect. Thus, this plan performs 
incorrectly in 156 of the 166 fitness cases. Nonetheless, this partially 
correct plan will prove to be be a useful “building block” in the final 
100% correct plan.  

As additional generations are run, the performance of the best single 
individual plan in the population typically increases somewhat from 
generation to generation.  These progressively improving plans each 
deal correctly with a few more additional cases. At the same time, the 
overall average fitness of the population also tends to increase some-
what from generation to generation as the population begins to 
contain additional higher scoring plans.   

In generation 10 of one run, the best single individual plan in the 
population achieved a perfect score (that is, the plan produced the 
desired final configuration of blocks in the STACK for 100% of the 
fitness cases). This 100% correct plan was  

(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN))). 

Figure 1.46 graphically depicts this 100% correct plan from 
generation 10. 
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Figure 1.46  100% correct, but inefficient, plan for stacking 
blocks from generation 10 

This plan consists of two sub-plans which are connected via the 
function EQ (which is merely serving as a connective).  The first sub-
plan is  

(DU (MT CS) (NOT CS))  

This sub-plan does the work of first moving CS (i.e. the top of the 
STACK) to the TABLE.   This continues until the predicate (NOT 
CS) becomes T (True).  This predicate becomes true when the top of 
the STACK becomes NIL (i.e. the STACK becomes empty).  
The second sub-plan  

(DU (MS NN) (NOT NN)) 

does the work of iteratively moving the next needed block NN to the 
STACK until there is no remaining next needed block NN.  

Notice that the previously discovered partially correct plan   

(DU (MS NN) (NOT NN)),  

was incorporated as a subplan into the 100% correct final hierarchy. 
This subplan became part of the hierarchy as a result of the crossover 
operation.  This subplan participated in the critical crossover 
operation because its relatively high fitness (i.e. a raw fitness of 10 
out of a possible 166) allowed it to be selected as a parent to 
participate in the crossover operation which produced the 100% 
correct final plan. 
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16.2. EFFICIENTLY STACKING BLOCKS 

The 100% correct solution found in the basic version of the block 
stacking problem described above is highly inefficient in that it re-
moves all the blocks, one by one, from the STACK to the TABLE 
(even if they are already in the correct order on the STACK).  This 
plan then moves the blocks, one by one, from the TABLE to the 
STACK.  As a result, this plan uses 2319 block movements to handle 
the 166 cases.  We should not be surprised by this since the concept 
of efficiency was not involved in any way in the basic version of the 
problem described above. 

The most efficient way to solve this version of the block stacking 
problem, in terms of minimizing total block movements, is to remove 
only the out-of-order blocks from the STACK and then to move the 
next needed blocks to the STACK from the TABLE.  This approach 
uses only 1641 block movements to handle the 166 fitness cases.  

Note, however, that nothing in the fitness function we defined 
above for the basic version of the block stacking problem gave any 
consideration whatsoever to efficiency as measured by the total 
number of block movements involved.  The only consideration in the 
fitness function that we defined above was whether or not the plan 
(computer program) correctly handled each of the 166 fitness cases 
(either at its natural time of termination or when it timed out). 

We can, however, simultaneously breed a population of plans 
(computer programs) for two attributes at one time. In particular, we 
can specifically breed a population of plans for both correctness and 
efficiency by using a combined fitness measure that assigns a 
majority of the weight (say 75%) to correctness and a minority of 
weight (say 25% ) to a secondary attribute (i.e. efficiency).   

Specifically, if a plan correctly handles all 166 fitness cases, it 
would receive 75 points towards the combined fitness measure. If a 
plan correctly handles zero cases out of 166, it would receive zero 
points towards the combined fitness measure. If a plan correctly 
handled 40% of the 166 cases (i.e. 67 cases), it would receive 30 
points (40% of 75) towards the combined fitness measure. Then, if 
that plan took 1641 block movements, it would receive 25 additional 
points towards the combined fitness measure. If the plan took 
between 0 and 1640 block movements to perform its work, the 25 
points available for efficiency would be scaled linearly upwards so 
that a plan making zero block movements would receive zero of the 
25 points. If the plan made between 1642 and 2319 block movements, 
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the 25 points available for efficiency would be scaled linearly 
downwards so that a plan making 2319 block movements would 
receive zero of the 25 points. If a plan made more than 2319 block 
movements, it would also receive zero of the 25 points available for 
efficiency. 

In one run, the best single individual from the initial random 
population performed correctly in only l of the 166 cases and made a 
total of 6590 block movements. This plan was both incorrect and 
inefficient. 

However, by generation 11, the best individual in the population 
was 

(DU (EQ (DU (MT CS) (EQ CS TB)) 
        (DU (MS NN) (NOT NN))) 
    (NOT NN)) 

This plan is both l00% correct and 100% efficient in terms of total 
block movements. It uses the minimum number (1641) of block 
movements to correctly handle all 166 fitness cases.  

This l00% correct and 100% efficient plan is graphically depicted in 
Figure 1.47. 
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Figure 1.47  100% correct and 100% efficient solution to the 

block stacking problem 
In this plan, the sub-plan  

(DU (MT CS) (EQ CS TB))  

iteratively moves CS (the top block) of the STACK to the TABLE 
until the predicate (EQ CS TB) becomes satisfied. This predicate 
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becomes satisfied when CS (the top of the stack) equals TB (top 
correct block in the STACK).   

Figure 1.48 shows the out-of-order blocks (I and V) being moved to 
the TABLE from the STACK until R becomes the top of the STACK. 
When R is the top of the STACK, CS equals TB.  
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Figure 1.48  Out-of-order blocks I and V being moved from 
STACK to the TABLE 

Then, the previously discovered second sub-plan  

(DU (MS NN) (NOT NN))  

iteratively moves the next needed blocks (NN) to the STACK until 
there is no longer any next needed block.  

Notice that the function EQ serves only as a connective between the 
two sub-plans. Notice also that the outermost DU function performs 
no function (but does no harm) since the predicate (NOT NN) is 
satisfied at the same time as the identical predicate of the second sub-
plan.  In that regard, these functionless elements are similar to the 
approximately 99% of nucleotide bases (out of approximately 2.87 
billion) in a human genome that never get expressed into protein.  

17. OPTIMAL CONTROL 

Problems of optimal control involve a system that is described by  
state variables.  The future state of the system is determined by the 
choice of certain control variables.  The objective in optimal control 
is to choose the control variables so as to cause the system to go to a 
specified target state with an optimal (typically minimal) cost. 

The problem of balancing a broom in minimal time by applying a 
bang-bang force from either direction is a well-known optimal control 
problem (Widrow33).  The broom balancing problem involves a push 
cart with mass mc moving on a one dimensional frictionless track and 
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a broom (inverted pendulum) of mass mb pivoting on the top of the 
cart.  The broom has an angle  θ  (measured from the vertical) and an 
angular velocity  ω.  The distance from the center of mass of the 
broom to the pivot  is  λ.   

There is one control variable for this system, namely, a bang-bang 
force F of fixed magnitude which can be applied to the center of mass 
of the cart at each time step so as to accelerate the cart towards either 
the positive or negative direction along the track. 

There are four state variables of this system, namely, position x, 
velocity v, angle  θ , and angular velocity  ω. 

Figure 1.49 shows the cart at time t with position x(t), velocity v(t), 
an angle  θ (t) between the broom and the vertical, and angular 
acceleration  ω (t).  The bang-bang force is being applied so as to 
accelerate the cart towards the positive direction. 

Force

Angle    (t)θ

Velocity V(t)

Position X(t)
X

0.0

Angular 
Velocity     (t)ω

 
Figure 1.49  Moving cart with pivoting broom 

At each time step, the choice of value of the control variable (i.e. 
the quantity u equal to a multiplier of either +1 or -1 to the magnitude 
F   of the force F) at time step t causes a change in the state variables 

of the system at time step t+1. 
The state transitions of this system are expressed by non-linear 

differential equations. At each discrete time step τ , the current state 
of the system and the force being applied at that time step are used to 
compute the state of the system at the next time step.  

In particular, the angular acceleration of the broom Φ (t) at time t is 
given by (Anderson34) as 



128 

Φ (t) = 
gSin θ + Cos θ 

-F -mp λ  ω θ 2 Sin θ
mc + mp

λ 






4

3 - 
mp Cos2 θ
mc + mp

 
  

The angular velocity  ω (t+1) of the broom at time t+1 is therefore 
ω (t+1) = ω (t) +  τ Φ (t)  

Then, as a result of this angular acceleration  Φ (t), the angle  θ (t+1) 
at time t+1 is, using Euler approximate integration, 

θ (t+1) = θ (t) +  τ  ω (t). 
The acceleration a(t) of the cart on the track is given by 

a(t) = 
F + mp λ  [θ 2 Sin θ  - ω Cos θ]

mc + mp
  

The velocity v(t+1) of the cart on the track at time t+1 is therefore  
v(t+1) = v(t) + τ a(t). 

The position x(t+1) of the cart on the track at time t+1 is  
x(t+1) = x(t) + τ v(t). 

The problem is to find a time-optimal control strategy (i.e. a  
computer program) for balancing the broom that satisfies the 
following three conditions: 

• The control strategy (computer program) specifies how to apply 
the bang-bang force at each time step for any combination of the 
state variables . 

• The system comes to rest with the broom balanced (i.e. reaches a 
target state with approximate speed 0.0, approximate angle θ of 
0.0, and approximate angular velocity  ω    of 0.0). 

• The time required is minimal. 
The constants here are mc = 0.9 kilogram, mb = 0.1 kilogram, 

gravity g=1.0 meters/sec2, time step τ =0.02 seconds, and length λ = 
0.8106 meters. 

The first major step in using the genetic programming paradigm is 
to identify the set of terminals.  In this section, we consider only the 
particular version of the broom balancing problem that controls the 
three state variables of velocity v, angle θ , angular velocity ω).  Thus, 
the terminal set for this problem is  

T = {v, θ , ω  , ←},  
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where ← is the ephemeral random constant for floating point random 
numbers.  

The second major step in using the genetic programming paradigm 
is to identify the set of functions.  The function set for this problem 
consists of addition, subtraction, multiplication, division, the sign 
function (SIG), the absolute value function (ABS), the square root of 
absolute value function (SRT), the square function (SQ), the cube 
function (CUB), and the greater-than function (GT).  The greater-than 
function GT is a function of two arguments which returns +1 if its 
first argument is greater than its second argument and returns -1 
otherwise.  

That is, the function set for this problem is 

F= {+, -,  *, %, SIG, ABS, SRT, SQ, CUB, GT} 

taking 2, 2, 2, 2, 1, 1, 1, 1, 1, and 2 arguments, respectively. 
The use of the protected division function (%), the square root of 

absolute value function (SRT), and the greater-than function (GT) 
together guarantee closure of the function set. 

Since we do not know the exact mathematical solution to this 
problem, we have no guarantee as to the sufficiency of the function 
set.   

We included both the SIG and ABS functions, the square function 
(SQ), and cube function (CUB) merely because these extraneous 
functions might prove useful.  Each additional function in the 
function set of the genetic programming paradigm usually slightly 
reduces the efficiency of the run.  On the other hand, the solution 
produced by the genetic programming paradigm rarely comes in the 
precise form we anticipate.  Moreover, the large benefits produced by 
having one additional function in facilitating a rapid and relatively 
parsimonious solution often far overweights the slight cost of having 
one extraneous function in the function set.   For example, the 
artificial ant problem (Section 7) can be solved without having both 
the LEFT and RIGHT functions; however, the solution comes much 
more slowly and the solution is far less parsimonious.  We believe 
that, when in doubt, it is often better to include potentially extraneous 
functions.   

The third major step in setting up the genetic programming 
paradigm is to identify the fitness function for the problem.  Each 
control strategy is executed (evaluated) on every time step of each 
fitness case. This problem requires an output interface (wrapper) to 
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guarantee that every value returned as a result of the execution of a 
control strategy is translated into some appropriate bang-bang force.  
For this problem, the wrapper specifies that any positive numerical 
output will be interpreted so as to apply the bang-bang force F to 
accelerate the system towards the positive direction. Any other output 
(of whatever type) will be interpreted so as to apply the bang-bang 
force F to accelerate the system towards the negative direction.   

If an output interface (wrapper) is needed at all, the nature of the  
wrapper needed by a particular problem flows from the choice of the 
terminal set and the function set for the problem.  Most problems do 
not require any wrapper in the genetic programming paradigm 
because we are free to choose the functions and terminals in terms 
that are very natural for the problem.  This particular problem 
requires a wrapper since we want a binary result (i.e. the bang-bang 
force) whereas the state variables (terminals) and functions applied to 
the state variables are real-valued.  If a wrapper is required at all, it is 
typically a very simple one (as is the case here).  The randomizer 
problem (Section 9) required a similar wrapper to create a binary 
result. 

Figure 1.50, shows a control surface partitioning the three 
dimensional v-θ− ω state space.   When the system is at a point 
(v, θ,ω )in the state space that is above the control surface, the force F 
is applied so as to accelerate the cart towards the positive direction.  
Otherwise, the force is applied so as to accelerate the cart towards the 
negative direction. 
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Figure 1.50  Illustrative control surface partitioning the 
three dimensional state space for the broom balancing 

problem 
The fitness cases for this problem consists of 10 initial condition 

cases.  Position is chosen randomly between -0.2 and +0.2 meters. 
Velocity v is chosen randomly between -0.2 and +0.2 meters/second. 
Angle θ is chosen randomly between -0.2 radians (about 11.5 degrees) 
and +0.2 radians. Angular velocity ω  is chosen randomly between -
0.2 and +0.2 radians per second.  The force F is 1.0 Newtons.  

Time was discretized into 300 time steps of .02 seconds. The total 
time available before the system times out for a given control strategy 
is thus 6 seconds.  If the square root of the sum of the squares of the 
velocity v, angle θ , and angular velocity  ω  is less than 0.07 (the hit 
criterion), the system is considered to have arrived at its target state 
(i.e. with the broom balanced and the cart at rest). If a particular 
control strategy brings the system to the target state for a particular 
initial condition case, its fitness for that initial condition case is the 
time required (in seconds). If a control strategy fails to bring the 
system to the target state before it times out for a particular initial 
condition case, its fitness for that case is set to 6 seconds (i.e. the 
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maximum). The “fitness” of a control strategy is the average time for 
the strategy over all 10 fitness cases. 

The initial population of random control strategies in generation 0 
includes many highly unfit control strategies, including totally blind 
strategies that ignore all the state variables, partially blind strategies 
that ignore some of the state variables, strategies that repetitively 
apply the force from only one direction, strategies that are correct 
only for a particular few specific fitness cases, strategies that are 
totally counter-productive, and strategies that cause wild oscillations 
and meaningless gyrations.  

In one run, the average time consumed by the initial random 
strategies in generation 0 averaged 5.3 seconds. In fact, a majority of 
these 300 random individuals “timed out” at 6 seconds (and very 
likely would have timed out even if more time had been available). 
However, even in this highly unfit initial random population, some 
control strategies are somewhat better than others. 



133 

The best single control strategy in generation 0 was the non-linear 
control strategy   

v2+   θ 
which averaged 3.77 seconds. Note that this control strategy is 
partially blind in that it does not even consider the state variable ω  in 
specifying how to apply the bang-bang force.  

The average population fitness improved to 5.27, 5.23, 5.15, 5.11, 
5.04, and 4.97 seconds per fitness case in generations 1 through 6, 
respectively.  

The best single individual of generation 4 was the simple linear 
control strategy 

(+ (+ ANG AVL) AVL). 

This S-expression is equivalent to 
θ + 2 ω. 

The control surface corresponding to this S-expression is merely a 
plane.  In generation 6, the best single individual was the non-linear 
control strategy   

 θ  +  √ ( | ω | - ω 2 ). 
This individual performed in an average of 2.66 seconds. Moreover, 

this individual succeeded in bringing in 7 out of the 10 fitness cases 
to the target state. This compares to only 4 such hits for the best 
single individual of generation 0 (where, in fact, about two thirds of 
the individuals in the population scored only one “hit”). 

By generation 10, the average population fitness had improved 
further to 4.8 seconds and scored 8 hits. The best single individual 
was 

θ + 2 ω - v2.  
Note that this individual is not partially blind and considers all three 

state variables. 
By generation 14, the average fitness had improved to 4.6 seconds. 

And, for the first time, the mode of the hits histogram moved from 1 
(where it started at generation 0) to a higher number (namely 4). In 
generation 14, 96 of the 300 individuals scored 4 hits. This undulating 
left-to-right “slinky-like” motion in the hits histogram occurs as the 
system progressively learns. 

The best single individual of generation 16 is the S-expression 

(+ (* (SQ (+ ANG AVL)) (SRT AVL)) 
   (+ (- ANG (SQ VEL)) AVL))  
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This s-expression is equivalent to 
√ω (θ + ω)2 + ω  + θ – v2 

Figure 1.51 shows the highly non-linear control surface 
corresponding to this S-expression for generation 16. 

                    
Figure 1.51  Control surface for best-of-generation 

individual for generation 16 of broom balancing problem 
The best single individual of generation 20 is the S-expression 

(+ (* (ABS (SQ (+ ANG AVL))) (SRT AVL)) 
      (+ (- ANG (SQ VEL)) AVL)) 

This s-expression is equivalent to 
√ω (ω  + θ )2   + ω  +  θ  – v2 

The highly non-linear control surface corresponding to this S-
expression for generation 20 is only slightly different from that of 
generation 16.   

In generation 24, we attained one individual that scored 10 hits. The 
best individual in generation 24 is, when simplified, the non-linear 
control strategy 

 v + θ + 2 ω  + θ 3.  
This individual had a raw fitness of 2.63 seconds.  
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By generation 24, the population average fitness improved to 4.2 
seconds.  

Generation 27 is the last time when we see a linear control strategy 
as the best individual in the population. The best single individual in 
the population at generation 27 was 

v + 2 θ + 3 ω .  
This individual scored 10 hits and had fitness of 2.16 seconds. Note 

that the computer program or control strategy can be viewed as 
defining the optimal control surface that partitions the state space into 
parts.  For this particular generation, the control surface is merely a 
plane.  

In generation 33, the best single individual bears a resemblance to 
the ultimate solution we attain in generation 46. In generation 33, the 
best single individual is 

8 ω3  +  v  +  θ  +  ω . 
This individual had fitness 1.57 seconds. Moreover, 15% of the 

individuals in the population in generation 33 scored 10 hits. 
The best single individual for generation 34 was the S-expression 

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG) 
   (ABS (ABS (SQ (* (* (SRT 0.24000001) 
                       (+ (SRT ANG) AVL)) 
                    (ABS VEL))))))  

This s-expression is equivalent to 

(2ω )3 + v + ω   + θ  + [ ]√0.24(√θ  + ω ) v 2   

Figure 1.52 shows the non-linear control surface corresponding to 
this S-expression for generation 34. 
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Figure 1.52  Control surface for the best-of-generation 

individual for generation 34 of the broom balancing problem 
By generation 35, the high point of the hits histogram of the 

population moved from 4 hits to 10 hits. In particular, 30% of the 
individuals in the population scored 10 hits. The best single 
individual for generation 35 was 

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG) 
   (ABS (ABS (SQ ANG)))) 

This s-expression is equivalent to 
(2ω )3 + v + ω   + θ  + θ 2 

The best single individual for generation 40 was the S-expression 

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG) 
   (+ (+ (CUB (+ (+ VEL AVL) ANG)) (+ VEL AVL)) ANG))  

This S-expression is equivalent to 
(2ω )3 + 2(v + ω   + θ ) + ( )v + ω  + θ  3 

The best single individual for generation 44 was the S-expression 
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(+ (+ ANG AVL) (+ (+ (+ (CUB (+ AVL AVL)) 
                        (+ VEL AVL)) ANG) VEL))  

This s-expression is equivalent to 
2(v + ω   + θ ) + (2ω )3 

Finally, in generation 46, the best single individual in the 
population was the S-expression 

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG) 
   (+ (* (+ VEL AVL) (+ (SRT ANG) AVL)) ANG)) 

This S-expression corresponds to the following 8-term non-linear 
control strategy: 

v  +  2 θ + ω + 8 ω 3 +   ω 2 + v ω  + v  θ   +   ω   θ .  
Figure 1.53 shows the non-linear control surface corresponding to 

this S-expression for generation 46. 

                  
Figure 1.53  Control surface for the best-of-generation 

individual for generation 46 of the broom balancing problem 
Figure 1.54 shows the progressive improvement (decrease) during 

this run of the average raw fitness of the population and the best-of-
generation individual.  The raw fitness of the worst single individual 
in the population is at the top of the graph for almost every generation 
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indicating the presence of at least one individual that timed out for all 
10 fitness cases. 
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Figure 1.54  Standardized fitness for worst-of-generation 

individual, average standardized fitness for population, and 
standardized fitness for best-of-generation individual for 

broom balancing problem 
There is no known solution for this problem nor is there any 

specific test we can perform on an apparent solution that we obtain to 
verify that it is the optimum.   

The decision as to when to terminate a run presents some difficulty 
in optimization problems in general since we are seeking both the 
unknown optimal time and the computer program that achieves this 
unknown time.   

After its discovery, this single best control strategy found in 
generation 46 was retested on 1000 additional random initial 
condition points. It performed in an average of 1.51 seconds.   

In another test, this control strategy from generation 46 averaged 
2.65 seconds when the initial conditions consisted of the 8 corners of 
the v- θ - ω cube.  In another test, it took 4.24 seconds when the initial 
conditions consisted of the hardest two corners of the cube (i.e. where 
the velocity, angle, and angular velocity have the same sign). This 
control strategy never timed out for any internal point or any corner 
point of the cube. 

A pseudo optimum strategy developed by Keane (Koza and 
Keane35,36) served as an approximate guide for verifying the 
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attainment of the optimal value for time.  This pseudo optimum 
strategy is an approximate solution to a linear simplification of the 
problem.  

The pseudo optimum strategy averaged 1.85 seconds over the 1000 
random fitness cases in the retest.  It averaged 2.96 seconds for the 8 
corners of the cube.  Moreover, it was unable to handle the 2 worst 
corners of the cube. 

These results (in average seconds per fitness case) are summarized 
in the table below: 

PERFORMANCE FOR 3-DIMENSIONAL BROOM 
BALANCING PROBLEM 

Control Strategy 1000 
Points 

8 Corners Worst 2 
Corners 

Benchmark Pseudo Optimum 1.85 2.96 Infinite 
v  +  2 θ + ω + 8 ω 3 +  ω 2  
    + v ω  + v  θ   +   ω   θ  

1.51 2.65 4.24 

We know of no control strategy  for this formulation of the broom 
balancing problem as good as  

v  +  2 θ + ω + 8 ω 3 +   ω 2 + v ω  + v  θ   +   ω   θ . 
from generation 46 of the run described above.  We do know that this 
control strategy had the best time of the many similar control 
strategies that we discovered; that there were numerous other control 
strategies that were only slightly worse (thereby suggesting possible 
convergence); and that this particular control strategy is slightly better 
than the benchmark psuedo optimum strategy developed by Keane.   

Figure 1.55 graphically depicts the control strategy from generation 
46. 
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Figure 1.55  Best-of-generation individual from generation 

46 of the broom balancing problem. 
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18. MINIMAX STRATEGY FOR A GAME 

The problem of discovering a strategy for playing a game is an 
important problem in game theory.  

In a game, there are two or more independently-acting players who 
make choices (moves) and receive a payoff based on the choices they 
make.  

A strategy for a given player in a game is a way of specifying what 
choice the player is to make at a particular point in the game from all 
the allowable choices at that time, given all the information that is 
available to the player at that time. 

The problem of discovering a strategy for playing a game can be 
viewed as requiring the discovery of a computer program.  Depending 
on the game, the desired computer program takes as its input either 
the entire history of past moves in the game or the current state of the 
game. The desired computer program then produces the next move as 
its output.  

Consider the discrete 32-outcome game whose game tree is 
presented in extensive form in Figure 1.56.  
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Figure 1.56  32-outcome game tree with payoffs 
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This game is a two-person, competitive, zero-sum 32-outcome 
game in which the players make alternating moves. On each move, a 
player can choose to go L (left) or R (right). Each internal point of this 
tree is labeled with the player who must move. Each line is labeled 
with the choice (either L or R) made by the moving player. Each 
endpoint of the tree is labeled with the payoff (to player X). After 
player X has made three moves and player O has made two moves, 
player X receives (and player O pays out) the particular payoff shown 
at the particular endpoint of the game tree. 

Since this game is a game of complete information, each player has 
access to complete information about his opponent's previous moves 
(and his own previous moves).  This historical information is 
contained in five variables XM1 (X's move 1), OM1 (O's move 1), and 
XM2 (X's move 2), OM2 (O's move 2). These variables each assume 
one of three possible values: L (left), R (right), or U (undefined). A 
variable is undefined (U) prior to the time when the move to which is 
refers has been made. Thus, at the beginning of the game, all five 
variables are undefined. The particular variables that are defined and 
undefined indicate the point to which play has progressed during the 
play of the game. For example, if both players have moved once, XM1 
and OM1 are defined (each as either L or R) but the other three 
variables (XM2, OM2, and XM3) are undefined (i.e. have the value U).  

A strategy for a particular player in a game specifies which choice 
that player is to make for every possible situation that may arise for 
that player.  In particular, in this game, a strategy for player X must 
specify his first move if he happens to be at the beginning of the 
game.  Second, a strategy for player X must also specify his second 
move if player O has already made one move.  Third, a strategy for 
player X must also specify his third move if player O has already 
made two moves.  

Since Player X moves first, player X's first move is not conditioned 
on any previous move. But, player X's second move will depend on 
Player O's first move (i.e. OM1) and, in general, it will also depend on 
his own first move (XM1). Similarly, player X's third move will 
depend on player O's first two moves and, in general, his own first 
two moves.  

Similarly, a strategy for player O must specify what choice player O 
is to make for every possible situation that may arise for player O.  

A strategy here is a computer program whose inputs are the relevant 
historical variables (XM1, OM1, XM2, and OM2) and whose output is a 
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move (L or R) for the player involved.  Note that there is no reference 
to XM3 since the game ends as soon as X makes his third move. 

Four testing functions CXM1, COM1, CXM2, and COM2 provide the 
facility to test each of the historical variables (XM1, OM1, XM2, and 
OM2) that are relevant to deciding upon a player's move. Each of these 
functions is a specialized form of the CASE function in LISP. For 
example, function CXM1 has three arguments and evaluates its first 
argument if XM1 (X's move 1) is undefined, evaluates its second 
argument if XM1 is L (Left), and evaluates its third argument if XM1 is 
R (Right).  Functions CXM2, COM1, and COM2 are similarly defined.  

The first and second major steps in using the genetic programming 
paradigm are to identify the terminal set and the function set.  The 
terminal set for this problem is  

T = {L, R}.  

The function set is  

F = {CXM1, COM1, CXM2, COM2}. 

Each of these functions takes three arguments. 
The third major step in using the genetic programming paradigm is 

to identify the fitness function.  The fitness of a particular strategy for 
a particular player in a game is the average payoff received when that 
strategy is played against all possible sequences of combinations of 
moves by the opposing player.  

Thus, when we compute the fitness of an X strategy, we must test 
the X strategy against all 4 possible combinations of O moves — that 
is, O's choice of L or R for his moves 1 and 2. When we compute the 
fitness of an O strategy, we must test it against all 8 possible 
combinations of X moves — that is, X's choice of L or R for his 
moves 1, 2, and 3.  Note that it is not sufficient, in general, for player 
X to play only against an opponent who plays the minimax strategy 
because X must also learn to take advantage of mistakes (non-
minimax play by the opponent).   

When two minimax strategies are played against each other in this 
particular game, the payoff is 12, which is the value of this game. A 
minimax strategy typically takes advantage of non-minimax play by 
the other player.   

A hit for this problem (which we also sometimes call a minimax hit 
in problems involving games) is the number of fitness cases (out of 4 
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for player X or 8 for player O) where the strategy being tested 
achieves a payoff at least as good as the minimax strategy. 

We now proceed to evolve a game-playing strategy for player X for 
this game. The minimax strategy for player O serves as the 
environment for evolving game-playing strategies for player X. 

In one run, the best single individual game-playing strategy for 
player X in generation 6 was  

(COM2 (COM1 (COM1 L (CXM2 R (COM2 L L L) 
                            (CXM1 L R L)) 
                    (CXM1 L L R)) L R) 
      L (COM1 L R R). 

Note that this strategy for player X is a composition of the four 
functions (CXM1, COM1, CXM2, COM2) and two terminals (L and R) and 
that it returns a value of either L or R. 

This strategy for player X simplifies to 

(COM2 (COM1 L L R) L R).  

The interpretation of this strategy for player X is as follows. If both 
OM2 (O's move 2) and OM1 (O's move 1) are undefined (U), it must be 
player X's first move. That is, we are at the beginning of the game 
(i.e. the root of the game tree). In this situation, the first argument of 
the COM1 function embedded inside the COM2 function of this strategy 
specifies that player X is to move L. The left move by player X at the 
beginning of the game is player X's minimax move because it takes 
the game to a point with minimax value 12 (to player X) as opposed 
to a point with only minimax value 10.  

If OM2 (O's move 2) is undefined but OM1 is defined, it must be 
player X's second move.  In this situation, this strategy specifies that 
player X moves L if OM1 (O's move 1) was L and player X moves R if 
OM1 was R. If OM1 (O's move 1) was L, player O has moved to a 
point with minimax value 16. Player X should then move L (rather 
than R) because that move will take the game to a point with minimax 
value 16 (rather than 8). If OM1 was R, player O has moved to a point 
with minimax value 12. This move is better for O than moving L. 
Player X should then move R (rather than L) because that move will 
take the game to a point with minimax value 12 (rather than 4).  

If both OM1 and OM2 are defined, it must be player X's third move.  If 
OM2 was L, player X can either choose between a payoff of 32 or 31 or 
between a payoff of 28 or 27. In either case, player X moves L. If OM2 
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was R, player X can choose between a payoff of 15 or 16 or between a 
payoff of 11 or 12. In either case, player X moves R. In this situation, 
this S-expression specifies that player X moves L if OM2 (O's move 2) 
was L and player X moves R if OM2 was R.   

If player O has been playing its minimax strategy, this S-expression 
will cause the game to finish at the endpoint with the payoff of 12 to 
player X. However, if player O was not playing his minimax strategy, 
this strategy will cause the game to finish with a payoff of 32, 16, or 
28 for player X. The total of the 12, 32, 16, and 28 is 88. The 
attainment of these four values for player X (each better than 12) 
constitutes 4 hits for player X. 

Note that we needed the minimax strategy for player O to serve as 
the environment for evolving this game-playing strategy for player X. 

We now proceeded to evolve a game-playing strategy for player O 
for this game. The minimax strategy for player X serves as the 
environment for evolving game-playing strategies for player O. 

In one run of the genetic programming paradigm, the best single 
individual strategy for player O in generation 9 had a fitness of 52 
and scored 8 hits. This minimax O strategy was  

(CXM2 (CXM1 L (COM1 R L L) L) (COM1 R L (CXM2 L L R)) 
      (COM1 L R (CXM2 R (COM1 L L R) (COM1 R L R)))). 

This strategy for player O simplifies to 

(CXM2 (CXM1 # R L) L R). 

Note that, in simplifying this strategy, we inserted the filler symbol 
# to indicate a situation that can never arise. 

Note that we needed the minimax strategy for player X to serve as 
the environment for evolving this game-playing strategy for player O. 

19. EMERGENT BEHAVIOR FOR AN ANT COLONY 

The repetitive application of seemingly simple rules can lead to 
complex overall “emergent behavior” (Forrest37).  Examples of 
complex overall behavior that emerges from relatively simple rules 
occur in the study of cellular automata, Lindenmayer systems, 
fractals, and chaos as well as in nature. 

Emergent functionality, according to Steels38, means that an overall 
function is not achieved in the familiar way by a hierarchical system 
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of components, but, instead, indirectly by the interaction of more 
primitive components with the world and among themselves.  

Emergent functionality is one of the main themes of research in 
artificial life (Langton et. al.39, Farmer et. al.40). 

One avenue of work in emergent behavior involves researchers 
writing sets of rules that produce the desired complex overall 
behavior.  In this section, we use the genetic programming paradigm 
to evolve the sets of rules. 

In this section, we genetically breed a computer program 
controlling the behavior of an individual ant which, when 
simultaneously executed in parallel by all the ants in an ant colony, 
causes the emergence of interesting higher level collective behavior 
for the colony as a whole.  

In particular, the goal is to genetically evolve a common computer 
program governing the behavior of the individual ants such that the 
collective behavior of the ants consists of efficient transportation of 
food to the colony.  In nature, when an ant discovers food, it deposits 
a trail of chemicals (called pheromones) as it returns to the nest with 
the food. The pheromonal cloud (which dissipates over time) aids 
other ants in efficiently locating and exploiting the food source 
(Travers and Resnick41, Resnick42).  An equivalent problem involves 
robots on the moon bringing rock samples back to the space ship 
(Steels38). 

In this problem, 144 pellets of food are piled eight deep in two 3-
by-3 piles located in a 32-by-32 toroidal area.  There are 20 ants.  The 
state of each ant consists of its position and the direction it is facing 
(out of eight possible directions).  Each ant initially starts at the nest 
and faces in a random direction. Each ant in the colony is governed 
by a common computer program associated with the colony. 

The following nine operations are available in this problem: 
• MOVE-RANDOM randomly changes the direction in which an 

ant is facing and then moves the ant two steps in the new 
direction. 

• MOVE-TO-NEST moves the ant one step in the direction of the 
nest. This implements the gyroscopic ability of ants to navigate 
back to their nest. 

• PICK-UP picks up food (if any) at the current position of the ant 
if the ant is not already carrying food. 

• DROP-PHEROMONE drops pheromones at the current position 
of the ant (if the ant is carrying food). The pheromones 
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immediately forms a 3-by-3 cloud around the drop point. The 
cloud decays over a period of time. 

• IF-FOOD-HERE is a two-argument function that executes its first 
argument if there is food at the ant's current position and, 
otherwise, executes the second (else) argument. 

• IF-CARRYING-FOOD is a similar two-argument function that 
tests whether the ant is currently carrying food. 

• MOVE-TO-ADJACENT-FOOD-ELSE is a one-argument 
function that allows the ant to test for immediately adjacent food 
and then move one step towards it.  If food is present in more than 
one adjacent position, the ant moves to the position requiring the 
least change of direction. If no food is adjacent, the “else” clause 
of this function is executed.  

• MOVE-TO-ADJACENT-PHEROMONE-ELSE is a function 
similar to the above based on adjacency of pheromones. 

• PROGN is the LISP connective function that executes its 
arguments in sequence  

Each of the 20 ants in a given colony executes the colony's common 
computer program at each time step.  The execution of the common 
program is done serially for each ant for a given time step.  Thus, the 
action of one ant can alter the state of the system for other ants (e.g. 
by picking up food or dropping pheromones).  Since the ants initially 
face in random directions, make random moves, and encounter a 
changing pattern of food and pheromones created by the activities of 
other ants, the 20 ants almost always have different states and pursue 
different trajectories.   

The first major step in using the genetic programming paradigm is 
to identify the set of terminals.  The terminal set for this problem is 

T = {MOVE-RANDOM, MOVE-TO-NEST, PICK-UP, DROP-
PHEROMONE} 

The second major step in using the genetic programming paradigm 
is to identify the set of functions.  The function set for this problem is 

F = {IF-FOOD-HERE, IF-CARRYING-FOOD, MOVE-TO-
ADJACENT-FOOD-ELSE, MOVE-TO-ADJACENT-
PHEROMONE-ELSE, PROGN} 

The third major step in using the genetic programming paradigm is 
to identify the fitness function.  The raw fitness of a computer 
program is measured by how many of the 144 food pellets are 
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transported to the nest within the allotted time (which limits both the 
total number of time steps and the total number of operations which 
any one ant can execute) when all the ants execute the given program.   

Note that there are no explicit fitness cases in this problem.  There 
are sufficient ants (each with their own initial facing direction) so that 
the fitness cases can be implicit. 

Mere random motion by the 20 ants in a colony will, on average, 
only bring the ants into contact with about 56 of the 144 food pellets 
within the allotted time. Of course, the task is substantially more 
complicated than merely coming in contact with food at random. 
After coming into contact with food, the ants must pick up the food 
and then move towards the colony.  Moreover, even this sequence of 
behavior is not sufficient to efficiently solve the problem in any 
reasonable amount of time.  When ants come in contact with food, 
they must do something which makes the task easier than mere 
random search thereafter.  In particular, ants which come in contact 
with food must also establish a pheromonal trail as they carry the 
food back to the colony.  This allows other ants to use the existence 
of the pheromonal trail as a guide to the location of the food.  Of 
course, in addition, all ants must always be on the lookout for such 
pheromonal trails and must, if they are not already carrying food, 
follow such trails to the food when they encounter such trails.  

In a typical run, 93% of the random computer programs in the 
initial random generation did not transport even one of the 144 food 
pellets to the nest within the allotted time. About 3% of these initial 
random programs transported only one of the 144 pellets.  Even the 
best single computer program of the random computer programs 
created in the initial generation successfully transported only 41 
pellets (i.e. only about 2 per ant). 

As the genetic programming paradigm is run, the population as a 
whole and its best single individual both generally improve from 
generation to generation.  

In one run, the best single individual in the population on 
generation 10 scored 54; the best-of-generation individual on 
generation 20 scored 72; the best-of-generation individual on 
generation 30 scored 110; the best-of-generation individual on 
generation 35 scored 129; the best-of-generation individual on 
generation 37 scored 142; and, the best-of-generation individual 
scored 144 (i.e. 100% ) on generation 38.   
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Figure 1.57 shows the progressive improvement during that run of 
the worst single individual in the population, the average standardized 
fitness of the population, and the best-of-generation individual. 
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Figure 1.57  Standardized fitness for worst-of-generation 

individual, average standardized fitness for population, and 
standardized fitness for best-of-generation individual for 

emergent behavior in the ant colony  
On generation 38, a program emerged which allows the 20 ants to 

successfully transport all 144 food pellets to the nest within the 
allotted time. This 100% fit program is shown below: 

(PROGN (PICK-UP) (IF-CARRYING-FOOD (PROGN (MOVE-TO-
ADJACENT-PHEROMONE-ELSE (MOVE-TO-ADJACENT-FOOD-ELSE 
(MOVE-TO-ADJACENT-FOOD-ELSE (MOVE-TO-ADJACENT-FOOD-
ELSE (PICK-UP))))) (PROGN (PROGN (PROGN (PROGN (MOVE-
TO-ADJACENT-FOOD-ELSE (PICK-UP)) (PICK-UP)) (PROGN 
(MOVE-TO-NEST) (DROP-PHEROMONE))) (PICK-UP)) (PROGN 
(MOVE-TO-NEST) (DROP-PHEROMONE)))) (MOVE-TO-ADJACENT-
FOOD-ELSE (IF-CARRYING-FOOD (PROGN (PROGN (DROP-
PHEROMONE) (MOVE-TO-ADJACENT-PHEROMONE-ELSE (IF-
CARRYING-FOOD (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP)) 
(MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))))) (MOVE-TO-
NEST)) (IF-FOOD-HERE (PICK-UP) (IF-CARRYING-FOOD 
(PROGN (IF-FOOD-HERE (MOVE-RANDOM) (IF-CARRYING-FOOD 
(MOVE-RANDOM) (PICK-UP))) (DROP-PHEROMONE)) (MOVE-TO-
ADJACENT-PHEROMONE-ELSE (MOVE-RANDOM)))))))) 

The 100% fit program above is essentially equivalent to the 
simplified program below: 
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1 (PROGN (PICK-UP)  
2     (IF-CARRYING-FOOD 
3       (PROGN (MOVE-TO-ADJACENT-PHEROMONE-ELSE  
4              (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))) 
5               (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP)) 
6                (MOVE-TO-NEST) 
7                (DROP-PHEROMONE)  
8                (MOVE-TO-NEST) 
9                (DROP-PHEROMONE)) 
10       (MOVE-TO-ADJACENT-FOOD-ELSE 
11           (IF-FOOD-HERE 
12             (PICK-UP) 
13             (MOVE-TO-ADJACENT-PHEROMONE-ELSE 
14               (MOVE-RANDOM)))))) 

This computer program is a prioritized sequence of conditional 
behaviors that work together to solve the problem.  First, the 
computer program causes the ant to pick up any food it may 
encounter.  Failing that, the second priority established by this 
conditional sequence causes the ant to follow a previously established 
pheromonal trail. And, failing that, the third priority of this 
conditional sequence causes the ant to move at random.  

This simplified program prioritizes the activities of the ant and can 
be interpreted as follows:  The ant begins (line 1) by picking-up the 
food, if any, located at the ant's current position. If the test on line 2 
determines that the ant is now carrying food, then lines 3 through 9 
are executed.  Otherwise, lines 10 through 14 are executed. 

Line 3 moves the ant to the adjacent pheromones (if any).  If there 
is no adjacent pheromone, line 4  moves the ant to the adjacent food 
(if any).  In view of the fact that the ant is already carrying food, these 
two potential moves on lines 3 and 4 generally distract the ant from 
the most direct return to the nest and therefore merely reduce 
efficiency.  Line 5 is a similar distraction.  Note that the PICK-UP 
operations on lines 4 and 5 are redundant since the ant is already 
carrying a food pellet.  Given that the ant is already carrying food, the 
sequence of MOVE-TO-NEST on line 6 and DROP-PHEROMONE 
on line 7 is the winning combination that establishes the pheromone 
trail as the ant moves towards the nest with the food.  This move 
sequence is repeated redundantly in lines 8 and 9.  The establishment 
of the pheromone trail between the pile of food and the nest is an 
essential part of efficient collective behavior for exploiting the food 
source. 

Lines 10 through 13 apply when line 2 determines that the ant is not 
carrying food.  Line 10 moves the ant to adjacent food (if any).  If 
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there is no adjacent food but there is food at the ant's current position 
(line 11), the ant picks up the food (line 12).  On the other hand, if 
there is no food at the ant's current position (line 13), the ant moves 
towards any adjacent pheromones (if any).  If there are no adjacent 
pheromones, the ant moves randomly (line 14).   

The collective behavior of the ant colony governed by the above 
100% fit program above can be visualized as a series of major phases. 
The first phase occurs when the ants have just emerged from the nest 
and are randomly searching for food.  

Figure 1.58 represents time step 3 of the execution of the 100% fit 
program above.  The two 3-by-3 piles of food are shown in black in 
the western and northern parts of the grid.  The nest is indicated by 
nine + signs slightly southeast of the center of the grid.  The ants are 
shown in gray with their facing direction indicated. 

 
Figure 1.58  The First phase of the emergent behavior in an 

ant colony 
The second phase occurs when some ants have discovered some 

food, have picked up the food, and have started back towards the nest 
dropping pheromones as they go. The beginnings of the pheromonal 
clouds around both the western and northern piles of food are shown 
in Figure 1.59 (representing time step 12). 
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Figure 1.59  The Second phase of the emergent behavior in 

an ant colony 
The third phase occurs when pheromonal trails have been 

established linking both piles of food with the colony. The first two 
(of the 144) food pellets have just reached the nest in Figure 1.60 
(representing time step 15). 

 
Figure 1.60  The Third phase of the emergent behavior in an 

ant colony 
This third phase persists for some time as the ants transport the bulk 

of the food from the piles to the colony.   



153 

Figure 1.61 shows the premature (and temporary) disintegration of 
the pheromonal trail connecting the northern pile of food with the 
nest while food still remains in the northern pile. The pheromonal 
trail connecting the western pile of food with the nest is still intact. 
118 of the 144 food pellets have been transported to the nest at this 
point (at time step 129). 

 
Figure 1.61  Premature disintegration of the pheromonal 
trail in the problem of emergent behavior in an ant colony 

Figure 1.62 (representing time step 152) shows the western pile has 
been entirely cleared by the ants and the pheromonal trail connecting 
it to the nest has already dissipated.  The former location of the 
western pile is shown as a blank white area. 136 of the 144 food 
pellets have been transported to the nest at this point.  The 
pheromonal trail connecting the nest to the northern pile (with 8 
remaining food pellets) has been reestablished.  
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Figure 1.62  Exhaustion of the western pile of food in the 

problem of emergent behavior in an ant colony 
Shortly thereafter, the run ends with all 144 food pellets in the nest. 
A visualization of the application of the genetic programming 

paradigm to this problem (as well as to planning,  empirical 
discovery, inverse kinematics, game playing, and the Boolean 11-
multiplexer problems) can be viewed in the Artificial Life II Video 
Proceedings videotape [Koza and Rice43]. 

20. ADDITIONAL EXAMPLES 

The genetic programming paradigm can be applied in many 
additional problem domains.   

For example, induction of decision trees and concept formation can 
be done using the genetic programming paradigm (Koza44).   

In addition, when the LISP S-expressions return more than one 
value, even more complex structures can be evolved using the genetic 
programming paradigm.  One example is the simultaneous discovery 
of both the architecture and weights for a neural network (Koza and 
Rice45).   

Also, more than one population can be evolved at the same time to 
solve problems such as simultaneously evolving minimax strategies 
for both players in a game (Koza46, 47).  

Additional information and examples can be found in Koza28, 48. 
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21. CONCLUSIONS 

We have shown that many seemingly different problems in machine 
learning and artificial intelligence can be viewed as requiring the 
discovery of a computer program that produces some desired output 
for particular inputs.  We have also shown that the recently developed 
genetic programming paradigm described herein provides a way to 
search for a highly fit individual computer program.   
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