
1............... INTRODUCTION AND OVERVIEW 1
2............... THE PERVASIVENESS OF PROGRAM

INDUCTION 4
3............... THE CONVENTIONAL GENETIC

ALGORITHM 7
4............... OVERVIEW OF THE GENETIC

PROGRAMMING PARADIGM 10
4.1............ CHOICE OF PROGRAMMING LANGUAGE 14
5............... DETAILED DESCRIPTION OF THE GENETIC

PROGRAMMING PARADIGM 17
5.1............ THE STRUCTURES UNDERGOING

ADAPTATION 17
5.2............ THE INITIAL STRUCTURES 21
5.3............ FITNESS 23
5.4............ OPERATIONS FOR MODIFYING

STRUCTURES 25
5.4.1......... REPRODUCTION 25
5.4.2......... CROSSOVER (RECOMBINATION) 26
5.5............ THE STATE OF THE SYSTEM 29
5.6............ RESULT DESIGNATION 29
5.7............ TERMINATION 29
5.8............ CONTROL PARAMETERS 30
6............... LEARNING OF A BOOLEAN FUNCTION 31
6.1............ BOOLEAN 11-MULTIPLEXER 32
6.2............ HIERARCHIES AND DEFAULT HIERARCHIES 49
6.3............ RESULTS OVER A SERIES OF RUNS 50
6.4............ NON-RANDOMNESS OF RESULTS 54
7............... ARTIFICIAL ANT PROBLEM 58
8............... SOLVING A PAIR OF LINEAR EQUATIONS 66
9............... RANDOMIZER 70
10............. SEQUENCE INDUCTION 79
11............. SIMPLE SYMBOLIC REGRESSION 81
12............. SYMBOLIC REGRESSION WITH CONSTANT

CREATION 89
13............. EMPIRICAL DISCOVERY 90
14............. SYMBOLIC INTEGRATION AND

DIFFERENTIATION 96
15............. SOLVING EQUATIONS 98
15.1.......... DIFFERENTIAL EQUATIONS 98
15.2.......... INTEGRAL EQUATIONS 104

15.3.......... INVERSE PROBLEMS 104
15.4.......... GENERAL FUNCTIONAL EQUATIONS 104
16............. PLANNING — BLOCK STACKING 104
16.1.......... CORRECTLY STACKING BLOCKS 109
16.2.......... EFFICIENTLY STACKING BLOCKS 112
17............. OPTIMAL CONTROL 114
18............. MINIMAX STRATEGY FOR A GAME 126
19............. EMERGENT BEHAVIOR FOR AN ANT

COLONY 132
20............. ADDITIONAL EXAMPLES 140
21............. CONCLUSIONS 140
22............. ACKNOWLEDGEMENTS 140
23............. REFERENCES 141

1

THE GENETIC PROGRAMMING PARADIGM:
GENETICALLY BREEDING POPULATIONS OF

COMPUTER PROGRAMS TO SOLVE PROBLEMS
John R. Koza

Computer Science Department
Stanford University
Margaret Jacks Hall
Stanford, CA 94305

Koza@Sunburn.Stanford.Edu
415-941-0336

ABSTRACT: Many seemingly different problems in machine
learning, artificial intelligence, and symbolic processing can be
viewed as requiring the discovery of a computer program that
produces some desired output for particular inputs. When viewed in
this way, the process of solving these problems becomes equivalent to
searching a space of possible computer programs for a highly fit
individual computer program. The recently developed genetic
programming paradigm described herein provides a way to search
the space of possible computer programs for a highly fit individual
computer program to solve (or approximately solve) a surprising
variety of different problems from different fields. In the genetic
programming paradigm, populations of computer programs are
genetically bred using the Darwinian principle of survival of the
fittest and using a genetic crossover (sexual recombination) operator
appropriate for genetically mating computer programs. This chapter
shows how to reformulate seemingly different problems into a
common form (i.e. a problem requiring discovery of a computer
program) and, then, to show how the genetic programming paradigm
can serve as a single, unified approach for solving problems
formulated in this common way.

1. INTRODUCTION AND OVERVIEW

A central question in computer science is “How can computers
learn to program themselves to solve problems?”

2

Existing paradigms for machine learning all involve searching a
space of specialized structures for a good or best structure to solve a
problem. In each paradigm, the structures involved are distinctly
different from computer programs.

• Connectionists envision the solution to a given problem as being a
set of real-valued weights. The weights are used to amplify or
diminish signals passing along the connecting lines of a neural
network. One of several neural network paradigms is used to
search for a best set of weights. The neural network using this
best set of weights is then used to solve the given problem.

• Selectionists envision the solution to a given problem as being a
fixed length character string (i.e. chromosome). Each
chromosome represents a possible approach to solving the
problem. The conventional genetic algorithm is used to search for
a good or best chromosome. The best chromosome specifies the
approach to be used to solve the given problem.

• Inductionists envision the solution to a given problem as being a
decision tree. Each decision tree classifies each instance of a
given problem into a class representing a possible solution to the
problem. An inductive method, such as ID3, is used to search for
a good or best decision tree. The best decision tree is then used to
solve the given problem.

Searching for a specialized structure such as a weight vector,
chromosome, or decision tree can be an efficient way to solve certain
classes of problems. Moreover, such specialized structures often
facilitate mathematical analysis that might otherwise not be possible.

However, these specialized structures are often an unnatural and
difficult way of viewing the problem and expressing a solution. In
many cases, the flexibility that is really wanted and needed is the
flexibility provided by computer programs. Computer programs offer
the flexibility to

• perform computations on variables of many different types,
• perform alternative computations conditioned on the outcome of

intermediate calculations,
• perform iterations and recursions,
• define computed values and sub-programs so that they can be

subsequently re-used, and
• arrange groups of operations into hierarchies.

3

Producing solutions in hierarchical form is especially important
because hierarchies are efficient, easy to understand, and lend
themselves to scaling up.

The flexibility we want and need also includes flexibility as to the
size, shape, and structural complexity of the solution. The user
should not be required to specify the size, shape, and structural
complexity of the solution in advance. Instead, the size, shape, and
structural complexity of the solution should emerge during the
problem solving process. In other words, the size, shape, and
structural complexity should be part of the answer produced by a
problem solving technique — not part of the question.

Once we realize that what we really want and need is the flexibility
offered by computer programs, we start to view searches for
specialized structures such as weight vectors, chromosomes, or
decision trees as flanking actions against the overall problem of
getting computers to learn to program themselves. This chapter is a
direct frontal assault on the problem of getting computers to learn to
program themselves. Our goal here is to find a computer program to
solve the given problem. In particular, we search the space of
possible computer programs for a computer program that solves the
given problem. The recently developed genetic programming
paradigm described herein offers a way to genetically breed a
computer program to solves (or approximately solve) the given
problem.

This chapter does not offer any mathematical proof that the genetic
programming paradigm can always be successfully used to solve all
problems of every conceivable type. This chapter does, however,
provides a large amount of empirical evidence that this new paradigm
can be used to solve a surprisingly variety of seemingly different
problems from many different fields.

Specifically, this chapter makes two main points.
• POINT NO. 1: A wide variety of seemingly different problems

from many different fields can be reformulated as requiring the
discovery of a computer program that produces some desired
output when presented with particular inputs. That is, these
seemingly different problems can be reformulated as problems of
program induction.

• POINT NO. 2: The new genetic programming paradigm
described herein provides an efficient and effective way to search
the space of possible computer programs for a highly fit

4

individual computer program to solve (or approximately solve) a
wide variety of different problems from many different fields.

We deal with Point No. 1 in Section 2 where we show that many
seemingly different problems such as automatic programming,
optimal control, planning, finding game playing strategies, symbolic
regression, and programming emergent behavior can all be viewed as
problems of program induction.

Of course, there is no reason to want to view these seemingly
different problems as problems of program induction unless there is
some good way to do program induction. Accordingly, the remainder
of this chapter deals with Point No. 2. In particular, we describe a
single, unified approach to solving the problem of program induction,
namely, the genetic programming paradigm. We demonstrate that
this new paradigm is effective by presenting a wide variety of
different examples from a variety of different fields. Existing
paradigms for machine learning or artificial intelligence would
probably find it impossible to successfully solve all of these
problems. Nonetheless, we use a single, unified approach regardless
of whether the example involves automatic programming, optimal
control, planning, finding game playing strategies, symbolic
regression, or programming emergent behavior.

The goal of this chapter is to establish Point No. 2 with empirical
evidence. At some point the reader may begin to feel that the
examples being presented have merely become “repetitions” of “the
same thing.” Indeed, they are. When the reader starts viewing
genetic solutions to problems of automatic programming, optimal
control, planning, finding game playing strategies, symbolic
regression, and programming emergent behavior as “the same thing,”
this chapter will have succeeded in communicating its main point,
namely, Point No. 2.

2. THE PERVASIVENESS OF PROGRAM
INDUCTION

Program induction involves the inductive discovery of a computer
program, from the space of possible computer programs, that
produces some desired output when presented with some particular
input.

As an example of program induction, consider the pair of linear
equations

5

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

in two unknown variables x1 and x2. The well known mathematical
formula for solving such a pair of equations starts with six given
values (i.e. a11, a12, a21, a22, b1, and b2) as its input and produces, as
its output, the values of the two unknown variables (i.e. x1 and x2)
that satisfy the pair of equations. Program induction involves finding
the computer program that implements this well known mathematical
formula. The process of program induction uses a finite sampling of
combinations of the inputs and correct outputs to induce a computer
program. The induced computer program should produce the correct
output for any case from the original finite sampling and should also
generalize so as to produce the “correct” output for a previously
unseen case.

A wide variety of seemingly different problems can be reformulated
as a problem of program induction. This fact is obscured by the
different terminology used in different fields to describe the concept
of program induction.

Depending on the terminology of the particular field involved, the
computer program may be called a formula, plan, control strategy,
computational procedure, model, decision tree, game-playing
strategy, transfer function, mathematical expression, or, perhaps
merely, a composition of functions.

Similarly, the inputs to the computer program may be called the
sensor values, state variables, independent variables, attributes,
information to be processed, input signals, input values, known
variables, or, perhaps merely, arguments of a function.

The output from the computer program may be called a dependent
variable, a control variable, category, class, move, decision, action,
effector, result, output signal, output values, unknown variables, or,
perhaps merely, the value returned by a function.

Regardless of the differences in terminology, the problem of
discovering a computer program that produces some desired output
when presented with particular inputs is common to many seemingly
different situations. Several examples follow.
SYMBOLIC REGRESSION

Symbolic regression (symbolic function identification) involves
finding a mathematical expression, in symbolic form, that provides a
good, best, or perfect fit between a given finite sampling of values of
the independent variables and the associated values of the dependent

6

variables. That is, symbolic regression involves finding a model that
fits a given sample of data.

When the variables are real valued, symbolic regression involves
finding both the functional form and the numeric coefficients for the
model. Symbolic regression differs from conventional linear,
quadratic, or polynomial regression. The latter merely involve
finding the numeric coefficients for a function whose form (linear,
quadratic, or polynomial) has been pre-specified.

In any case, the mathematical expression being sought in symbolic
regression can be viewed as a computer program which takes the
values of the independent variables as input and produces the values
of the dependent variables as output.

Symbolic regression of real-valued variables is discussed in Section
11. It is later discussed with constant creation in Section 12. If the
data is noisy data from the real world, this problem of finding the
model from the data is often called empirical discovery (See Section
13). If the independent variable consists of non-negative integers,
symbolic regression may be called sequence induction (See Section
10). Machine learning of the Boolean 11-multiplexer function is
symbolic regression applied to a function with a Boolean range and
domain (Section 6).
PLANNING

Planning in artificial intelligence and robotics requires finding a
plan that receives information from detectors or sensors about the
state of various objects in a system and then uses that information to
select effector actions which change the state of the objects in the
system.

An example of a planning problem involves discovering a robotic
action plan to navigate an artificial ant along an irregular trail to find
the food lying along the trail (Section 7). Another example involves
discovering a plan for stacking blocks in the correct order (Section
16).

The desired plan in a planning problem can be viewed as a
computer program. The computer program takes the information
from the sensors or detectors as its input and produces effector
actions as its output. The effector actions, in turn, cause a change in
the state of the objects of the system.
OPTIMAL CONTROL

Optimal control involves finding a control strategy that uses the
state variables of a system to choose the control variables which will

7

change the state of the system to the desired target state with minimal
cost.

An example of an time-optimal control problem involves
discovering a bang-bang control strategy for balancing a broom on a
moving cart in minimal time. The state variables of the system are
the position of the cart, velocity of the cart, angle of the broom, and
angular velocity of the broom. The control variable is the bang-bang
force that may be applied to the system.

The desired control strategy in an optimal control problem can be
viewed as a computer program. The computer program takes the
state variables of the system as its input and produces values of the
control variable as its output. The control variables, in turn, cause a
change in the state of the system (Section 17).
AUTOMATIC PROGRAMMING

Randomizers (i.e. computer programs that convert a sequence of
consecutive integers into a high entropy sequence of random digits)
are considered difficult to write. Automatic programming of a
randomizer is another example of program induction. The desired
computer program takes a sequence of consecutive integers as its
input and produces a sequence of bits with high entropy as its output
(Section 9).
MINIMAX STRATEGY FOR PLAYING A GAME

Game playing requires finding a strategy that specifies what move a
player is to make at each point in the game, given the known
information about the game.

In a game, the known information may be an explicit history of the
previous moves by the players or an implicit history of previous
moves in the form of a current “state” of the game (e.g. in chess, the
position of each piece on the board).

The game-playing strategy can be viewed as a computer program
which takes the known information about the game as its input and
produces a move as its output (Section 18).
EMERGENT BEHAVIOR

Emergent behavior involves the repetitive application of seemingly
simple rules which lead to complex overall behavior. The evolution
of the sets of rules which produce emergent behavior is a problem in
program induction.

An example is the problem of finding a set of rules for controlling
the behavior of an individual ant which, when simultaneously
executed in parallel by all the ants in the colony, causes the ants to

8

work together to locate and transport available food to the nest. The
computer program (i.e. set of rules) being sought takes the sensory
input of each ant as input and produces actions by the ants as output
(Section 19).

3. THE CONVENTIONAL GENETIC ALGORITHM

Before discussing the genetic program paradigm, we will first
describe the conventional genetic algorithm.

In nature, the evolutionary process occurs when the following four
conditions are satisfied:

• An entity must have the ability to reproduce (or approximately
reproduce) itself.

• There must be a population of such self-reproducing entities.
• There must be some variety amongst the entities in the population.
• There must be some difference in ability to survive in the

environment associated with the variety.
This variety is manifested as variation in the chromosomes of the

entities which, in turn, is reflected in variation in the structure and
behavior of the entities. Variation in structure and behavior is, in
turn, reflected as differences in the rate of survival. The existence of
some variability that has some differential effect on the rate of
survivability is almost inevitable. Thus, the presence of the first
condition (i.e. self-reproducibility) typically is sufficient to start the
evolutionary process.

Thus, in nature, entities with the ability to reproduce themselves
become better able to perform tasks in their environment because the
more fit entities survive at a differentially higher rate. Over a period
of time and many generations, the population becomes more fit in
performing its tasks in its environment. That is, the population
evolves to higher levels of fitness. The structure of individuals in the
population changes over time because of the relentless effects of
natural selection.

John Holland's pioneering Adaptation in Natural and Artificial
Systems1 described how the evolutionary process in nature can be
applied to artificial systems. In particular, Holland's genetic
algorithm is a highly parallel mathematical algorithm that transforms
a population of individual mathematical objects (typically fixed
length character strings patterned after chromosome strings) into a
new population using

9

• the operation of Darwinian fitness proportionate reproduction
(survival of the fittest),

• the naturally occurring genetic operation of sexual recombination
(crossover), and,

• possibly, a small amount of occasional random mutation.
Many problems can be solved using the conventional genetic

algorithm operating on fixed length character strings. An overview of
genetic algorithms can be found in Goldberg2. Recent research work
in the field is reported in Davis3,4, Schaffer5, Rawlins6 and Belew
and Booker7.

The use of fixed length character strings has permitted Holland and
others to construct a significant body of theory as to why genetic
algorithms work. Much of this theoretical analysis depends on the
mathematical tractability of the fixed length character strings as
compared with mathematical structures that are more complex and
comparatively less susceptible to theoretical analysis. Nonetheless,
the use of fixed length character strings as the representational
scheme leaves many problems unsettled.

Representation is a key issue in genetic algorithm work because
genetic algorithms directly manipulate the coded representation of the
problem and because the representation scheme can severely limit the
window by which the system observes its world.

As Davis and Steenstrup8 point out,
“In all of Holland's work, and in the work of many of his students,
chromosomes are bit strings.”

For many problems in machine learning and artificial intelligence,
the most natural known representation for a solution is a hierarchical
computer program of indeterminate size and shape, as opposed to
character strings whose size has been determined in advance. It is
sometimes difficult, unnatural, and overly restrictive to represent
hierarchies of dynamically varying size and shape with fixed length
character strings.

String-based representation schemes do not provide the hierarchical
structure central to the organization of computer programs (into
programs and subroutines) and the organization of behavior (into
tasks and subtasks).

String-based representation schemes do not provide any convenient
way of representing arbitrary computational procedures or of
incorporating iteration or recursion when these capabilities are in-
herently necessary to solve the problem.

10

Moreover, string-based representation schemes do not have
dynamic variability. The initial selection of string length limits in
advance the number of internal states of the system and the com-
putational complexity of what the system can learn.

The predetermination of the size and shape of solutions and the pre-
identification of the particular components of solutions has been a
bane of machine learning systems from the earliest times as well as in
later efforts in automatic programming. The need for more powerful
representations in the genetic algorithm field has been recognized for
some time (De Jong9).

The structure of the individual mathematical objects that are
manipulated by a genetic algorithm can, in fact, be more complex
than fixed length character strings. Smith10 departed from Holland's
emphasis on fixed-length character strings by introducing variable
length strings (including strings whose elements were if-then rules,
rather than single characters).

The introduction of the genetic classifier system (Holland11
Holland et. al.12) continued the trend towards increasing the
complexity of the structures undergoing adaptation using the genetic
algorithm. The genetic classifier system is a highly parallel cognitive
architecture in which the genetic algorithm adaptively modifies a
population of if-then rules (whose condition and action parts are fixed
length binary strings). Examples of applications of genetic classifier
systems include Wilson's13,14 learning of Boolean function and
Forrest's15 work on parallelization of classifier systems.

Wilson16 extended Holland’s bucket brigade algorithm for credit
allocation in genetic classifier systems by introducing hierarchical
credit allocation. Wilson’s hierarchical credit allocation encourages
the creation of hierarchies of rules in lieu of the exceedingly long
sequences of rules that are otherwise characteristic of classifier
systems. Wilson's efforts recognize the central importance of
hierarchies in representing the tasks and subtasks (that is, programs
and subroutines) that are needed to solve complex problems.

Goldberg et. al.17 introduced the messy genetic algorithm which
processes populations of variable length character strings. Messy
genetic algorithms solve problems by combining relatively short,
well-tested sub-strings that deal with part of a problem to form
longer, more complex strings that deal with all aspects of the
problem.

11

As will be seen, the genetic programming paradigm is a further
continuation in the trend towards increasing the complexity of the
structures undergoing adaptation using the genetic algorithm. The
genetic programming paradigm provides a way to genetically breed a
population of hierarchical computer programs to solve problems.

In the genetic algorithm field, Cramer18 used the genetic algorithm
operating on fixed length character strings to generate computer
programs with a fixed structure (consisting of an operation and two
operands in a hypothetical assembly language) and reported on the
highly epistatic nature of the problem.

Fujiki and Dickinson19 implemented analogs of the genetic
operations in the conventional genetic algorithm operating on strings
to manipulate the individual clauses of a LISP computer program
consisting of a single conditional (COND) statement. The individual
if-then clauses of the Fujiki and Dickinson's COND statement were
parts of a strategy for playing the iterated prisoner’s dilemma game.

4. OVERVIEW OF THE GENETIC PROGRAMMING
PARADIGM

In Section 2, we showed that it was possible to reformulate a wide
variety of seemingly different problems from a wide variety of
different fields as problems of program induction. In this section, we
describe the recently developed genetic programming paradigm
which provides a way to do program induction.

In the genetic programming paradigm, populations of computer
programs are genetically bred using the Darwinian principle of
survival of the fittest and using a genetic crossover (recombination)
operator appropriate for genetically mating computer programs. The
structures undergoing adaptation in the genetic programming
paradigm are hierarchical computer programs of dynamically varying
size and shape.

The process of solving many problems can be reformulated as a
search for a most fit individual computer program in the space of
possible computer programs. When viewed in this way, the process
of solving these problems becomes equivalent to searching a space of
possible computer programs for a highly fit individual computer
program. In particular, the search space is the hyperspace of
computer programs composed of functions and terminals appropriate
to the problem domain.

12

This simulated evolutionary process starts with an initial population
of randomly generated computer programs composed of functions and
terminals appropriate to the problem domain. The functions may be
standard arithmetic operations, standard programming operations,
standard mathematical functions, logical functions, and domain-
specific functions. Depending on the particular problem, the
computer program may be Boolean-valued, integer-valued, real-
valued, complex-valued, vector-valued, symbolic-valued, or multiple-
valued.

Each individual computer program in the population is measured in
terms of how well it performs in the particular problem environment.
We call this measure “fitness.”

Typically the computer program is run over a number of different
fitness cases so that fitness is averaged over a variety of
representative different situations.

Unless the problem is so small and simple that it can be solved by
blind random search, the computer programs in the initial random
generation will have exceedingly poor fitness. Nonetheless, some
individuals in the population will turn out to be somewhat more fit
than others.

Then, the Darwinian principle of reproduction and survival of the
fittest and the genetic operation of sexual recombination (crossover)
are used to create a new population of offspring individual computer
programs from the current population of individual computer
programs. In particular, a genetic process of sexual reproduction
between two parental computer programs is used to create offspring
computer programs. The two participating parental computer
programs are selected in proportion to fitness. The resulting offspring
computer program are composed of sub-expressions (sub-trees, sub-
programs, sub-routines, “building blocks”) from their parents.

Then, the new population of offspring (i.e. the new generation)
replaces the old population of parents (i.e. the old generation).

Each new individual in the new population of computer programs is
then measured for fitness and the process is repeated.

At each stage of this highly parallel, locally controlled, and
decentralized process, the state of the process will consist only of the
current population of individuals. Moreover, the driving force to this
process will be the observed fitness of the individuals in the current
population in grappling with their problem environment.

13

As will be seen, this algorithm will produce populations of
computer programs which, over a period of generations, tend to
exhibit increasing average fitness in dealing with their environment.
In addition, these populations of computer programs will tend to
robustly (i.e. rapidly and effectively) adapt to changes in the
environment.

Typically the single best individual in the population at the time of
termination of a run is designated as the result produced by the
genetic programming paradigm. This is called “winner takes all”.

The hierarchical character of the computer programs that are
produced by the genetic programming paradigm is an important
feature of the genetic programming paradigm. The results of this
genetic programming paradigm process are inherently hierarchical.
And, in many cases, the results contain default hierarchies which
solve the problem in a relatively understandable and parsimonious
way.

The dynamic variability of the computer programs that are
developed along the way to a solution is also an important feature of
the genetic programming paradigm. In each case, it would be
difficult and unnatural to try to specify and restrict the size and shape
of the eventual solution in advance. Moreover, the advance
specification and restriction of the size and shape of the solution to a
problem narrows the window by which the system views the world
and might well preclude finding the solution to the problem at all.

Another important feature of the genetic programming paradigm is
the absence or relatively minor role of preprocessing of inputs and
post-processing of outputs. Both the inputs, intermediate results, and
outputs are typically expressed directly in terms of the natural func-
tions and arguments from the problem domain. The output of the
genetic programming paradigm comes in the form of a computer
program which takes the inputs appropriate to the problem and which
produces the outputs required by the problem. This makes the results
highly comprehensible and intelligible in the terms of the problem
domain.

The genetic programming paradigm is a domain independent
(“weak”) method. It provides a single, unified approach to the
problem of finding a computer program to solve a problem. In this
chapter, we show how to reformulate these seemingly different
problems into a common form (i.e. a problem of induction of a

14

computer program) and, then, to describe a single, unified approach
for solving problems formulated in this common form.

In summary, the genetic programming paradigm genetically breeds
computer programs to solve problems by executing the following
three steps:

(1) Generate an initial population of random compositions of the
functions and terminals of the problem (computer programs).

(2) Iteratively perform the following sub-steps until the
termination criterion has been satisfied:
(a) Execute each program in the population and assign it a

fitness value according to how well it solves the
problem.

(b) Create a new population of computer programs by
applying the following two primary operations. The
operations are applied to computer program(s) in the
population chosen with a Darwinian probability based
on fitness.

(i) Copy existing computer programs to the new
population.

(ii) Create new computer programs by genetically
recombining randomly chosen parts of two existing
programs.

(3) The single best computer program in the population at the
time of termination is designated as the result of the genetic
programming paradigm. This result may be a solution (or
approximate solution) to the problem.

Figure 1.1 is a flowchart showing the steps of the genetic
programming paradigm.

15

Gen := 0

Create Initial
Random Population

No
Evaluate Fitness of Each
Individual in Population

Yes

No
Gen := Gen + 1

Yes
Designate

Result

End

i > M?

Select Genetic Operation
Probabalistically

i := i + 1

Termination
Criterion Satisfied?

i := 0

Pr

Select Two Individuals
Based on Fitness

Perform
Crossover

Insert Two
Offspring
into New

Population

i := i + 1
Perform Reproduction

Copy into New
Population

Select One
Individual

Based on Fitness

Pc

Figure 1.1: Flowchart for the genetic programming

paradigm

16

4.1. CHOICE OF PROGRAMMING LANGUAGE

Virtually any programming language (e.g. PASCAL, FORTRAN,
C, FORTH, LISP, etc.) is capable of expressing and evaluating the
compositions of functions and terminals necessary to implement the
genetic programming paradigm. It is possible to implement the
genetic programming paradigm using any reentrant programming
language that can manipulate computer programs as data and can then
compile, link, and execute the new programs or can support an
interpreter to execute the new programs created.

We have chosen the LISP (LISt Processing) programming language
for the work with the genetic programming paradigm for a number of
reasons which we will discuss in detail below. LISP is the most
widely known and used example of a functional programming
language. All the examples in this chapter will use the Common
LISP dialect of LISP herein.

The LISP programming language has only two types of entities,
namely atoms and lists. The constant 7 and the variable TIME are
examples of atoms in LISP. Lists in LISP consist of an ordered set of
items inside a pair of parentheses, such as (+ 1 2) and (FOO BAR).

The LISP compiler and operating system works so as to evaluate
whatever it sees. Constant atoms evaluate to themselves when seen
by LISP while variable atoms evaluate to their current value. When a
list is seen by LISP, the list is evaluated by treating whatever is just
inside the opening parenthesis as a function and then causing the
application of the function to the remaining items of the list (which
are treated as arguments to the function).

We use the name symbolic expression (or, S-expression) for a list or
atom in LISP. The S-expressions are the programs of LISP. In fact,
S-expressions are the only syntactic form in the LISP programming
language.

For example, (+ 1 2) is a LISP S-expression. In this S-expression,
the addition function (+) appears just inside the opening parenthesis
of the S-expression. This S-expression calls for the application of the
addition function + to two arguments (namely, the atoms 1 and 2).
The value returned as a result of the evaluation of the S-expression (+
1 2) is 3.

If any of the arguments are themselves lists (rather than atoms that
can be immediately evaluated), Common LISP first evaluates these
unevaluated lists (in a recursive, depth-first way, starting from the
left) before proceeding.

17

The LISP S-expression (+ (* 2 3) 4) illustrates the way that
computer programs in LISP can be viewed as compositions of
functions. This S-expression calls for the application of the addition
function (+) to two arguments, namely, the sub-S-expression (* 2 3)
and the constant atom 4. In order to complete the evaluation of (+ (*
2 3) 4), LISP must first evaluate (* 2 3). The S-expression (* 2 3)
calls for application of the multiplication function (*) to the two
constant atoms 2 and 3. The entire S-expression (+ (* 2 3) 4)
illustrates the composition of functions.

Now consider LISP symbolic expression (S-expression)

(+ 1 2 (IF (> TIME 10) 3 4))

This simple S-expression illustrates how functional languages, such
as LISP, enable us to view computer programs (with their conditional
actions) as compositions of functions and arguments. In the sub-
expression (> TIME 10), the function > is applied to the variable
atom TIME and the constant atom 10. The sub-expression (> TIME
10) then evaluates to either T (True) or NIL (False) depending on the
current value of the variable atom TIME.

The logical value returned by the sub-expression (> TIME 10)
becomes the first argument of the function IF. The function IF is a
function of three arguments. It returns the result of evaluating its
second argument (i.e. the constant atom 3) if its first argument
evaluates to T (True, non-NIL) and it returns the result of evaluating
its third argument (i.e. the constant atom 4) if its first argument is
NIL. Thus, this S-expression evaluates to either 6 or 7 depending on
whether the current value of the variable atom TIME is, or is not,
greater than 10.

Any LISP S-expression can be graphically depicted as a rooted,
point-labeled tree with ordered branches. The tree corresponding to
this LISP S-expression is shown in Figure 1.2.

18

+

>

10

43

21

TIME

IF

Figure 1.2 Rooted, point-labeled tree with ordered branches
corresponding to the LISP S-expression (+ 1 2 (IF (> TIME

10) 3 4))
In this graphical depiction, the three internal points of the tree are

labeled with functions (e.g. +, IF and >). The six external points
(leaves) of the tree are labeled with terminals (e.g. the variable atom
TIME and the constant atoms 1, 2, 10, 3, and 4). The root of the tree
is labeled with the function (i.e.+) appearing just inside the opening
parenthesis of the S-expression.

Note that this tree form of a LISP S-expression is equivalent to the
parse tree which many compilers construct internally to represent a
given computer program.

The reasons for choosing the LISP programming language for the
work with the genetic programming paradigm are as follows:

First, in the LISP programming language, both programs and data
have the same form (i.e. the S-expressions). Thus, it is both possible
and convenient to treat a computer program in the genetic population
as data so that it can first be genetically manipulated. Then, it is both
possible and convenient to immediately execute the result of the
manipulation as a program.

Second, the above-mentioned common form for both programs and
data in LISP (i.e. the S-expressions) is equivalent to the parse tree for
the computer program. In spite of their outwardly different
appearance and syntax, most “compiled” programming languages
internally convert, at the time of compilation, a given program into a
parse tree representing the underlying composition of functions and
terminals of that program. In most programming languages, this
parse tree is not accessible (or at least not conveniently accessible) to
the programmer. And, if it were accessible, it would have a different
appearance and syntax than the programming language itself. We

19

need access to the parse tree because we want to genetically
manipulate the parts of computer programs (i.e. sub-trees of the parse
tree). LISP gives us the ultimate in convenience of access to this
parse tree because a LISP program is its own parse tree.

Third, the EVAL function of LISP provides an almost effortless
way of executing a computer program that was just created or
genetically manipulated.

Fourth, LISP facilitates the programming of structures whose size
and shape change dynamically (rather than being predetermined in
advance). Moreover, LISP's dynamic storage allocation and garbage
collection provide administrative support for programming of
dynamically changing structures. The underlying philosophy of all
aspects of the LISP programming language is to impose no limitation
on programs beyond the limitation inherently imposed by the physical
and virtual memory limitations of the computer on which the program
is being run. While it is possible to handle structures whose size and
shape change dynamically in many programming languages, LISP is
especially well suited for this.

Fifth, LISP facilitates the convenient handling of hierarchical
structures.

Sixth, software environments offering an unusually rich collection
of programmer tools are commercially available for the LISP
programming language.

It is important to note that we did not choose the LISP programming
language for the work described in this chapter involving the genetic
programming paradigm because we intended to make any special use
of the “list” data structure from LISP or the list manipulation
functions peculiar to the LISP programming language (such as CAR
or CDR).

5. DETAILED DESCRIPTION OF THE GENETIC
PROGRAMMING PARADIGM

Adaptation involves the progressive modification of some structure
so that it performs better in its environment. Learning is a form of
adaptation for which performance consists of solving a problem.
Holland's Adaptation in Natural and Artificial Systems1 provides a
general perspective on adaptation and identifies the key features
common to every adaptive (or learning) system. In the remainder of

20

this section, we use this perspective to describe the genetic
programming paradigm, in detail, in terms of

• the structures that undergo adaptation,
• the initial structures,
• the fitness measure which evaluates the structures
• the operations that are performed to modify the structures,
• the state (memory) of the system at each stage,
• the method for designating a result,
• the method for terminating the process, and
• the parameters that control the process.

5.1. THE STRUCTURES UNDERGOING ADAPTATION

In every adaptive system or learning system, some structure or
structures are undergoing adaptation.

For non-genetic adaptive algorithms, the structure undergoing
adaptation is typically a single point in the search space of the
problem. For conventional genetic algorithms and the genetic
programming paradigm, the structures undergoing adaptation are the
individual points, in a population of points, from the search space of
the problem. That is, the genetic approach involves a parallel search.

The individual structures that undergo adaptation in the genetic
programming paradigm are hierarchically structured computer
programs. The size, shape, and complexity of these computer
programs can dynamically change during the process.

The set of possible structures in the genetic programming paradigm
is the set of all possible compositions of functions that can be
composed recursively from the available set of Nfunc functions from
the function set F = {f1, f2, ... , fNfunc

} and the available set of Nterm

terminals from the terminal set T = {a1, a2, ... , aNterm
}. Each

particular function f in F takes a specified number z(f) of arguments
b1, b2, ..., bz(f).

The functions in the function set may be
• arithmetic operations (+, -, *, etc.),
• mathematical functions (such as Sin, Cos, Exp, etc.),
• Boolean operations (such as AND, OR, NOT),
• logical operators (such as If-Then-Else),
• iterative operators (such as Do-Until),
• functions permitting recursion, and

21

• domain-specific functions.
The terminals are typically either constant atoms (such as the

number 3) or variable atoms (representing, perhaps, the inputs,
sensors, or state variables of some system).

Consider the function set

F = {AND, OR, NOT}

and the terminal set

T = {D0, D1},

where D0 and D1 are Boolean variable atoms that serve as arguments
for the functions. We can combine the set of functions and terminals
into a combined set C as follows:

C = F ≈ T = {AND, OR, NOT, D0, D1}.

Now consider the even parity function with two arguments. This
function returns T (True) if an even number (i.e. 0 or 2) of its
arguments (i.e. D0 and D1) are T; otherwise, this function returns
NIL (False). This Boolean function can be expressed in disjunctive
normal form (DNF) and represented by the following LISP S-
expression:

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

The rooted, point-labeled tree with ordered branches corresponding
to the above S-expression for the even parity function with two
arguments is shown in Figure 1.3.

OR

AND

NOT NOT

D0 D1

AND

D0 D1

Figure 1.3 Rooted, point-labeled tree corresponding to the
LISP S-expression for the even-parity function (OR (AND

(NOT D0) (NOT D1)) (AND D0 D1))

22

In this graphical depiction, the five internal points of the tree are
labeled with functions (e.g. OR, AND, NOT, NOT, and AND). The
four external points (leaves) of the tree are labeled with terminals
(e.g. the Boolean variable atoms D0, D1, D0, and D1, respectively).
The root of the tree is labeled with the function appearing just inside
the outermost left parenthesis of the LISP S-expression (i.e. OR).
This tree is equivalent to the parse tree which most compilers
construct internally to represent a given computer program.

The search space for the genetic programming paradigm is the
hyperspace of valid LISP S-expressions that can be recursively
created by compositions of the available functions and available
terminals for the problem. This search space can, equivalently, be
viewed as the hyperspace of rooted point-labeled trees with ordered
branches having internal points labeled with the available functions
and external points (leaves) labeled with the available terminals.

The structures that undergo adaptation in the genetic programming
paradigm are different than the structures that undergo adaptation in
the conventional genetic algorithm operating on strings. The
structures that undergo adaptation in the genetic programming
paradigm are hierarchical structures. The structures that undergo
adaptation in the conventional genetic algorithm are one-dimensional
linear strings.

In using the genetic programming paradigm, the terminal set and
function set should be selected so as to satisfy two requirements,
namely, closure and sufficiency.
CLOSURE

As to the closure property, each function in the function set should
be well defined for any combination of arguments that may be
encountered. These argument values may arise from either a terminal
or a function.

For example, if the function set consists of the Boolean functions
AND and OR and the terminal set consists only of Boolean variables
that can only assume the values of T or NIL, then the closure property
will be satisfied. On the other hand, if the arithmetic operation of
division is in a function set along with terminals that can assume the
numerical value of zero, the closure property will not be satisfied
unless some arrangement is made to deal with the situation when
division by zero is attempted. One approach is to use the protected
division function %. The protected division function % returns one
when division by zero is attempted, and, otherwise, returns the normal

23

quotient. Similar arrangements may be required when the square root
or logarithm function may be applied to a zero valued variable.

If this closure property does not prevail, we must then address
alternatives such as either (1) discarding individuals that do not
evaluate to a result that is within the desired domain, or (2) assigning
some penalty to the fitness to such individuals and somehow
proceeding.
SUFFICIENCY

As to sufficiency, needless to say, the set of functions and terminals
being used in a particular problem should be selected so as to be
capable of solving the problem.

For example, one would not be able to induce Kepler’s Third Law
for the periods of the planets around the sun if the terminal set
contained only the diameter of each planet (as opposed to its distance
from the sun) or if the function set contained only addition and
subtraction (instead of the functions needed to state the Third Law).

The user of the genetic programming paradigm should know or
believe that some composition of the functions and terminals he
supplies can yield a solution to the problem. In some domains (e.g.
Boolean functions), the requirements are well known. For example,
removing the function NOT from the function set F = (AND, OR,
NOT} creates an function set that is no longer sufficient for
expressing many Boolean functions, including, for example, the even
parity function.

The choice of the set of available functions and terminals, of course,
directly affects the character of the solutions that can be attained. The
available functions and terminals form the basis for generating
potential solutions.

For example, if one does symbolic regression on the absolute value
function with a function set containing the If-Then-Else function and
subtraction, one obtains a solution in the familiar form of a
conditional test on x that returns either x or -x depending on whether
x is greater or less than zero, respectively. On the other hand, if one
does symbolic regression on the absolute value function with a
function set containing only the the cosines of odd harmonics and the
ordinary arithmetic operations, one instead gets the first few terms of
the familiar Fourier series approximation to the absolute value
function.

24

5.2. THE INITIAL STRUCTURES

The initial structures in the genetic programming paradigm consist
of the individuals in the initial population of individual S-expressions
for the problem.

Generation of each individual S-expression in the initial population
is done by randomly generating a rooted, point-labeled tree with
ordered branches representing the S-expression.

We begin by selecting one of the functions from the set F at random
(using a uniform distribution) to be the label for the root of the tree.
Note that we restrict selection of the label for the root of the tree to
the function set F because we want to generate a hierarchical
structure, not a degenerate structure consisting only of a single
terminal. For example, in Figure 1.4, the function + (taking two
arguments) was selected from a function set F as the label for the root
of the tree.

+

Figure 1.4 Generation of a random tree might begin with

labeling the root of the tree with the + function.
Whenever a point of the tree is labeled with a function f from F,

then z(f) lines, where z(f) is the number of arguments taken by the
function f, are created to radiate out from that point. Then, for each
such radiating line, an element is randomly selected to be the label for
the endpoint of that radiating line.

If a function is chosen to be the label for any such endpoint, the
generating process then continues recursively as just described above.
For example, in Figure 1.5, the function * from the combined set C =
F ≈ T of functions and terminals was selected as the label of the
internal non-root point at the end of the first (leftmost) radiating line
from the point with the function +. This function * takes two
arguments so we show two lines radiating out from the point with the
function *.

25

+

*

Figure 1.5 Generation of a random tree might continue with

labeling of an internal non-root point with the * function.
On the other hand, if a terminal is chosen to be the label for any

point, that point becomes an endpoint of the tree and the generating
process is terminated for that point. For example, in Figure 1.6, the
terminal A from the terminal set T was selected to be the label of the
first line radiating from the point labeled with the function *.

+

*

A

Figure 1.6 Generation of a random tree might continue with
labeling of an external point with the terminal A.

This generative process can be implemented in several different
ways resulting in initial random trees of different sizes and shapes.

The generative method we believe does best over a broad range of
problems is a method we call “half ramping.” It produces a mixture
of trees of various sizes and shapes. This method is used on all
problems presented herein. This generative method involves creating
an equal number of trees of each depth between two and some
maximum depth (which is six for all problems presented herein). The
depth of a tree is the length of the longest path from the root to an
endpoint.

Then, for each value of depth, 50% of the trees of that depth are
created in each of two ways, namely:

• 50% of the trees of the specified depth are “full” in that the length
of paths between every endpoint and the root are equal to the
maximum. This is accomplished by restricting the random
selection of the label for points of the tree at depths smaller than
the maximum to the function set F, and restricting the random

26

selection of the label for points at depths equal to the maximum to
the terminal set T.

• 50% of the trees of the specified depth are “variably shaped” in
that the length of paths between an endpoint and the root is no
greater than the specified maximum. This is accomplished by
making the random selection of the label for points of the tree at
depths smaller than the maximum from the combined set C = F ≈
T consisting of the union of the function set F and the terminal set
T, while restricting the random selection of the label for points at
depths equal to the maximum to the terminal set T.

We use a uniform random probability distribution to make the
above selections from the above sets.

Duplicate individuals are unproductive deadwood which waste
computational resources and undesirably reduce the genetic diversity
of the population. In the genetic programming paradigm, duplicate
random individuals are created relatively often when the tree size is
small or when the size of the terminal set happens to be large relative
to the size of the function set. Thus, after a given individual S-
expression is created using the above generative procedure, but before
it is actually inserted into the initial population, it is compared to the
S-expressions already in the initial population. If the S-expression is
a duplicate, it is rejected. The generating process continues until the
desired number of unique S-expressions is created.

The variety of a population is the percentage of individuals for
which no exact duplicate exists in the population. The variety of the
initial random population is 100%.

5.3. FITNESS

Each individual in a population is assigned a numerical fitness
value as a result of its interaction with its environment. Fitness is the
driving force of Darwinian selection in nature. It is, likewise, the
driving force for both genetic algorithms and the genetic
programming paradigm. In this section we describe four different
measures of fitness, namely raw fitness, standardized fitness, adjusted
fitness, and normalized fitness.

Raw fitness is the measure of fitness that is stated in the natural
terminology of the problem itself. Raw fitness is usually, but not
always, evaluated over a set of fitness cases. These fitness cases
provide a basis for evaluating the fitness of the S-expressions in the
population over different representative situations so that a range of

27

different numerical raw fitness values can be obtained. The fitness
cases are typically a small finite sample of the domain space (which is
usually very large or infinite). Therefore, the fitness cases must be
representative of the domain space as a whole because they form the
basis for generalizing the results obtained to the entire domain space.

The definition of raw fitness depends on the problem. For many
problems, raw fitness can be defined as the sum of the distances (i.e.
errors), taken over all the fitness cases, between the point in the range
space returned by the S-expression for the set of arguments for the
particular fitness case and the correct point in the range space for the
particular fitness case. The S-expression may be, for example,
Boolean-valued, integer-valued, real-valued, complex-valued, or sym-
bolic-valued. If the S-expression is integer-valued or real-valued, the
sum of distances is the sum of absolute values of the differences (or,
if desired, the sum of the squares of the differences) between the
numbers involved. When raw fitness is error, the raw fitness r(i,t) of
an individual S-expression i in the population of size M at any
generational time step t is

r(i,t) = ∑
j=1

Ne

 S(i,j) - C(j)

where S(i,j) is the value returned by S-expression i for fitness case j
(of Ne cases) and where C(j) is the correct value for fitness case j.

If the S-expression is Boolean-valued or symbolic-valued, the sum
of distances is equivalent to the number of mismatches.

For other problems, raw fitness may be something other than error.
For example, in optimal control problems, raw fitness may be the cost
of an individual control strategy (as measured in time, distance,
dollars, etc.). In some problems, raw fitness is a score of some kind
(e.g. amount of points scored, benefit achieved, food eaten, subgoals
satisfied, etc.).

Note that because raw fitness is stated in the natural terminology of
the problem, the better value may either be smaller (as when raw
fitness is error) or larger (as when raw fitness is food eaten, benefit
achieved, etc.).

The standardized fitness s(i,t) restates the raw fitness so that a lower
numerical value is better. If a lower value of raw fitness is better (e.g.
when raw fitness represents error), then standardized fitness

s(i,t) = r(i,t).

28

If a higher value of raw fitness is better (e.g. when food is being
eaten), standardized fitness equals the maximum possible value of
raw fitness rmax minus the observed raw fitness. That is,

s(i,t) = rmax - r(i,t).
We now define adjusted fitness a(i,t). The adjusted fitness measure

a(i,t) is computed from the standardized fitness s(i,t). The adjusted
fitness a(i,t) is

a(i,t) =
1

(1+s(i,t))

where s(i,t) is the standardized fitness for individual i at time t.
The adjusted fitness lies between 0 and 1. Unlike standardized

fitness, the adjusted fitness is bigger for better individuals in the
population.

If no upper bound rmax is known (making the above computation of
standardized fitness impossible), this step can be omitted and adjusted
fitness can be computed directly from raw fitness.

It is not necessary to use adjusted fitness in the genetic
programming paradigm. We believe this adjustment is generally
helpful and, therefore, we use it consistently on all problems in this
chapter. Adjusted fitness has the benefit of exaggerating the
importance of small differences in the value of standardized fitness as
these values start approaching zero in later generations of a run.
Adjusted fitness is especially beneficial if the standardized fitness
actually reaches zero when a perfect solution to the problem is found
(e.g. as in symbolic regression problems where an error of zero
denotes a perfect fit).

We now define normalized fitness n(i,t). The normalized fitness
n(i,t) is computed from the adjusted fitness value a(i,t). The
normalized fitness n(i,t) is

n(i,t) =
a(i,t)

∑
k=1

M
 a(k,t)

Normalized fitness has three desirable characteristics.
• It ranges between 0 and 1.
• It is larger for better individuals in the population.
• The sum of the normalized fitness values is one.
When we use the phrases proportional to fitness or fitness

proportionate in this chapter, we are referring to normalized fitness.

29

As will be seen, it is also possible for the fitness function to give
some weight to secondary factors. Examples of such secondary
factors are the efficiency of the S-expression (Section 16.2) and
compliance with the initial conditions of a differential equation
(Section 15.1).

5.4. OPERATIONS FOR MODIFYING STRUCTURES

The two primary operations for modifying the structures undergoing
adaptation in the genetic programming paradigm are (1) Darwinian
fitness proportionate reproduction and (2) crossover (sexual
recombination).
5.4.1. REPRODUCTION

The operation of reproduction for the genetic programming
paradigm is the basic engine of Darwinian reproduction and survival
of the fittest. Each time this operation is performed, it operates on
only one parental S-expression and produces only one offspring S-
expression. That is, it is an asexual operation.

The operation of reproduction consists of two steps. First, a single
S-expression is selected from the population according to some
selection rule based on fitness. Second, the individual is copied from
the current population into the new population (i.e. the new
generation).

There are many different selection rules based on fitness. The most
popular selection rule (and the one used herein) is fitness
proportionate selection.

When fitness proportionate selection is used as the selection rule in
the reproduction operation, if f(si(t)) is the fitness of individual si in
the population at generation t, then, each time the reproduction
operation is performed, each individual in the population has a
probability of being copied into the next generation of

f(si(t))

∑
j=1

M
f(sj(t))

When the reproduction operation is performed using fitness
proportionate selection as the rule of selection, it is called fitness
proportionate reproduction.

Note that the parent remains in the population while selection is
performed during the current generation. That is, the selection is

30

done with replacement (i.e. re-selection) allowed. Parents can be
selected, and, in general, are selected, more than once for
reproduction during the current generation. Indeed, the differential
rate of survival and reproduction for more fit individuals is an
essential part of genetic algorithms.
5.4.2. CROSSOVER (RECOMBINATION)

The crossover (sexual recombination) operation for the genetic
programming paradigm creates variation in the population by
producing new offspring that consist of parts taken from each parent.
The crossover operation starts with two parental S-expressions and
produces two offspring S-expressions. That is, it is a sexual operation.

In general, at least one parent is chosen from the population with a
probability equal to its normalized fitness. In this chapter, both
parents are so chosen.

The operation begins by independently selecting, using a uniform
probability distribution, one random point in each parent to be the
crossover point for that parent. Note that the number of points in the
two parents typically are not equal because the S-expressions in the
population are of various shapes and sizes.

 The crossover fragment for a particular parent is the rooted sub-
tree whose root is the crossover point for that parent and where the
sub-tree consists of the entire sub-tree lying below the crossover point
(i.e. more distant from the root of the original tree). Viewed in terms
of lists in a LISP S-expression, the crossover fragment is the sub-list
starting at the crossover point.

The first offspring S-expression is produced by deleting the
crossover fragment of the first parent from the first parent and then
inserting the crossover fragment of the second parent at the crossover
point of the first parent. The second offspring is produced in a
symmetric manner.

As will be seen, the crossover operation is well-defined and
syntactically legal for any two S-expressions and any two crossover
points.

For example, consider the two parental LISP S-expressions shown
in Figure 1.7. The functions appearing in these two S-expressions are
the Boolean AND, OR, and NOT functions. The terminals appearing
are the Boolean arguments D0 and D1. Each point of the two S-
expressions in this figure has been numbered in a depth-first, left-to-
right way.

31

OR

NOT AND

D0 D1D1 D1

OR

ANDOR

NOT

D0

NOT NOT

D0 D1

2

3

4

5 6

1

2

3

1

4

5

6

7

8

9

10

Figure 1.7 Two parental LISP S-expressions

Equivalently, in terms of LISP S-expressions, the two parents are

(OR (NOT D1) (AND D0 D1))

and

(OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT D1))

Assume that the points of both trees above are numbered in a depth-
first way starting at the left. Suppose that the second point (out of the
six points of the first parent) is randomly selected as the crossover
point for the first parent. The crossover point of the first parent is
therefore the NOT function. Suppose also that the sixth point (out of
the 10 points of the second parent) is selected as the crossover point
of the second parent. The crossover point of the second parent is
therefore the AND function. The underlined and emboldened
portions of the two parental S-expressions above are the crossover
fragments. Figure 1.8 shows these two crossover fragments.

NOT

D1

AND

NOT NOT

D0 D1

Figure 1.8 Two crossover fragments selected from the
parents from Figure 1.7

Figure 1.9 shows the two offspring resulting from crossover.

32

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 1.9 Two offspring produced by the crossover
operation using the parents from Figure 1.7 and the

crossover fragments from Figure 1.8.
Note that the first offspring above happens to be a perfect solution

for the even parity function, namely

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

The second offspring is

(OR (OR D1 (NOT D0)) (NOT D1)).

Note that because entire sub-trees are swapped and because of the
closure property of the functions themselves, this genetic crossover
(recombination) operation produces syntactically legal LISP S-
expressions as offspring in all situations.

If the root of one parental S-expression happens to be selected as
the crossover point, the crossover operation will insert the entire first
parent into the second parent at the crossover point of the second
parent. That is, in this event, the entire first parent will become a sub-
tree within the second parent. In addition, in this event, the crossover
fragment of the second parent will then become the second offspring.

If the roots of two parents both happen to be chosen as crossover
points, the crossover operation simply degenerates to an instance of
reproduction on those two parents.

Note that if an individual mates with itself or two identical
individuals mate, the two resulting offspring will generally be
different (because the crossover points selected are, in general,
different for the two parents). This is in contrast with conventional
genetic algorithms that operate on fixed length character strings
where the one selected crossover point applies to both parents.

33

If a terminal is located at the crossover point in precisely one
parent, then the sub-tree from the second parent is inserted at the
location of the terminal in the first parent and the terminal from the
first parent is inserted at the location of the sub-tree in the second
parent. In this event, the crossover operation often has the effect of
increasing the depth of one tree and decreasing the depth of the
second tree.

If terminals are located at both crossover points selected, the
crossover operation merely swaps these terminals from tree to tree.
The effect of crossover, in this event, is akin to a point mutation.
Thus, occasional point mutation is an inherent part of the crossover
operation.

A maximum permissible size (measured via the depth of the tree) is
established for offspring created by the crossover operation. This
limit prevents large amounts of computer time being expended on a
few extremely large individual S-expressions. Of course, if we could
execute all the individual S-expressions in the population in parallel
(as nature does) in a manner such that the infeasibility of one
individual in the population does not disproportionately jeopardize
the resources needed by the population as a whole, we would not need
such a size limitation. If a crossover between two parents would
create an offspring of impermissible size, the contemplated crossover
operation is aborted for that offspring and the first of its parents is
arbitrarily chosen to be reproduced into the new population.

5.5. THE STATE OF THE SYSTEM

The state of the genetic programming paradigm at any point during
the process consists only of the current population of individuals in
the population. There is no additional memory or centralized
bookkeeping necessary.

5.6. RESULT DESIGNATION

The single best individual in the population at the time of
termination of the genetic programming paradigm is typically
designated as the result produced by the genetic programming
paradigm. This method of results designation is sometimes called
“winner takes all” and is used herein.

34

Note that the very best individual is not guaranteed to be present in
the population at the time of termination unless some specific effort is
made to preserve this individual (the so-called “elitist” strategy).

Alternately, the entire population at the time of termination of the
genetic programming paradigm can be designated as the result
produced by the genetic programming paradigm.

5.7. TERMINATION

As for termination, as Yogi Berra once said, “It ain't over until it's
over, and even then, it's not over.” The genetic programming
paradigm parallels nature in that it is a continuing process. As a
practical matter, the genetic programming paradigm terminates when
either a pre-specified maximum number Ngen of generations have
been run or when some termination criterion is satisfied.

One possible termination criterion is that the standardized fitness of
some individual in the population either equals zero or is within a pre-
established neighborhood of zero.

5.8. CONTROL PARAMETERS

The genetic programming paradigm is controlled by various
parameters, including two major parameters and five minor
parameters.

The two major parameters that are used to control the process are
the population size M and the number of generations Ngen to be run.

First, unless otherwise indicated, the population size was 500 for all
problems in this chapter.

Second, unless otherwise indicated, the number of generations was
51 (i.e. an initial random generation plus 50 subsequent generations)
for all problems in this chapter. Note, if termination is under control
of a problem specific termination criterion, this parameter merely
provides an overall maximum number of generations.

Five minor parameters are used to control the process. Two of them
control the frequency of performing the genetic operations; one of
them controls the percentage of internal (function) points chosen as
crossover points; and two of them help conserve computer time.

The values of the five minor parameters are the same for all
problems herein.

First, crossover was performed on 90% of the population for each
generation. That is, if the population size is 500, then 450 individuals

35

(225 pairs) from each generation were selected with a probability
equal to their normalized fitness (with reselection allowed) to
participate in crossover.

Second, fitness proportionate reproduction was performed on 10%
of the population on each generation. That is, if the population size is
500, 50 individuals from each generation were selected with a
probability equal to their normalized fitness (with reselection
allowed).

Third, in selecting crossover points, we used a probability
distribution that allocates 90% of the crossover points equally
amongst the internal (function) points of each tree and allocates the
remainder (i.e. 10%) equally amongst the external (terminal) points
of each tree. We believe this distribution promotes the recombining of
larger structures. In contrast, a uniform distribution over all points
might do an inordinate amount of mere swapping of terminals from
tree to tree in a manner more akin to point mutation than the desired
recombining of “building block” substructures.

Fourth, a maximum depth of 17 was established for S-expressions
created by the crossover operation.

Fifth, a maximum depth of 6 was established for the random
individuals generated for the initial population.

6. LEARNING OF A BOOLEAN FUNCTION

In the previous sections, we have discussed the background and
details of the genetic programming paradigm.

This section, and the remaining sections of this chapter, illustrate
the use of the genetic programming paradigm. In each such section,
we show how we approached each problem so that it could be solved
using the genetic programming paradigm.

The examples have been selected to illustrate a variety of different
types of problems from various different areas. The sample problems
selected involve functions that are integer-valued, real-valued,
Boolean-valued, and symbolic-valued. Some of the problems require
iteration for their solution. Some of the problems involve functions
whose real functionality is the side effects they cause on the state of
the system involved, rather than the actual value returned by the
function.

Many of the problems described are benchmark problems that have
been the subject of previous study in machine learning, artificial

36

intelligence, induction, neural nets, decision trees, and classifier
systems.

Since the genetic programming paradigm is probabilistic, we almost
never get the precisely same result twice. Moreover, we almost never
get the solution to the problem in the form we contemplated (although
these solutions may be equivalent to what we contemplated). For
each illustrative problem, we first show the result from one particular
run. The showing of one particular run serves to illustrate the
representation scheme and the general appearance of results one gets
from the genetic programming paradigm. No one particular run and
no particular result is truly typical or representative of all runs. In
choosing the particular result for each problem, we have avoided
showing the “prettiest” result and we have similarly avoided showing
the most convoluted result.

We show the amount of computer processing required to produce a
solution with 99% probability over a series of runs for selected
problems herein. All of the problems presented herein have been
repeatedly solved on dozens or hundreds of occasions.

For each problem herein, the author believes that sufficient
information is provided herein (or via references) to allow the
experiment to be independently replicated to produce substantially
similar results (within the limits inherent in any process involving
stochastic operations).

We present the first problem below in especially great detail.

6.1. BOOLEAN 11-MULTIPLEXER

The problem of machine learning of a Boolean function requires
developing a composition of functions that can return the correct
value of the function after seeing examples of particular combinations
of arguments associated with the correct value of the function. This
problem is a special case of the general problem of symbolic function
identification (symbolic regression) that will be discussed later in
connection with real valued functions.

Boolean functions provide an especially useful test bed for machine
learning for several reasons.

First, it is intuitively easy to see how the structural components of
the S-expression for a Boolean function contribute to the overall
performance of the Boolean expression. This direct connection
between structure and performance is much harder to comprehend for
many of the other problems.

37

Second, there are fewer practical computer implementation
obstacles for Boolean functions than for other problems. For
example, with Boolean functions, there is no need to be concerned
with error conditions (such as floating point overflows and
underflows) arising from randomly generated computer programs and
genetically recombined computer programs.

Third, Boolean problems have an easily quantifiable search space.
Let us first consider the problem of learning the Boolean 11-

multiplexer function.
The solution of this problem using the genetic programming

paradigm will serve to show the interplay in the genetic programming
paradigm of

• the genetic variation inevitably created in the initial random
generation,

• the small improvements for some individuals in the population via
localized hill-climbing from generation to generation,

• the way particular individuals become specialized and able to
correctly handle certain sub-cases of the problem (case-splitting),

• the creative role of crossover in recombining valuable parts of
more fit parents, and

• How the nurturing of a large population of alternative solutions to
the problem (rather than a single point in the solution space) helps
avoid false peaks in the search for the solution to the problem.

This problem will also serve to illustrate the importance of
hierarchies in solving problems and making the ultimate solution
understandable. Moreover, the progressively changing size and shape
of the various individuals in the population in various generations
shows the importance of not determining in advance the size and
shape of ultimate solution or the intermediate results that may
contribute to the solution.

The input to the Boolean N-multiplexer function consists of k
address bits ai and 2k data bits di, where N = k + 2k. That is, the input

to the Boolean multiplexer function consists of the k+2k bits
ak-1, ... , a1, a0, d2k-1, ... , d1, d0.

The value of the Boolean multiplexer function is the Boolean value
(0 or 1) of the particular data bit that is singled out by the k address
bits of the multiplexer. For example, for the Boolean 11-multiplexer
(where k = 3), if the three address bits a2a1a0 are 110, the multiplexer
singles out data bit number 6 (i.e. d6) to be the output of the

38

multiplexer. Figure 1.10 shows a Boolean 11-multiplexer with an
input of 11001000000 and the corresponding output of 1.

a2
a1
a0

d7
d6
d5
d4
d3
d2
d1
d0

Output1

1
1
0

0
1
0
0
0
0
0
0

Figure 1.10 Boolean 11-multiplexer

There are five major steps involved in using the genetic
programming paradigm. These are outlined below.

(1) the set of terminals,
(2) the set of functions,
(3) the fitness function,
(4) the parameters for running the algorithm, and
(5) the criterion for designating a result and terminating a run.
The first major step in setting up the genetic programming paradigm

is to select the set of terminals that will be available for constructing
the computer programs (S-expressions) that will try to solve the
problem. This choice is especially straight-forward for this problem.
The terminal set for this problem has 11 elements which correspond
to the 11 inputs to the Boolean 11-multiplexer. That is, the terminal
set is

T = {A0, A1, A2, D0, D1, ... , D7}.

None of these eleven terminals are distinguished as being either
address lines or data lines.

The second major step in setting up the genetic programming
paradigm is to select the set of functions that will be available for
constructing the computer programs (S-expressions) that will try to
solve the problem. The set of available functions for this problem is

F = {AND, OR, NOT, IF}

having 2, 2, 1, and 3 arguments, respectively. The IF function is the
Common LISP function that performs the IF-THEN-ELSE operation.

39

That is, the IF function returns the results of evaluating its third
argument (the “else” clause) if its first argument is NIL (False) and
otherwise returns the results of evaluating its second argument (the
“then” clause).

Note that this step (performed by the user) of determining the set of
primitive functions in the genetic programming paradigm is
equivalent to a similar required step in other machine learning
paradigms. For example:

• This same determination of primitive functions occurs in the
induction of decision trees using ID3 (and its variants) when the
user selects the set of attribute-testing functions that can appear at
the internal points of the decision tree.

• This same determination occurs in neural net problems when the
user selects the external functions that are to be activated by the
output of a neural network.

• This same user determination occurs in conventional genetic
algorithms operating on strings when the user determines how
certain external function are to be activated by a chromosome in
the user's chosen representation scheme.

• This same user determination occurs in genetic classifier systems
when the user selects the external functions that are to be
activated by the output interface of the classifier system.

This omnipresent user determination occurs in other machine
learning paradigms under various different guises, but is often not
explicitly identified as a necessary step by researchers using other
paradigms because the researcher often considers the choice of
functions to be inherent in the statement of the problem (a view which
is especially understandable if the researcher is focusing on only one
specific problem in one specific area).

The above function set F of basic logical functions satisfies the
closure property. Moreover, this set is known to be sufficient to
realize any Boolean function. For this problem and most of the
problems herein, the function set is not only minimally sufficient to
solve the problem at hand, but contains additional functions.

The search space for this problem is the set of all LISP S-ex-
pressions that can be recursively composed of functions from the
function set and terminals from the terminal set. Another way to look
at the search space is that the Boolean multiplexer function with k+2k
arguments is a particular one of 2k+2k possible Boolean functions of
k+2k arguments. For example, when k=3, then k+2k = 11 and this

40

search space is of size 2 2 11. That is, the search space is of size 22048,
which is approximately 10616. Note that there are about 1068 particles
in the universe. Every possible Boolean function of k+2k arguments
can be realized by at least one LISP S-expression composed from the
functions and terminals above (for example, disjunctive normal
form).

The third major step in setting up the genetic programming
paradigm is to identify the fitness function for the problem. Fitness is
often evaluated over a number of fitness cases. The set of fitness
cases must be representative of the problem as a whole. The reader
may find it helpful to think of these fitness cases as the
“environment” in which the genetic population of computer programs
must adapt. There are 211 = 2048 possible combinations of the 11
arguments a0a1a2d0d1d2d3d4d5d6d7 along with the associated correct
value of the 11-multiplexer function. For this particular problem, we
use the entire set of 2048 combinations of arguments as the fitness
cases for evaluating fitness. That is, we do not use sampling.

We begin by defining raw fitness in the simplest way that comes to
mind using the natural terminology of the problem. The raw fitness
of a LISP S-expression in this problem is simply the number of
fitness cases (taken over all 2048 fitness cases) where the Boolean
value returned by the S-expression for a given combination of
arguments is the correct Boolean value. Thus, the raw fitness of an S-
expression can range over 2049 different values between 0 and 2048.
A raw fitness of 2048 denotes a 100% correct individual S-
expression. We define the auxiliary hits measure for this problem to
be equal to the raw fitness.

After defining raw fitness for the problem, we proceed to define
standardized fitness. Since a bigger value of raw fitness is better,
standardized fitness is different from raw fitness for this problem. In
particular, standardized fitness equals the maximum possible value of
raw fitness rmax (i.e. 2048) minus the observed raw fitness. The
standardized fitness can also be viewed as the sum, taken over all
2048 fitness cases, of the Hamming distances between the Boolean
value returned by the S-expression for a given combination of
arguments and the correct Boolean value. The Hamming distance is
zero if the Boolean value returned by the S-expression agrees with the
correct Boolean value and is one if it disagrees. Thus, the sum of the
Hamming distances is equivalent to the number of mismatches.

41

The fourth major step in using the genetic programming paradigm is
selecting the values of certain parameters. A population of size 4000
was chosen for this problem.

Finally, the fifth major step in using the genetic programming
paradigm is the criterion for designating a result and terminating a
run. In this problem we have a way to recognize a solution when we
find it. When the raw fitness is 2048 (i.e. the standardized fitness is
zero), we have a 100% correct solution to this problem. Thus, we
terminate a run after a specified maximum number of generations
Ngen (e.g. 51) or earlier if we find an individual with a raw fitness of
2048. For all the problems in this chapter, we will terminate a given
run either after 51 generations and we designate the best single
individual in the population at the time of termination as the result of
the genetic programming paradigm. This is called “winner takes all.”

We now illustrate the genetic programming paradigm by discussing
one particular run of the Boolean 11-multiplexer in detail.

The process begins with the generation of the initial random
population (i.e. generation 0).

Predictably, the initial random population includes a variety of
highly unfit individuals. Many individual S-expressions in this initial
random population are merely constants, such as the contradictory
(AND A0 (NOT A0)). Other individuals are passive and merely
pass an input through as the output, such as (NOT (NOT A1)).
Other individuals are inefficient, such as (OR D7 D7). Some of
these initial random individuals base their decision on precisely the
wrong arguments, such as (IF D0 A0 A2). This individual uses
the data bit D0 to decide what output to take. Many of the initial
random individuals are partially blind in that they do not incorporate
all 11 arguments that are known to be necessary to solve the problem.
Some S-expressions are just nonsense, such as

(IF (IF (IF D2 D2 D2) D2 D2) D2 D2).

Nonetheless, even in this highly unfit initial random population,
some individuals are somewhat more fit than others. In the valley of
the blind, the one-eyed man is king. For this particular run, the
individuals in the initial random population had values of
standardized fitness ranging from 768 mismatches (i.e. 1280 matches
or hits) to 1280 mismatches (i.e. 768 matches).

42

The worst individual in the population for the initial random
generation was

(OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3))).

This individual had a standardized fitness of 1280 (i.e. raw fitness
of only 768).

As it happens, a total of 23 individuals out of the 4000 in this initial
random population tied with the highest score of 1280 matches (i.e.
hits) on generation 0. One of these 23 high scoring individuals was
the S-expression

 (IF A0 D1 D2).

This individual scores 1280 matches by scoring 512 matches for the
one quarter (i.e. 512) of the 2048 fitness cases for which A2 and A1
are both NIL and by scoring an additional 768 matches on 50% of the
remaining three quarters (i.e. 1536) of the fitness cases.

This individual has obvious shortcomings. Notably, it is partially
blind in that it uses only 3 of the 11 necessary terminals of the
problem. As a consequence of this fact alone, this individual cannot
possibly be a correct solution to the problem. This individual
nonetheless does some things right. For example, this individual uses
one of the three address bits (A0) as the basis for its action. It could
easily have done this wrong and used one of the eight data bits. In
addition, this individual uses only data bits (D1 and D2) as its output.
It could have done this wrong and used address bits. Moreover, if A0
(which is the low order binary bit of the 3-bit address) is T (True),
this individual selects one of the three odd numbered data bits (D1) as
it output. Moreover, if A0 is NIL, this individual selects one of the
three even numbered data bits (D2) as its output. In other words, this
individual correctly links the parity of the low order address bit A0
with the parity of the data bit it selects as its output. This individual
is far from perfect, but it is far from being without merit. It is more fit
than 3977 of the 4000 individuals in the population.

The average standardized fitness for all 4000 individuals in the
population for generation 0 is 985.4. This value of average
standardized fitness for the initial random population forms the
baseline and serves as a useful benchmark for monitoring later
improvements in the average standardized fitness of the population as
a whole.

43

The hits histogram is a useful monitoring tool based on the auxiliary
hits measure. This histogram provides a way of viewing the
population as a whole for a particular generation. The horizontal axis
of the hits histogram is the number of hits (i.e. matches, for this
problem) and the vertical axis is the number of individuals in the
population scoring that number of hits. Fifty different levels of
fitness are represented in the hits histogram for the population at
generation 0 of this problem. In order to make this histogram legible
for this problem, we have divided the horizontal axis into buckets of
size 64. For example, 1553 individuals out of 4000 (i.e. about 39%)
had between 1152 and 1215 matches (hits). This well-populated
range includes the mode of the distribution which occurs at 1152
matches (hits). There are 1490 individuals with 1152 matches (hits).
Figure 1.11 shows the hits histogram of the population for generation
0 of this run of this problem.

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 0

Hits

Fr
eq

ue
nc

y

Figure 1.11 Hits histogram for generation 0

The Darwinian reproduction operation and the genetic crossover
operation are then applied to parents selected from the current
population with probabilities proportionate to fitness to breed a new
population. When these operations are completed, the new
population (i.e. the new generation) replaces the old population.

In going from the initial random generation (generation 0) to
generation 1, the genetic programming paradigm works with the
inevitable genetic variation existing in an initial random population.
The initial random generation is an exercise in blind random search.
The search is a parallel search of the search space because there are
4000 individual points involved.

Although the vast majority of the new offspring are again highly
unfit, some of them tend to be somewhat more fit than others.
Moreover, over a period of time and many generations, some of them
tend to be slightly more fit than those existing in the earlier
generation. The average standardized fitness of the population
immediately begins improving (i.e. decreasing) from the baseline

44

value of 985.4 for generation 0 to about 891.9 for generation 1. We
typically see this kind of generally improving trend in average
standardized fitness from generation to generation. As it happens, in
this particular run of this particular problem, the average standardized
fitness improves (i.e. decreases) monotonically between generation 2
and generation 9 and assumes values of 845, 823, 763, 731, 651, 558,
459, and 382, respectively. We usually see a generally improving
trend in average standardized fitness from generation to generation,
but not necessarily a monotonic improvement.

In addition, we similarly usually see a generally improving trend in
the standardized fitness of the best single individual in the population
from generation to generation. As it happens, in this particular run of
this particular problem, the standardized fitness of the best single
individual in the population improves (i.e. decreases) monotonically
between generation 2 and generation 9. In particular, it assumes
values of 640, 576, 384, 384, 256, 256, 128, and 0 (i.e. a perfect
score), respectively.

On the other hand, the standardized fitness of the worst single
individual in the population fluctuates considerably. For this
particular run, the standardized fitness of the worst individual starts at
1280, fluctuates considerably between generations 1 and 9, and then
deteriorates (increases) to 1792 by generation 9.

Figure 1.12 shows the standardized fitness (i.e. mismatches) for
generations 0 through 9 of this run for

• the best single individual in the population,
• the worst single individual in the population, and
• the average for the population.

45

0 3 6 9
0

1024

2048

Worst of Gen.
Average
Best of Gen.

11 Multiplexer

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

R
aw

 F
itn

es
s

2048

1024

0

Figure 1.12 Standardized fitness of worst-of-generation

individual, average standardized fitness of population, and
standardized fitness of best-of-generation individual for

generation 0 through 9.
In generation 1, the raw fitness for the best single individual in the

population rises to 1408 matches (i.e. standardized fitness of 640).
Only one individual in the population attained this high score of 1408
in generation 1, namely

(IF A0 (IF A2 D7 D3) D0).

Note that this individual performs better than the best individual from
generation 0 for two reasons. First, this individual considers two of
the three address bits (A0 and A2) in deciding which data bit to
choose as output, whereas the best individual in generation 0
considered only one of the three address bits (A0). Second this best
individual from generation 1 incorporates three of the eight data bits
as its output, whereas the best individual in generation 0 incorporated
only two of the eight potential data bits as output. Although still far
from perfect, the best individual from generation 1 is less blind and
more complex than the best individual of the previous generation.
This best-of-generation individual consists of 7 points, whereas the
best-of-generation individual from generation 0 consisted of only 4
points.

In generation 2, the best raw fitness remained at 1408; however, the
number of individuals in the population sharing this high score rose

46

from 1 to 21. The high point of the hits histogram advanced from
1152 for generation 0 to 1280 for generation 2. There are 1620
individuals with 1280 hits.

In generation 3, one individual in the population attained a new
high score of 1472 matches (i.e. standardized fitness of 576). This
individual has 16 points and is

(IF A2 (IF A0 D7 D4)
 (AND (IF (IF A2 (NOT D5) A0) D3 D2) D2)).

Generation 3 shows further advances in fitness for the population as a
whole. The number of individuals with 1280 hits (the high point for
generation 2) has risen to 2158 for generation 3. Moreover, the center
of gravity of the fitness histogram has shifted significantly from left
to right. In particular, the number of individuals with 1280 hits or
better has risen from 1679 in generation 2 to 2719 in generation 3.

In generations 4 and 5, the best single individual has 1664 hits. This
score is attained by only one individual in generation 4, but is attained
by 13 individuals in generation 5. One of these 13 individuals is

(IF A0 (IF A2 D7 D3)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))).

Note that this individual uses all three address bits (A2, A1, and
A0) in deciding upon the output. It also uses five of the eight data
bits. By generation 4, the high point of the histogram has moved to
1408 with 1559 individuals.

In generation 6, four individuals attain a score of 1792 hits. The
high point of the histogram has moved to 1536 hits.

In generation 7, 70 individuals attain this score of 1792 hits.
In generation 8, there are four best-of-generation individuals. They

all attain a score of 1920 hits. The mode (high point) of the histogram
has moved to 1664. 1672 individuals share this value. Moreover, an
additional 887 individuals score 1792.

In generation 9, one individual emerges with a l00% perfect score
of 2048 hits. That individual is

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7 D3) D1) D0))
 (IF A2 (IF A1 D6 D4)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))))

Figure 1.13 shows the 100% correct individual from generation 9.

47

A2

D7A1

IF

IF

A0 D5 D0 IF

A2 D7 D3

A1 D1

IFA0 D0

IF

IF

A2 IF

A1 D6 D4

IF

D7 D0

D2A1

IFD4A2

IF

IFA0

IF

A2
Figure 1.13 100% correct individual from generation 9

This 100% correct individual from generation 9 is a hierarchical
structure consisting of 37 points (i.e. 12 functions and 25 terminals).

Note that the size and shape of this solution emerged from the
genetic programming paradigm. This particular size and this
particular hierarchical structure was not specified in advance.
Instead, it evolved as a result of reproduction, crossover, and the
relentless pressure of fitness. In generation 0, the best single
individual in the population had 12 points. The number of points in
the best single individual in the population varied from generation to
generation. It was 4 in generation 0, while it was 37 for generation 9.

This 100% correct individual can be simplified to

(IF A0 (IF A2 (IF A1 D7 D5) (IF A1 D3 D1))
 (IF A2 (IF A1 D6 D4) (IF A1 D2 D0))).

When so rewritten, it can be seen that this individual correctly
performs the 11-multiplexer function by first examining address bits
A0, A2, and A1 and then choosing the appropriate one of the eight
possible data bits.

Figure 1.14 shows, side by side, the hits histograms for generations
3, 5, 7, and 9 of this run. As one progresses from generation to
generation, note the left-to-right “slinky” undulating movement of the
center of mass of the histogram and the high point of the histogram.
This movement reflects the improvement of the population as a whole
as well as the best single individual in the population. There is a
single 100% correct individual with 2048 hits at generation 9;
however, because of the scale of the vertical axis of this histogram, it
is not visible in a population of size 4000.

48

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 3

Hits

Fr
eq

ue
nc

y

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 5

Hits

Fr
eq

ue
nc

y

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 7

Hits

Fr
eq

ue
nc

y

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 9

Hits

Fr
eq

ue
nc

y

Figure 1.14: Hits histograms for generations 3, 5, 7, and 9

for the Boolean 11-multiplexer problem

49

Further insight can be gained by studying the genealogical audit
trail of the process. This audit trail consists of a complete record of
the details of each genetic operation that is performed. For the op-
erations of fitness proportionate reproduction and crossover, the
details consist of the individual(s) chosen for the operation and, for
crossover, the particular points chosen within both participating indi-
viduals.

Construction of the audit trail starts with the individuals of the
initial random generation (generation 0). Certain additional
information such as the individual’s rank location in the population
(found by sorting by normalized fitness) and its standardized fitness is
also carried along as a convenience in interpreting the genealogy.
Then, as each operation is performed to create a new individual for
the next generation, a list is recursively formed consisting of the type
of the operation performed, the individual(s) participating in the
operation, the details of that operation (e.g. crossover point selected),
and, finally, a pointer to the audit trail previously assembled for the
individual(s) participating in that operation.

An individual occurring at generation h has up to 2h+1 ancestors.
The number of ancestors is less than 2h+1 to the extent that operations
other than crossover are involved and to the extent that an individual
crosses over with itself. For example, an individual occurring at
generation 9 has up to 1024 ancestors. Note that a particular ancestor
often appears more than once in this genealogy because all selections
of individuals to participate in the basic genetic operations are skewed
in proportion to fitness with re-selection allowed. Moreover, even for
a modest sized value of h, 2h+1 will typically be greater than the
population size. This repetition, of course, does nothing to reduce the
size of the genealogical tree. Even with the use of pointers from
descendants back to ancestors, construction of a complete ge-
nealogical audit trail is exponentially expensive in both computer
time and memory space. Note that the audit trail must be constructed
for each individual of each generation because the identity of the
l00% correct individual(s) eventually solving the problem is not
known in advance. Thus, there are 4000 audit trails. By generation 9,
each of these 4000 audit trails recursively incorporates information
about operations involving up to 1024 ancestors. The audit trail for
the single 100% correct individual of interest in generation 9 alone
occupies about 27 densely-printed pages.

50

The creative role of crossover and case-splitting is illustrated by an
examination of the genealogical audit trail for the l00% correct
individual emerging at generation 9.

The l00% correct individual emerging at generation 9 is the child
resulting from the most common genetic operation used in the
process, namely crossover. The first parent from generation 8 had
rank location of 58 (out of 4000, with a rank of 0 being the very best)
in the population and scored 1792 hits (out of 2048). The second
parent from generation 8 had rank location 1 and scored 1920 hits.
Note that it is entirely typical that the individuals selected to
participate in crossover have relatively high rank locations in the
population since crossover is performed among individuals in a
mating pool created proportional to fitness.

The first parent from generation 8 (scoring 1792) was

(IF A0 (IF A2 D7 D3)
 (IF A2 (IF A1 D6 D4)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))))).

Figure 1.15 shows this first parent from generation 8 .
IF

A0 IF

A2 D7 D3 A2

IF

IF

A1 D6 D4

IF

D4 IF

A1 D2 IF

A2 D7 D0

A2

Figure 1.15 First parent (scoring 1792 hits) from generation

8 for 100% correct individual in generation 9
Note that this first parent starts by examining address bit A0. If A0

is T, the emboldened and underlined portion then examines address
bit A2. It then, partially blindly, makes the output equal D7 or D3
without even considering address bit A1. Moreover, the emboldened

51

and underlined portion of this individual does not even contain data
bits D1 and D5.

On the other hand, when A0 is NIL, this first parent is 100%
correct. In that event, it examines A2 and, if A2 is T, it then
examines A1 and makes the output equal to D6 or D4 according to
whether A1 is T or NIL. Moreover, if A2 is NIL, it twice retests A2
(unnecessarily, but harmlessly) and then correctly makes the output
equal to (IF A1 D2 D0). Note that the 100% correct portion of
this first parent, namely, the sub-expression

(IF A2 (IF A1 D6 D4)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0))))

is itself a 6-multiplexer.
This embedded 6-multiplexer tests A2 and A1 and correctly selects

amongst D6, D4, D2, and D0. This fact becomes clearer if we
simplify this sub-expression by removing the two extraneous tests and
removing the D7 (which is unreachable). This sub-expression
simplifies to the following:

(IF A2 (IF A1 D6 D4)
 (IF A1 D2 D0))

In other words, this imperfect first parent handles part of its
environment correctly and part of its environment incorrectly. In
particular, this first parent handles the even-numbered data bits
correctly. This first parent is partially correct in handling the odd-
numbered data bits.

The tree representing this first parent has 22 points. The crossover
point chosen at random at the end of generation 8 was point 3 and
corresponds to the second occurrence of the function IF. That is, the
crossover fragment consists of the incorrect, emboldened and
underlined sub-expression

(IF A2 D7 D3).

The second parent from generation 8 (scoring 1920 hits) was

(IF A0 (IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7
 D3)
 D1)
 D0))
 (IF A1 D6 D4))

52

 (IF A2 D4
 (IF A1 D2 (IF A0 D7 (IF A2 D4 D0))))))

Figure 1.16 shows the second parent from generation 8.

IF

IF

A0 D5 D0

D7A1

IF

IF

A2 D7 D3

D1A1

IFA0 D0

IFA2

IF IF

A1 D6 D4

A0

IF

A2 D4 D0

D7A0

IFD2A1

IFD4A2

IFA0

IF

Figure 1.16 Second parent (scoring 1920 hits) from

generation 8 for 100% correct individual in generation 9
The tree representing this second parent has 40 points. The

crossover point chosen at random for this second parent was point 5.
This point corresponds to the third occurrence of the function IF.
That is, the crossover fragment consists of the emboldened and under-
lined sub-expression of this second parent.

This sub-expression of this second parent 100% correctly handles
the case when A0 is T (i.e. the odd numbered addresses). This sub-
expression makes the output equal to D7 when the address bits are
111; it makes the output equal to D5 when the address bits are 101; it
makes the output equal to D3 when the address bits are 011; and it
makes the output equal to D1 when the address bits are 001.

Note that the 100% correct portion of this second parent, namely,
the sub-expression

(IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7 D3) D1) D0))

is itself a 6-multiplexer.
This embedded 6-multiplexer in this second parent tests A2 and A1

and correctly selects amongst D7, D5, D3, and D1 (i.e. the odd

53

numbered data bits). This fact becomes clearer if we simplify this
sub-expression of this second parent to the following:

(IF A2 (IF A1 D7 D5)
 (IF A1 D3 D1)

In other words, this imperfect second parent handles part of its
environment correctly and part of its environment incorrectly. This
second parent does not do as well when A0 is NIL (i.e. the even
numbered data bits). In other words, this second parent correctly
handles the odd-numbered data bits and incorrectly handles the even-
numbered data bits.

Even though neither parent is perfect, these two imperfect parents
contain complementary, co-adapted portions which, when mated
together, produce a 100% correct offspring individual. In effect, the
creative effect of the crossover operation blends the two cases of the
implicitly “case-split” environment into a single 100% correct
solution.

Figure 1.17 shows this case splitting by showing the 100% correct
offspring from generation 9 as two 6-multiplexers:

A0

IF

6-Multiplexer from
second parent using
A2 and A1 to select
amongst D7, D5,

D3 and D1

6-Multiplexer from
first parent using

A2 and A1 to select
amongst D6, D4,

D2 and D0

Figure 1.17 Simplified 100% correct individual from

generation 9 shown as a hierarchy of two 6-multiplexers
Figure 1.18 also shows this simplified version of the 100% correct

individual from generation 9.

54

IF

A1 D7 D5

IF

A1 D3 D1

A2 A2 IF

A1 D6 D4

IF

A1 D2 D0

IFIFA0

IF

Figure 1.18 Simplified 100% correct individual from

generation 9 shown as a hierarchy of two 6-multiplexers
Of course, not all crossovers between individuals are useful and

productive. In fact, a large fraction of the individuals produced by the
genetic operations are useless. But the existence of a population of
alternative solutions to a problem provides the ingredients with which
genetic recombination (crossover) can produce some improved
individuals. The relentless pressure of natural selection based on
fitness then causes these improved individuals to be preserved and to
proliferate. Moreover, genetic variation and the existence of a
population of alternative solutions to a problem makes it unlikely that
the entire population will become trapped on local maxima.

Interestingly, the same crossover that produced the 100% correct
individual also produced a runt scoring only 256 hits. In this
particular crossover, the two crossover fragments not used in the
100% correct individual combined to produce an unusually unfit
individual. This is one of the reasons why there is considerable
variability from generation to generation in the worst single
individual in the population.

As one traces the ancestry of the 100% correct individual created in
generation 9 deeper back into the genealogical audit tree (i.e. towards
earlier generations), one encounters parents scoring generally fewer
and fewer hits. That is, one encounters more S-expressions that
perform irrelevant, counterproductive, partially blind, and incorrect
work. But if we look at the sequence of hits in the forward direction,
we see localized hill-climbing in the search space occurring in
parallel throughout the population as the creative operation of
crossover recombines complementary, co-adapted portions of parents
to produce improved offspring.

55

6.2. HIERARCHIES AND DEFAULT HIERARCHIES

Note that the result of the genetic programming paradigm is always
hierarchical. As we saw above, the solution to the 11-multiplexer
problem was a hierarchy consisting of two 6-multiplexers. In one run
where we applied the genetic programming paradigm to the simpler
Boolean 6-multiplexer, we obtained the following 100% correct
solution

(IF (AND A0 A1) D3 (IF A0 D1 (IF Al D2 D0))).

This solution to the 6-multiplexer is also a hierarchy. It is a
hierarchy that correctly handles the particular fitness cases where
(AND A0 A1) is true and then correctly handles the remaining cases
where (AND A0 A1) is false.

Default hierarchies often emerge from the genetic programming
paradigm. A default hierarchy incorporates partially correct sub-rules
into a perfect overall procedure by allowing the partially correct
(default) sub-rules to handle the majority of the environment and by
then dealing in a different way with certain specific exceptional cases
in the environment. The S-expression above is also a default
hierarchy in which the output defaults to

(IF A0 D1 (IF Al D2 D0))

three quarters of the time. However, in the specific exceptional
fitness case where both address bits (A0 and A1) are both T, the
output is the data bit D3.

Default hierarchies are considered desirable in induction problems
(Holland11, Holland et. al.12) because they are often parsimonious
and they are a human-like way of dealing with situations. Wilson’s13
noteworthy BOOLE experiments originally found a set of eight if-
then classifier system rules for the Boolean 6-multiplexer that
correctly (but tediously) handled each particular subcase of the
problem. Subsequently, Wilson14 modified the credit allocation
scheme and successfully produced a default hierarchy.

6.3. RESULTS OVER A SERIES OF RUNS

In the previous section we described one particular run of the
genetic programming paradigm in which we obtained a solution to the
Boolean 11-multiplexer problem.

56

A basic statistic associated with runs of the genetic programming
paradigm (and the genetic algorithm) is the probability of success ps
that a particular run produces a desired result within a specified
number of generations Ngen with a population of size M. We obtain
this statistic ps by making a substantial number of runs.

Note that this value of ps depends strongly on the choices of
• the population size M
• the maximum number of generations Ngen to be run,
• the secondary parameters of the genetic algorithm, and
• all the fixed minor details of our implementation of the algorithm.
Figure 1.19 shows the probability of success ps over 200

generations for 309 runs of the Boolean 6-multiplexer problem. This
graph rises monotonically since the probability is cumulative from
generation 0. This graph approaches 100% asymptotically as the
number of generations grows. There is a point after which additional
generations produce only small increases in the probability of success
ps. For example, in this graph, at generation 51, ps is about 67%. At
generation 101, ps is 83%. At generation 151, ps is 87%. At
generation 201, ps is 89%.

0 100 200
0

20

40

60

80

100

6-Multiplexer

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

Figure 1.19 Probability of success for runs of Boolean 6-

multiplexer for 200 generations
Neither conventional genetic algorithms operating on fixed length

character strings nor the genetic programming paradigm always
produce the desired results on a particular run of the algorithm.

57

For one thing, genetic algorithms inherently involve probabilistic
steps. Because of these probabilistic steps, anything can happen on a
given run and nothing is guaranteed. In particular, some runs simply
do not produce the desired results within a particular amount of time.
For example, genetic algorithms may prematurely converge (i.e.
converge to a sub-optimal result). The exponentially increasing
allocation of future trials on the basis of the current estimates of the
fitness of the population is both the strength and a weakness of
genetic algorithms. This allocation is a strength because it is the
fundamental reason why genetic algorithms work in the first place.
This allocation is a weakness because it may result in premature
convergence.

The effects of randomness, premature convergence, unfortuitous
initial conditions, and other chaotic affects on genetic algorithms can
be minimized by making entirely separate multiple independent runs.
These separate multiple independent runs, of course, lend themselves
to parallel computer architectures and yield virtually perfect linear
speed-up, but that is not the point here. The best single individual
from all of these multiple independent runs is then designated as the
solution to the problem.

One way to measure the amount of computational resources
required by the genetic programming paradigm (or the genetic
algorithm in general) is to determine the likely number of
independent runs needed to produce a desired result with a certain
probability, say, z = 99%. Once we determine the likely number of
independent runs required, we can then multiply this number by the
amount of processing required for each run. The amount of
processing required for each run is generally proportional to the
product of the population size and the number of generations
executed.

Once we have obtained the probability of success ps by
measurement, we can say that the probability of achieving the desired
result at least once within K runs is 1 - (1-ps)K. If we are seeking to
achieve the desired result with a probability of, say, z = 1 - ε = 99%,
then the number K of independent runs (niches) required is the result
of

log(1-z)
log(1-ps) =

log ε
log(1-ps) , where ε= 1 - z.

58

rounded up to the next highest integer. For example, if ps is 90%,
then K is 2.

We can measure the number of individuals that need to be
processed by a genetic algorithm to solve a particular problem. For
example, we ran 54 runs of the Boolean 11-multiplexer problem with
a population size M of 4,000 and for a maximum number of
generations Ngen of 201 (i.e. generation 0 plus 200 additional
generations).

Figure 1.20 shows the probability of success ps of a run for various
numbers of generations for a population size M of 4000. For
example, the graph shows that by generation 10, only about 28% of
the runs produced at least one individual with a perfect score of 2048
matches. By generation 15, 78% of the runs produced a perfect
solution. By generation 20, 90% of the runs produced a perfect
solution.

0 10 20 30 40 50
0

20

40

60

80

100

11-Multiplexer

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

Figure 1.20 Probability of success for runs of 11-multiplexer

problem with population size M of 4000
With a probability of success ps = 90% by generation 20, the

formula above indicates that K = 2 independent runs are required to
assure a 99% probability of solving the problem. Therefore, the
number of individuals that need to be processed to assure a 99%
probability of solving this problem is no more than 160,000
individuals (i.e. 2 times 20 times 4000). This 160,000 does not reflect
the fact that some successful runs would, in actual practice, be
terminated without executing all 20 generations. The size of the

59

search space (22048) for the 11-multiplexer is very large in relation to
the number of individuals processed that need to be processed (i.e. no
more than 160,000).

In the Boolean 11-multiplexer problem described above, we chose
an unusually large and decidedly non-optimal population size (i.e.
4000) so as to produce a solution in a sufficiently small number of
generations (i.e. 9) to allow us to economically run a genealogical
audit trail.

In general, the selection of the optimal population size is a difficult
problem for both the genetic programming paradigm and the
conventional genetic algorithm operating on strings. The number of
individuals that must be processed to give a 99% probability of
finding a solution is a complex function of all the factors that
influence the probability of success ps. These factors include the
population size M, maximum number Ngen of generations to be run,
the various secondary parameters, and all the other choices (e.g.
method of creating the initial population) that are involved in the run.

Figure 1.21, for example, shows the probability of success ps of a
run of the 6-multiplexer problem for various numbers of generations
for population sizes of 500, 1000, and 2000. Clearly, the optimal
population size for the 6-multiplexer problem is not 500, but is,
instead, some larger number in the neighborhood of 1000 to 2000.

0 10 20 30 40 50
0

20

40

60

80

100

Pop = 2000
Pop = 1000
Pop = 500

6-Multiplexer — Population = 500, 1000, 2000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

Figure 1.21 Probability of success for runs of the 6-

multiplexer problem for population size M of 500, 1000, and
2000

60

6.4. NON-RANDOMNESS OF RESULTS

The number of possible compositions using the set of available
functions and the set of available terminals is very large. In
particular, the number of possible trees representing such
compositions increases rapidly as a function of the number of points
in the tree. This is true because of the large number of ways of
labeling the points of a tree with functions and terminals. The
number of possible compositions of functions is, in particular, very
large in relation to the 40,000 individuals processed in generations 0
through 9 in the particular run of the genetic programming paradigm
described above.

There is a theoretic possibility that the probability of a solution to a
given problem may be low in the original search space of the Boolean
11 Multiplexer problem (i.e. all Boolean functions of 11 arguments),
but that the probability of randomly generating a composition of
functions that solves the problem might be significantly higher in the
space of randomly generated compositions of functions. The Boolean
11-multiplexer function is a unique function out of the 2211 (i.e. 22048)
possible Boolean functions of 11 arguments and one output. The
probability of randomly choosing zeroes and ones for the 211 lines of
a truth table so as to create this particular Boolean function is only 1
in 2211 (i.e. 22048). However, there is a theoretic possibility that the
probability of randomly generating a composition of the functions
AND, OR, NOT, and IF that performs the 11-multiplexer function
might be better than 1 in 22048.

There is no a priori reason to believe that this is the case. That is,
there is no a priori reason to believe that compositions of functions
that solve the Boolean multiplexer problem are denser in the space of
randomly generated compositions of functions than solutions to the
problem in the original search space of the problem. Nonetheless,
there is a possibility that this is the case, even though there is no a
priori reason to think that it is the case.

To test against this possibility, we performed the following control
experiment for the Boolean 11-multiplexer problem. We generated
5,000,000 random S-expressions to check if we could randomly
generate a composition of functions that solved the problem. For this
control experiment, we used the same algorithm and parameters used
to generate the initial random population in the normal runs of the
problem. No 100% correct individual was found in this blind search.

61

In addition, on the first 1,000,000 random S-expressions, we
computed an entire hits histogram of raw fitness values. The high
score in this histogram was only 1408 hits (out of a possible 2048)
and the low score was 704 hits. Moreover, only 10 individuals
achieved this high score of 1408. The high point of the hits histogram
distribution came at 1152 hits; the second highest point came at 896
hits; and the third highest point came at 1024 hits. The size of the
search space (22048) for the 11-multiplexer is very large in relation to
the number of individuals processed in a typical run solving the 11-
multiplexer.

A similar control experiment was conducted for the Boolean 6-
multiplexer problem (with a search space of 226 = 264) involving
10,000,000 individuals. As before, no 100% correct individual was
found in this blind random search. In fact, no individual had more
than 52 (of 64 possible) hits. As with the 11-multiplexer, the size of
the search space (264) for the 6-multiplexer is very large in relation to
the number of individuals processed in a typical run solving the 6-
mutliplexer.

We conclude that solutions to these problems in the space of
randomly generated compositions of functions are not denser than
solutions in the original search space of the problem. Therefore, we
conclude that the results described herein are not the fruits of random
search.

As a matter of fact, we have evidence suggesting that the solutions
to many functions are appreciably sparser in the space of randomly
generated compositions of functions than solutions in the original
search space of the problem.

Consider, for example, the odd-2-parity function with two Boolean
arguments (i.e. exclusive-or function). The odd-2-parity function of k
Boolean arguments returns T (True) if the number of arguments equal
to T is odd and returns NIL (False) otherwise. There are only 222 =
24 = 16 possible Boolean functions with two Boolean arguments and
one output. Thus, in the search space of truth tables for Boolean
functions, the probability of randomly choosing T's and NIL's for the
16 lines of a truth table that realizes this particular Boolean function
is only 1 in 16.

First, we generated 100,000 random individuals using a function set
consisting of the three Boolean functions F = {AND, OR, NOT}. If
randomly generated compositions of the basic Boolean functions that

62

realize the exclusive-or function were as dense as solutions are in the
original search space of the problem (i.e. the space of truth tables for
Boolean functions of 2 arguments), we would expect about about
6250 in 100,000 (i.e. 1 in 16) random compositions of functions to
realize the exclusive-or function. Instead, we found that only 110 out
of 100,000 randomly generated compositions that realized the
exclusive-or function. This is a frequency of only 1 in 909. In other
words, randomly generated compositions of functions realizing the
exclusive-or function are about 57 times sparser than solutions in the
original search space of truth tables for Boolean functions.

Second, we generated an additional 100,000 random individuals
using a function set consisting of the different function set F = {AND,
OR, NOT, IF}. We found that only 116 out of 100,000 randomly
generated compositions realized the exclusive-or function (i.e. a
frequency of 1 in 862). That is, with this second function set,
randomly generated compositions of functions realizing the
exclusive-or function are about 54 times sparser than solutions in the
original search space of truth tables for Boolean functions.

Third, we generated 100,000 random individuals using a function
set consisting of four functions taking two arguments each, namely, F
= {AND, OR, NAND, NOR}. We found that only 118 out of 100,000
randomly generated compositions realized the exclusive-or function
(i.e. a frequency of 1 in 846). That is, with this third function set,
randomly generated compositions of functions realizing the
exclusive-or function are about 53 times sparser than solutions in the
original search space of truth tables for Boolean functions.

In other words, solutions to the odd parity (exclusive-or) function
with two arguments appear to be 53 to 57 times sparser in the space
of randomly generated compositions of functions than solutions in the
original search space of the problem.

We then performed similar experiments on two Boolean functions
with three Boolean arguments and one output, namely, the odd-3-
parity function and the 3-multiplexer function (i.e. the If-Then-Else
function). There are only 223 = 28 = 256 Boolean functions with
three Boolean arguments and one output. The probability of
randomly choosing a particular combination of T's and NIL's for the
28 = 256 lines of a truth table is 1 in 256. If the probability of
randomly generating a composition of functions realizing a particular
Boolean function with three arguments equaled 1 in 256, we would
expect about 39,063 random compositions per 10,000,000 to realize a

63

particular Boolean function. However, after randomly generating
10,000,000 compositions of the functions AND, OR, and NOT, we
found only 730 3-multiplexers and no odd-3-parity functions. That is,
our randomly generated compositions of functions realizing the 3-
multiplexer function are about 54 times sparser than solutions in the
original search space of Boolean functions. We cannot make the
comparison for the odd-3-parity function, but it is presumably tens of
thousands of times scarcer than one in 256.

These three results concerning the odd-3-parity function, the 3-
multiplexer function, and the odd-2-parity (exclusive-or) function
should not be too surprising since the parity and multiplexer functions
have long been identified by researchers as functions that often pose
difficulties for paradigms for machine learning, artificial intelligence,
neural nets, and classifier systems (Wilson13,14, Quinlan20, Barto et.
al.21).

In summary, as to these benchmark Boolean functions,
compositions of functions solving the problem are substantially less
dense than solutions are in the search space of the original problem.

The reader would do well to remember the origin of the concern
that compositions of functions solving a problem might be denser
than solutions to the problem are in the search space of the original
problem. In Lenat's22 work on discovering mathematical laws via
heuristic search and other related work23, the mathematical laws
being sought were stated, in many cases, directly in terms of the list,
i.e. the primitive data type of the LISP programming language. In
addition, the lists in Lenat's artificial mathematician (AM) laws were
manipulated by list manipulation functions that are unique or peculiar
to LISP. Specifically, in many experiments in Lenat*22, the
mathematical laws sought were stated directly in terms of lists and list
manipulation functions such as, CAR (which returns the first element
of a list), CDR (which returns the tail of a list), etc. In Lenat's mea
culpa article “Why AM and EURISKO appear to work” (Lenat and
Brown24), Lenat recognized that LISP syntax may have overly
facilitated discovery of his previously reported results, namely,
mathematical laws stated in terms of LISP's list manipulation
functions and LISP's primitive object (i.e. the list).

In contrast, the problems described herein are neither stated nor
solved in terms of objects or operators unique or peculiar to LISP.
The solution to the Boolean multiplexer function is expressed in
terms of ordinary Boolean functions (such as AND, OR, NOT, and

64

IF). The solutions to the numerical problems discussed herein (such
as symbolic regression, broom balancing) are expressed in terms of
the ordinary arithmetic operations (such as addition, subtraction,
multiplication, and division). The solutions to the planning problems
(such as block stacking) are expressed in terms of ordinary iteration
operations and various domain-specific robotic actions (such as
robotic actions that move a block from one place to another).

Virtually any programming language could be used to express the
solutions to these problems. The LISP programming language was
chosen for use in the genetic programming paradigm primarily
because of the many convenient features of LISP (most importantly,
the fact that data and programs have the same form in LISP and that
this common form corresponds to the parse tree of a computer
program). The LISP programming language was not chosen because
of the presence in LISP of the list as a primitive data type or because
of LISP's particular functions for manipulating lists (e.g. CAR and
CDR). In fact, neither lists nor list manipulation functions are
involved in any of the problems described herein (except in the
irrelevant and indirect sense that the LISP programming language
uses lists to do things, unseen by the user, that other programming
languages do in different ways).

In summary, there is no a priori reason (nor any reason we have
since discovered) to think that there is anything about the syntax of
the programs generated by the genetic programming paradigm, nor
the syntax of the programming language we used to implement the
genetic programming paradigm (i.e. LISP) that makes it easier to
discover solutions to problems involving ordinary (i.e. non-list)
objects and ordinary (i.e. non-list) functions. In addition, the control
experiments verify that the results obtained herein are not the fruits of
a random search.

7. ARTIFICIAL ANT PROBLEM

As a second illustration of the genetic programming paradigm, we
consider a task devised by Jefferson et. al.25 for an artificial ant
attempting to find the food lying along an irregular trail.

The setting for the problem is a square 32 by 32 toroidal grid in the
plane. The John Muir trail (and the somewhat more difficult Santa Fe
trail designed by Christopher Langton) is an irregular winding trail
with food in 89 of the 1024 cells. The Santa Fe rail has single gaps,

65

double gaps,
single gaps at
corners, double
gaps (knight
moves) at corners,
and triple gaps
(long knight
moves) at corners.
The artificial ant
begins in the cell
identified by the
coordinates (0,0)
and is facing in a
designated
direction (i.e.
east).

The Santa Fe
trail is shown in
Figure 1.22. Food
is represented by
solid black
squares, while gaps in the trail are represented by gray squares. The
numbers identify key features of the trail in terms of the number of
pieces of food occurring up to that feature. For example, the number
3 highlights the first corner. It appears after 3 pieces of food.
Similarly, the number 11 highlights the first gap in the trail. The
number 38 highlights the first knight's move.

Figure 1.22 Santa Fe trail for the artificial ant problem with
the 89 pieces of food shown in black

The goal of this problem is to find a computer program for
performing the task of following the trail and eating all of the food.

The artificial ant has a very narrow and limited view of the world.
In particular, the ant has a sensor that can see only the single
immediately adjacent cell in the direction the ant is currently facing.
In addition, the ant is limited to three very simple, local actions.
Specifically, at each time step, the ant can execute one of following
four functions:

• RIGHT turns the ant right (and does not move the ant).
• LEFT turns the ant left (and does not move the ant).

Start

62

89

38 31

11

24

3

66

• MOVE moves the ant forward in the direction it is facing. When
an ant moves into a square, it eats the food, if any, in that square
(thus eliminating food from that square).

• IF-FOOD-HERE senses the contents of the single immediately
adjacent cell in the direction the ant is facing and allows one of
two alternative actions to be taken based on whether food is
present.

The ant's goal is to traverse the entire trail and collect all of the food
within a reasonable limited number of time steps.

When Jefferson et. al. used the conventional genetic algorithm
operating on strings to find the finite state automaton to solve this
problem, it was first necessary to develop a representation scheme to
convert the state transition table of the potential automaton into
binary strings of length 453. In the genetic programming paradigm,
the problem can be approached and solved in a more natural and
direct way.

The first and second major steps in using the genetic programming
paradigm are to identify the set of terminals and functions. We adopt
the four operators defined and used by Jefferson, namely, IF-FOOD-
HERE, MOVE, RIGHT, and LEFT.

In this problem, we are not primarily concerned with the three overt
state variables of the ant (i.e. the vertical and horizontal position of
the ant on the grid and the direction the ant is facing). Instead, we are
concerned with finding food. And, to find food, we must make use of
the information that the ant's very limited sensor provides about food
in the outside world. In this problem, the information we want to
process is the information coming in from the outside world via the
ant's sensor. Thus, one natural approach to this problem using the
genetic programming paradigm is to put the sensing function IF-
FOOD-HERE into the function set. The IF-FOOD-HERE function
has two arguments and executes the first argument if the ant’s sensor
senses food, or, otherwise, executes the second argument.

If the function set for this problem contains the one operation that
processes information, the terminal set should then contain the actions
which the ant should take given the outcomes of this information
processing. Thus, the terminal set for this problem is

T = {MOVE, RIGHT, LEFT}.

These three terminals are actually functions that operate via their side
effects on the ant’s state (i.e. the ant's horizontal and vertical position

67

on the grid and the ant's facing direction). These terminals are
functions with no arguments.

The IF-FOOD-HERE function is the only essential function for the
function set of this problem; however, it is often useful to include
some connective glue in the function set to facilitate the formation of
sequences of operations.

The PROGN function is the Common LISP connective function that
sequentially executes its arguments from left to right as individual
steps in a program. For example, the 2-step PROGN function

(PROGN (RIGHT) (LEFT))

turns the ant to the right and then turns the ant to the left. It is often
useful to include the PROGN function in the function set with both two
and three arguments.

Thus, the function set for this problem is

F = {IF-FOOD-HERE, PROGN, PROGN}

taking 2, 2, and 3 arguments, respectively.
The third major step in using the genetic programming paradigm is

to identify the fitness function. The natural measure of fitness of a
given computer program in this problem is the amount of food found
by an ant executing the given program. We allowed the ant 400 time
steps for a given program. Thus, the raw fitness of a computer
program for this problem is the amount of food (ranging from 0 to 89)
that the ant has found within the maximum allowed amount of time.

For this problem, a bigger value of raw fitness (i.e. amount of food
eaten) is better. Thus, standardized fitness for this problem is the
maximum value of raw fitness (i.e. 89) minus raw fitness.

Note that there are no explicit fitness cases in this problem. The
implicit fitness cases are the various states of the ant (i.e. its position
and facing direction) that arise along the ant's actual trajectory. These
are sufficiently representative for this particular problem to allow the
ant to learn to solve this problem.

The genetic programming paradigm starts with the generation of
500 random computer programs recursively composed from the
available functions and terminals.

Predictably, this initial population of random computer programs
includes a wide variety of highly unfit computer programs. The most

68

common type of individual in the initial random population for this
problem fails to move at all. For example, the computer program

(PROGN (RIGHT) (LEFT))

unconditionally turns the ant right and left while not moving the ant
anywhere. Similarly, the program

(IF-FOOD-HERE (RIGHT) (LEFT))

senses some information from the outside world and then
conditionally turns the ant various ways while still not moving. Both
of these highly unfit individuals get 0 of the 89 pieces of food when
they are mercifully terminated by the expiration of the allotted time.

Some randomly generated computer programs move without
turning. For example:

(MOVE)

shoots across the grid from west to east without either looking or
turning. This highly active, albeit undirected, behavior finds 3 of the
89 pieces of food.

Another highly unfit random computer program (which we call the
“quilter” because it traces a quilt-like pattern across the toroidal grid)
moves and turns without looking.

(PROGN (RIGHT)
 (PROGN (MOVE) (MOVE) (MOVE))
 (PROGN (LEFT) (MOVE)))

Another randomly generated computer program (which we call the
“looper”) finds the first 11 pieces of food on the trail and then goes
into an infinite loop when it encounters the first single gap in the trail.
One randomly generated computer program (which we call the
“avoider”) actually correctly takes note of some of the food along the
trail until the first gap in the trail. Then, it actively avoids this food
by carefully moving around it until it eventually returns to its starting
point. The S-expression for the avoider is

(IF-FOOD-HERE (RIGHT)
 (IF-FOOD-HERE (RIGHT)
 (PROGN (MOVE) (LEFT)).

The avoider's path is marked by X's in Figure 1.23.

69

Start

Figure 1.23 Avoider's path along Santa Fe trail

In one run, the best single individual in the initial random
population was able to find 32 of the 89 pieces of food, whereas the
worst single individual in the population found none of the food. The
average amount of food found was about 3.5 pieces.

The Darwinian reproduction operation and the genetic crossover
operation were then applied to parents selected from the current
population with probabilities proportionate to fitness to breed a new
population of offspring computer programs. Although the vast
majority of the new offspring computer programs are again highly
unfit, some of them tend to be somewhat more fit than others.
Moreover, over a period of time and many generations, some of them
tend to be slightly more fit than those existing in earlier generations.

Figure 1.24 shows the standardized fitness of the worst single
individual, the standardized fitness of the best single individual, and
the average standardized fitness of the population between
generations 0 and 21 of one particular run of the artificial ant. As can
be seen, the standardized fitness of the best single individual
generally improves (i.e. trends towards zero) from generation to
generation, although this improvement is not monotonic. The average
value of standardized fitness value starts at about 85.5 (i.e. 3.5 pieces

70

of food found) and then generally improves from generation to
generation. Note that there is at least one individual in the population
at every generation that finds no food at all so that the worst-of-
generation plot runs horizontally across the top of the graph with a
fitness value of 89 (i.e. zero pieces of food).

0 11 22
0

45

90

Worst of Gen
Average
Best of Gen.

Artificial Ant — Best of Generation, Worst and Average

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

Figure 1.24 Standardized fitness of worst-of-generation

individual, average standardized fitness of population, and
standardized fitness of best-of-generation individual for the

artificial ant problem.
The individual computer program scoring 89 out of 89 that emerged

on generation 21 is shown below:

(IF-FOOD-HERE (MOVE)
 (PROGN (LEFT)
 (PROGN (IF-FOOD-HERE (MOVE)
 (RIGHT))
 (PROGN (RIGHT)
 (PROGN (LEFT)
 (RIGHT))))
 (PROGN (IF-FOOD-HERE (MOVE)
 (LEFT))
 (MOVE))))

This individual S-expression has 18 points and is graphically
depicted in Figure 1.25.

71

IF-FOOD-HERE

PROGN

PROGN

MOVE

IF-FOOD-HERE

MOVE RIGHT

LEFT

PROGN

RIGHT PROGN

RIGHTLEFT

PROGN

MOVEIF-FOOD-HERE

MOVE LEFT

Figure 1.25 Solution to artificial ant problem from

generation 21
This individual LISP S-expression is a 100% correct solution to this

problem. The interpretation of this S-expression is as follows: The
test IF-FOOD-HERE senses whether there is any food in the square
that the ant is facing. If food is present, the left branch of the IF-
FOOD-HERE test is executed and the ant MOVES forward. When
the ant moves onto a place on the grid with food, the food is eaten and
the ant receives credit for the food.

If the IF-FOOD-HERE test at the beginning of the S-expression
senses no food, the ant enters the 3-step PROGN sequence
immediately below the IF-FOOD-HERE test. The ant first turns
LEFT. Then, a 2-step PROGN sequence begins with the test IF-
FOOD-HERE. If food is present, the ant MOVES forward. If not,
the ant turns RIGHT. Then, the ant turns RIGHT again. Then, the
ant pointlessly turns LEFT and RIGHT in another 2-step PROGN
sequence. The net effect is that the ant is now facing right relative to
its initial facing direction. The ant next executes the final 2-step
PROGN subtree at the far right of the figure. If the ant now senses
food via the IF-FOOD-HERE test, the ant MOVES forward.
Otherwise, the ant turns LEFT. The ant has now returned to its initial
facing direction. The ant now unconditionally MOVES. Note that
there is no testing of the backwards directions. The repeated
application of this control program allows the ant to negotiate all of
the gaps and irregularities of the trail and to collect all of the food in
the allotted time.

72

In summary, we have shown how to use the genetic programming
paradigm to genetically breed a computer program that successfully
navigates the artificial ant so as to find 100% of the food along the
Santa Fe trail.

Note that in the genetic programming paradigm, we made no
assumption in advance about the size, shape, or complexity of the
eventual solution. The solution found above in generation 21 had 18
points. We did not specify that the solution would have 18 points nor
did we specify the shape or content of the S-expression. The size,
shape, and content of the S-expression that solves this problem
evolved in response to the selective pressure provided by the fitness
measure (i.e. amount of food eaten).

Figure 1.26 shows the probability of success ps (computed from 55
runs) that at least one S-expression causes the artificial ant to traverse
the entire trail and collect all 89 pieces of food (before timing out) as
a function of the number of generations for population sizes of 500,
1000, and 2000. In particular, the probability of success ps by
generation 10 with a population size of 2000 is 40%. With ps = 40%,
K is 9, and no more than 180,000 individuals (i.e. 9 times 2000 times
10) need to be processed to assure a 99% probability of solving the
problem.

0 10 20 30 40 50
0

20

40

60

80

100

Pop = 2000
Pop = 1000
Pop = 500

Artificial Ant — Santa Fe Trail

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

Figure 1.26 Probability of success for the artificial ant

problem for population sizes of 500, 1000, and 2000

73

8. SOLVING A PAIR OF LINEAR EQUATIONS

As a third illustration of the genetic programming paradigm,
consider the problem of finding a formula for solving a pair of linear
equations.

In particular, suppose we want to solve a pair of consistent, non-
indeterminate linear equations

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

for the first of its two real-valued variables (x1). In other words, we
are seeking a computer program that takes a11, a12, a21, a22, b1, and b2
as its inputs and produces x1 as its output. Without loss of generality,
we can assume that the coefficients of the equations were
prenormalized so the determinant is one. The solution to this problem
can be viewed as a search for a mathematical expression (S-
expression) from a hyperspace of possible mathematical expressions
that can be composed from a set of available functions and
arguments.

The first major step in using the genetic programming paradigm is
to identify the set of terminals. In the previous problems, the terminal
set consisted of the information which the mathematical expression
must process in order to solve the problem. In this problem, the
information that must be processed by a computer program to find x1
are the values of a11, a12, a21, a22, b1, and b2. Thus, the terminal set is

T = {A11, A12, A21, A22, B1, B2}.

The second major step in using the genetic programming paradigm
is to identify the set of functions. The set of functions that are used to
generate the mathematical expressions that attempt to fit the given
finite sample of data. The function set for this problem might consist
of addition (+), subtraction (-), multiplication (*), and the protected
division function (%) described previously. Thus, the function set is

F = {+, -, ∗, %}.

Each of these four functions takes two arguments.
The third major step in using the genetic programming paradigm is

to identify the fitness function. The fitness cases that will be used to
evaluate the fitness of any proposed S-expression are 10 randomly

74

generated pairs of consistent, non-indeterminate linear equations (i.e.
set of values of a11, a12, a21, a22, b1, and b2 and the associated
correct values of x1 and x2). In this problem, the raw fitness is
measured by the erroneousness of the S-expression. Each genetically
produced S-expression is evaluated for fitness in the following way:
First, the value of the first unknown variable x1 produced by the
genetically produced S-expression as the solution to equation pair i
(i.e. xg1i) is substituted into one equation of the pair i to find the
corresponding value of the second unknown variable x2 (i.e. xg2i).
Second, we determine the Euclidean distance in the plane between the
genetically produced solution point (xg1i, xg2i) for equation pair i and
the actual solution point (xs1i, xs2i) for equation pair i. Third, these
distances are summed over all 10 pairs of equations. The sum of
these distances is the raw fitness of the S-expression. If the S-
expression were a correct general formula for solving a pair of linear
equations, the sum of these distances would be zero. Thus,
standardized fitness equals raw fitness for this problem.

The auxiliary hits measure is defined such that we score one hit if
the distance between the genetically produced solution point and the
actual solution point for a particular pair of equations is less than .01.

Figure 1.27 shows, for i of 1 and 2 only, the distance (error)
between the solution point (xg1i, xg2i) produced by a genetically
produced S-expression and the actual solution point (xs1i, xs2i) for
equation pair i. The lines in the figure connect the two points
applying to a given equation pair. As such, the lines graphically
represent the error. If the S-expression were the correct general
formula for solving a pair of linear equations, the two points would
overlap and there would be no line shown (i.e. the error would be
zero).

75

y

x

11(x ,y) Actual Solution for Equation Pair 1s
11

s

Error 1

Error 2

22(x ,y) Actual Solution for Equation Pair 2s
22

s

(x ,y) Genetic Solution for Equation Pair 1g g
1111

(x ,y) Genetic Solution for Equation Pair 2g g
2222

Figure 1.27 The line in the top half of this figure connects
the actual solution point for equation pair 1 with the

genetically produced solution point for equation pair 1. This
line represents the error associated with equation pair 1.

The line in the bottom half of this figure represents for error
for equation pair 2.

Predictably, this initial population of random S-expressions
includes a wide variety of highly unfit S-expressions.

The worst individual from the initial random population (i.e.
generation 0) has a raw fitness value of 119051.

The average raw fitness for generation 0 (the initial random
generation) is 2622. This value serves as a baseline by which to
measure future (non-random) performance.

The Darwinian reproduction operation and the genetic crossover
operation are then applied to parents selected from the current
population with probabilities proportionate to fitness to breed a new
population of offspring computer programs. Although the vast
majority of the new offspring computer programs are again highly
unfit, some of them tend to be somewhat more fit than others.
Moreover, over a period of time and many generations, some of them
tend to be slightly more fit than those existing in earlier generations.

76

The average raw fitness of the population immediately begins
improving from the baseline value for generation 0 of 2622 to 632,
341, 342, 309, etc. In addition, the worst individual in the population
also begins improving from 119051 for generation 0 to 68129, 2094,
etc.

The single best individual S-expression from generation 0 had a raw
fitness value of 125.8 and is shown below:

(+ (- A12 (* A12 B2)) (+ (* A12 B1) B2)).

This S-expression is equivalent to
a12b1 + b2 + a12 – a12b2

The best individual begins improving and has a fitness value of 106
for generations 1 and 2, 103 for generation 3 through 5, 102 for
generations 6 through 16, and 102 for generations 17-20.

The best single S-expression in generations 21 and 22 had a fitness
value of 62 and is shown below:

 (+ (- A12 (* A12 B2)) (* A22 B1))

This S-expression is equivalent to
a22b1 + a12 – a12b2

This individual differed from the known correct solution only by one
term, namely + A12.

The best single S-expression in generations 23 through 26 had a raw
fitness value of 58 and is shown below:

(+ (- A22 (* A12 B2)) (* A22 B1))

This S-expression is equivalent to
a22b1 + a22 – a12b2

This individual differed from the known correct solution only by one
term, namely + A22.

Starting with generation 27, a perfect solution for x1 emerges,
namely

(- (* A22 B1) (* A12 B2)).

This S-expression is equivalent to
a22b1 - a12b2.

77

Figure 1.28 shows the probability of success ps (based on 122 runs)
that at least one S-expression scores 10 hits (i.e. the error is less than
.01 for all 10 pairs of equations) as a function of the number of
generations for a population size M = 500. Since the probability of
success ps by generation 15 is 44%, K is 8.

0 10 20 30 40 50
0

20

40

60

80

100

Linear Equations

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

Figure 1.28 Probability of success for the linear equations

problem for a population size of 500

9. RANDOMIZER

The problem of writing a computer program that generates a stream
of pseudo-random numbers illustrates another way of measuring
fitness.

Numbers “chosen at random” are useful in a variety of scientific,
mathematical, engineering, and industrial applications, including
Monte Carlo simulations, sampling, decision theory, game theory,
instant lottery ticket production, etc. However, random numbers are
difficult to create.

Our goal is to genetically breed a computer program to convert a
sequence of consecutive integers into a sequence of random binary
digits. The input to our randomizer will merely be an argument J
running consecutively from 1 to 16,384 (214). In other words, each
random binary digit as output will be a function of a consecutive
integer J as input.

The first major step in using the genetic programming paradigm is
to identify the terminal set. The set of terminals (along with the set of

78

functions) are the ingredients from which the S-expressions are
composed. The only variable in each S-expression for a randomizer
is the argument J. The terminal set for this problem also contains
several small integers so that

T = {J, 0, 1, 2, 3}.

The second major step in using the genetic programming paradigm
is to identify the function set. Since we anticipate creation of a
randomizer consisting of steps similar to those used in congruential
randomizers, the function set for this problem is

F = {+, –, *, QUOT%, MOD%}

taking two arguments each. The protected modulus function MOD%
uses the protected division function % in computing the modulus.
The protected integer quotient function QUOT% uses the protected
division function % in computing the integer quotient.

An S-expression composed of the above functions and terminals
will always produce a numerical value. Since we want binary digits
as output, we wrap the S-expression in an output interface (which we
call the wrapper) which specifies that any positive numerical output
will be interpreted as a binary one while any other output will be
interpreted as a binary zero.

The third major step in using the genetic programming paradigm is
to identify the fitness function. This problem has l6,384 fitness cases,
namely, the values of J ranging between 0 and 16,383. The fitness
measure for this problem will be a number computed from the entire
sequence of 16,384 binary digits. There are numerous possible
approaches to measuring the randomness of sequences (Knuth27).
Our goal is to have statistical independence among the sequence of
binary digits. In particular, we desire that, for any integer N (where N
runs from 1 to infinity), the probabilities of each of the 2N possible
sub-sequences of length N should all be equal to
1

2N (within an acceptably small error ε≥0) . No finite sequence can
satisfy the above test. However, if the window size N is then limited
to some finite fixed integer Nmax, then “only” 2Nmax probabilities
must be estimated when N = Nmax.

More importantly, these 2Nmax separate probabilities can be
conveniently summarized into a scalar quantity by using the concept

79

of entropy for this set of events and probabilities. The entropy (which
is measured in bits) is maximal when the probabilities of all the
possible events are equal. The entropy Eh for the set of 2h
probabilities for the 2h possible sub-sequences of length h, equals

Eh = – ∑
j

 Phj log2 Phj .

The index j in this summation ranges over the 2h possible sub-
sequences of length h. By convention, log2 0 is 0 when computing
entropy. This sum attains its maximum value of h precisely when the
probabilities of all the 2h possible sub-sequences of length h are equal
to 1

2h .

As h runs from 1 to Nmax, it is convenient to further summarize the
Nmax separate scalar values of entropy into a single scalar value by
summing them to obtain Etotal as follows:

Etotal = ∑
h=1

Nmax





 – ∑

 j
 Phj log2 Phj

When Etotal attains the maximal value of

∑
h=1

Nmax
 h = Nmax(Nmax – 1),

then the sequence may be viewed as being random (in this sense).
If we choose Nmax = 7, then the maximum raw fitness associated

with the best result will be 28 bits. Standardized fitness is 28 minus
raw fitness.

In one particular run, the best single S-expression of the 500
individuals in the initial random generation scored 20.920 bits. This
S-expression consisted of 63 points. When simplified, this best-of-
generation individual is equivalent to

(+ J (* (* (MOD% J 3) 3) (QUOT% (+ J 1) 4))).

This best-of-generation individual does a credible job of
randomizing bits when the window is narrow. In particular, it gets a
perfect 1.000 bits out of a possible 1.000 bits for sub-sequences of
length 1, and it gets 1.918 out of a possible 2.000 bits for sub-
sequences of length 2. In contrast, this best-of-generation individual
gets only 4.002 bits out of a possible 6.000 for sub-sequences of
length 6 (i.e. only 67% of the possible score), and it gets only 4.252

80

bits out of a possible 7.000 for sub-sequences of length 7 (i.e. only
61% of the possible score).

In Figure 1.29, the horizontal axis ranges over the 27 = 128 possible
sub-sequences of length 7. The vertical axis is the number of
occurrences of each of the 128 possible sub-sequences for the best-of-
generation individual for generation 0 for 16,384 values of J. A
maximal entropy randomizer would have 16,384

128 = 128 occurrences
of each of the 128 possible sub-sequences for 16,384 values of J. As
can be seen, the best-of-generation individual from the initial random
generation has about 1365 occurrences each for 12 of the 128 possible
sub-sequences of length 7.

0

200

400

600

800

1000

1200

1400

Generation 0

Figure 1.29 Best-of-generation randomizer for generation 0

showing the frequencies of the 128 different 7 bit patterns
After 2 generations of this run, the entropy of the best-of-generation

individual improved to 22.126 bits.
After 4 generations, the entropy of the best-of-generation individual

improved to 26.474 bits.
Figure 1.30 shows the best-of-generation individual for generation

4. As can be seen, after only 4 generations, many more of the 128
possible sub-sequences of length 7 are now represented.

0
50

100
150
200
250
300
350
400
450
500

Generation 4

Figure 1.30 Best-of-generation randomizer for generation 4

showing the frequencies of the 128 different 7 bit patterns

81

Figure 1.31 shows the progress, from generation to generation, of
each of the 7 components (i.e. for h = 1 through 7) of Etotal for the
best-of-generation individual for generations 0 through 14. As can be
seen, entropy for short sub-sequence lengths reaches its maximum
level after just a few generations, while entropy for the longer sub-
sequence lengths requires additional generations.

0 7 14
0

1

2

3

4

5

6

7

All Entropy Measures vs. Generation

Generation

E
nt

ro
py

h=7

h=6

h=5

h=4

h=3

h=2

h=1

Figure 1.31 The seven components of total entropy Etotal for
the best-of-generation individual for generations 0 through

14
Between generations 5 and 13, entropy attained and slowly

improved within the 27.800 to 27.900 area.
Figure 1.32 shows that by generation 7 all 128 sub-sequences of

length 7 are generated by the best-of-generation randomizer. The
number of occurrences are, however, far from equal at this stage.

82

0

50

100

150

200

250

300

Generation 7

Figure 1.32 Best-of-generation randomizer for generation 7

showing the frequencies of the 128 different 7 bit patterns
On generation 14, we obtained an individual S-expression that

attained a nearly maximal entropy of 27.996. This S-expression has
153 points, but simplifies to the following individual with only 87
points:

(- J (QUOT% (+ (+ (+ J J) J) (* (+ J 2) J)) (+ (MOD%
(* (- 2 1) (QUOT% (QUOT% (+ (* J J) (QUOT% (- (QUOT%
(* J (MOD% (QUOT% J 3) (MOD% J J))) (QUOT% (* 3 2)
(QUOT% 2 1))) (- 3 (QUOT% (+ (* J J) (- 2 1)) 3))) (*
3 (+ (MOD% 1 0) J)))) 3) 3)) (+ (- 2 J) 1)) (+ (QUOT%
(MOD% J 3) (- (MOD% 2 0) (MOD% (MOD% 0 J) J))) (- 3
3)))))

Figure 1.33 shows the simplified version (with 41 points) of the
best-of-generation individual from generation 14 (with entropy of
27.996) for the randomizer problem.

83

--

2 J

+

1QUOT%

3

QUOT%

3

MOD%

*

J3

*

J J

+

1

QUOT%

3

3

--

--

0

QUOT%*

J J

+

+

J 2

*

J3 J

*

+

QUOT%J

--

Figure 1.33 Simplified version of best-of-generation

individual from generation 14 of randomizer problem (with
entropy of 27.996)

In scoring 27.996, this randomizer achieved a maximal value of
entropy of 1.000, 2.000, 3.000, 4.000, 5.000, and 6.000 bits for
sequences of lengths 1, 2, 3, 4, 5, and 6, respectively, and a near-

84

maximal value of 6.996 for the 128 (27) possible sequences of length
7.

Figure 1.34 shows that each of the 128 possible sub-sequences.of
length 7 are generated by the best-of-generation individual from
generation 14 (with entropy of 27.996). The number of occurrences
of each sub-sequence is in the neighborhood of 128.

0

20

40

60

80

100

120

140

160

Generation 14

Figure 1.34 Best-of-generation randomizer for generation

14 showing the frequencies of the 128 different 7 bit patterns
Note that the progressive change in size and shape of the

individuals in the population is a characteristic of the genetic
programming paradigm. The size (153 points) and shape of the best
scoring individual from generation 14 differs from the size (63 points)
and shape of the best scoring individual from generation 0. The size
and particular hierarchical structure of the best scoring individual
from generation 14 was not specified in advance. Instead, the entire
structure evolved as a result of reproduction, crossover, and the
relentless pressure of the fitness measure (i.e. entropy). Note that
achieving better entropy requires a more complex computation.

Figure 1.35 shows the probability of success ps (based on 10 runs)
of a run with a population size of M = 500 and with success defined
as attaining entropy of 27.990 or better. The probability of success ps
= 0.90 by generation 15. Thus, in order to assure a 99% probability
of solving the problem, we need K = 2 independent runs with a
population of 500 for 15 generations. That is, no more than 15,000
individuals need be processed.

85

0 10 20 30 40 50
0

20

40

60

80

100

Random Number Generator

Generation

%
 S

ol
vi

ng
 b

y
G

en
er

at
io

n

Figure 1.35 Probability of success for randomizer problem

with population size of 500
We now compare the genetically produced randomizer with the

following five randomizers:
• The Park-Miller congruential randomizer described in Anderson26

xi = 75 xi–1 mod [231 – 1].

• IBM's URN08 (RANDU) congruential randomizer

xi = 65539 xi–1 mod 231.

• The SR[3,28,31] shift register randomizer starting with a seed
value x0 and then producing subsequent elements of the random
sequence recursively in a shift register (end off, with zero fill) in a
31-bit shift register.

 temp =(XOR xi–1 (SHIFT-RIGHT xi 3))
 xi =(XOR temp (SHIFT-LEFT temp 28).

where XOR is the exclusive-or operation.
• The two-sequence shuffling randomizer SHUFFLE using the

Park-Miller multiplicative congruential randomizer to produce an
initial set of uniformly distributed random numbers between 0.0
and 1.0 and then using the shift register randomizer SR[3,28,31]
to call out particular numbers from this set of numbers and

86

additional calls on the Park-Miller randomizer to replace the
numbers called out .

• The RANDOM randomizer from Texas Instruments.
The table below compares the shortfall in entropy from the maximal

28.000 bits for the genetically bred randomizer and the five
commercial randomizers described earlier. We used the same
16,384 points and look-back of h = 7.

Randomizer Entropy Shortfall
Park-Miller .009
IBM RANDU .010
Shift-Register .010
SHUFFLE .015
TI RANDOM .009
Genetic .004
As can be seen, the genetically bred randomizer has precisely the

characteristic for which it was bred (i.e. high entropy). With respect
to that particular measure of randomness, it exceeded the performance
of the other five randomizers.

10. SEQUENCE INDUCTION

Sequence induction involves discovering a mathematical expression
(computer program, LISP S-expression) that can generate any arbi-
trary element in an infinite sequence

S = S0,S1,...,Sj,...
after seeing only a relatively small finite number of specific examples
of the values of the sequence.

For example, suppose one is given
S = 1, 2, 5, 10, 17, 26, 37, 50, 65, ...

as the first nine values of an unknown sequence. If the index j starts
at zero, one would easily induce the computational procedure j2 + 1
as the way to compute the sequence element Sj for any specified
index j.

Of course, there is no one correct answer to an induction problem.
There are an infinity of sequences which agree with the finite number
of specific examples in the given sequence. Nonetheless, induction is
at the heart of learning and the ability to correctly perform induction
is widely viewed as an important component of human intelligence.

87

Consider the following example of sequence induction. Suppose
one is given the first 20 values of the simple non-recursive sequence
of integers

S = 1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737,
35983, 54321, 78915, 111049, 152127, 203673,
267331, 344865, 438159, 549217, 680163, ...

The goal is to identify a mathematical expression that produces this
sequence of integers.

Sequence induction is symbolic regression (symbolic function
identification) where the domain (i.e. independent variable) ranges
over the integers 0, 1, 2, and 3....

The terminal set for this problem consists of the index J (i.e. the
independent variable) and small integers such as 0, 1, 2, and 3. That
is,

T = {J, 0, 1, 2, 3}

The function set for this problem is

F = {+, -, *}.

The fitness cases for this problem consist of the first 20 elements of
the given sequence. Raw fitness is the sum, taken over the 20 fitness
cases, of the absolute value of the difference between the value
produced by the S-expression for sequence position J and the actual
value of the sequence for position J. Standardized fitness equals raw
fitness for this problem. The auxiliary hits measure is defined so as to
count an exact match as a hit. Thus, the number of hits can range
between 0 and 20.

Note that the values of this sequence range over more than five
orders of magnitude

In the initial random generation of one run, the raw fitness of the
worst single individual in the population was about 3 x 1013; the
average raw fitness of the initial random generation was about 6 x
1010; and the raw fitness of the best single individual was l43,566.

By generation 38, the raw fitness of the best-of-generation
individual had improved to 2740.

For generation 42, the raw fitness (i.e. error) of the best-of-
generation individual had improved to 20. In a sequence whose
largest element is 680,163, an error of only 20 is nearly perfect. This
S-expression was

88

(+ (+ (- (* (* 0 1) (- (* 3 J) (+ (* 0 1) J))) 2) (*
(* (* 2 J) (+ 1 J)) (* (+ J J) (- J 2))))
(- (- (+ 2 0) (* (* 1 J) (- (- (- (+ (- (* 2 J) (+ 2
0)) (- J 3)) (- J 1)) (* (* 3 J) (+ J 1))) (- (- (+ J
J) (* (- (- (+ J (+ 0 J)) (- J 2)) (* (* 3 J) (+ J
1))) 3)) (* (- J 2) (- 2 J)))))) (* (- (+ 2 J) (* J
2)) (* (* J J) (- J 3))))).

When simplified, this S-expression for generation 42 is equivalent
to

5j4 + 4j3 + 3j2 + 2j +0.
Then, the following 100% correct individual S-expression emerged

on generation 43:

(+ (+ (- (* (* 0 1) (- (* 3 J) (+ (* 0 1) J))) 2) (*
(* (* 2 J) (+ 1 J)) (* (+ J J) (- J 2))))
(- (- (+ 3 0) (* (* 1 J) (- (- (- (+ (- (* 2 J) (+ 2
0)) (- J 3)) (- J 1)) (* (* 3 J) (+ J 1))) (- (- (+ J
J) (* (- (- (+ J (+ 0 J)) (- J 2)) (* (* 3 J) (+ J
1))) 3)) (* (- J 2) (- 2 J)))))) (* (- (+ 2 J) (* J
2)) (* (* J J) (- J 3)))))

When simplified, this S-expression for generation 43 is equivalent
to

5j4 + 4j3 + 3j2 + 2j +1.
This is the desired mathematical expression.

Note that there is only one difference between the S-expressions in
generation 42 and generation 43. The difference is that the
emboldened and underlined (+ 2 0) sub-expression in generation 42
becomes (+ 3 0) in generation 43. This difference corresponds to a
difference of the constant one in the simplified expressions. This
difference corresponds to a numerical difference of one which, over
the 20 fitness cases, accounts for the difference of 20 in raw fitness
(i.e. sum or errors).

Induction of recursive sequences, such as the Fibonacci sequence
and Hofstadter sequence, using the genetic programming paradigm is
discussed in Koza28.

11. SIMPLE SYMBOLIC REGRESSION

The learning of the Boolean multiplexer function (Section 5) and
the induction of sequences (Section 9) are both examples of the
general problem of symbolic function identification (symbolic

89

regression). In this section, we discuss symbolic regression as
applied to real-valued functions over real-valued domains.

In ordinary linear regression, one is given a set of values of various
independent variable(s) and the corresponding values for the
dependent variable(s). The goal is to discover a set of numerical
coefficients for a linear combination of the independent variable(s)
which minimizes some measure of error (such as the square root of
the sum of the squares of the differences) between the given values
and computed values of the dependent variable(s). Similarly, in
quadratic regression, the goal is to discover a set of numerical coef-
ficients for a quadratic expression which similarly minimizes error.
In Fourier “regression”, the goal is to discover a set of numerical
coefficients for sine and cosine functions of various periodicities
which similarly minimizes error.

Of course, it is left to the researcher to decide whether to do a linear
regression, quadratic regression, a higher order polynomial
regression, or whether to try to fit the data points to some non-
polynomial family of functions (e.g. sines and cosines of various
periodicities, etc.). But, often, the issue is deciding what type of
function most appropriately fits the data, not merely computing the
numerical coefficients after the type of function for the model has
already been chosen. In other words, the real problem is often both
the discovery of the correct functional form that fits the data and the
discovery of the appropriate numeric coefficients that go with that
functional form. We call the problem of finding a function, in
symbolic form, that fits a given finite sample of data by the name
“symbolic regression.” It is “data to function” regression.

For example, suppose we are given a sampling of the numerical
values from an unknown curve over 20 points in some domain, such
as the real interval [-1.0, +1.0]. That is, we are given a sample of data
in the form of 20 pairs (xi, yi), where xi is a value of the independent
variable in the interval [-1.0, +1.0] and yi is the associated value of
the dependent variable. For example, these 20 pairs (xi, yi) might
include pairs such as

(-0.40, -0.2784)
(+0.25, 0.3320)

....................
(+0.50, 0.9375)

90

These 20 pairs (xi, yi) are the fitness cases that will be used to
evaluate the fitness of any proposed S-expression.

The goal is to find a function, in symbolic form, that is a good fit or
perfect fit to the 20 pairs of numerical data points. The solution to
this problem of finding a function in symbolic form that fits a given
sample of data can be viewed as a search for a mathematical
expression (S-expression) from a hyperspace of possible S-
expressions that can be composed from a set of available functions
and arguments.

The first major step in using the genetic programming paradigm is
to identify the set of terminals. In the artificial ant problem, the
computer program processed information about whether food was
present immediately in front of the ant in order to move the ant
around the grid. In this problem, the information which the
mathematical expression must process is the value of the independent
variable X. Thus, the terminal set is

T = {X}.

The second major step in using the genetic programming paradigm
is to identify the set of functions that will will be used to generate the
mathematical expressions that attempt to fit the given finite sample of
data. The function set for this problem might consist of addition (+),
subtraction (-), multiplication (*), the protected division function (%)
described previously, the sine function SIN, the cosine function COS,
the exponential function EXP, and the protected logarithm function
RLOG. The protected logarithm function RLOG returns 0 for an
argument of 0 and otherwise returns the logarithm of the absolute
value of the argument. Thus, the function set is

F = {+, -, *, %, SIN, COS, EXP, RLOG}

taking 2, 2, 2, 2, 1, 1, 1, and 1 arguments, respectively.
The third major step in using the genetic programming paradigm is

to identify the fitness function. The raw fitness for this problem is the
sum, taken over the 20 fitness cases, of the the absolute value of the
difference (distance, error) between the value in the real-valued range
space produced by the S-expression for a given value of the
independent variable xi and the correct yi in the range space. In other

91

words, fitness in this problem is the sum of the errors. This method
of measuring fitness is the single most common method used herein.

The closer this sum is to zero, the better the computer program.
Standardized fitness is, therefore, equal to raw fitness for this
problem.

The genetic programming paradigm starts with the generation of
500 random S-expressions recursively composed from the available
functions and terminals. Predictably, this initial population of
random S-expressions includes a wide variety of highly unfit S-
expressions.

In one run, the worst single individual in the initial random
population (generation 0) was the S-expression

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X X))))).

The sum of the absolute values of the differences between this
worst single individual and the 20 data points was as big as
Avagadro's number, i.e. about 1023. That is, the raw fitness of this
worst individual was about 1023.

The median individual in the initial random population was

(COS (COS (+ (- (* X X) (% X X)) X))).

This median individual is equivalent to

Cos [Cos (x2 + x -1)].

The sum of the absolute values of the differences between this
median individual and the 20 data points was merely 23.67. That is,
its raw fitness was 23.67. In other words, the distance between the
curve for this median individual and the unknown curve (which
actually is the quartic function x4+x3+x2+x) averaged 1.2 for each of
the 20 data points. Figure 1.36 shows that the curve for the median
individual and the correct quartic curve are somewhat close.

92

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 +1.00.0

X + X + X + X4 3 2

Cos Cos (X + X - 1)
2

Figure 1.36 Comparison of the median individual from

generation 0 and the correct quartic curve for the symbolic
regression problem

The second best individual in the initial random population, when
simplified, was

x + [RLog 2x + x] * [Sin 2x + Sin x2]

The sum of the absolute values of the differences between this
second best individual and the 20 data points was 6.05. That is, its
raw fitness was 6.05. The average distance between the curve for this
second best individual and the unknown curve x4+x3+x2+x for the 20
points was about 0.3 per data point. Figure 1.37 shows that the curve
for the second best individual is considerably closer to the target
curve than the median individual above.

93

X + (RLOG 2X + X) * (SIN 2X + SIN X) 2

X + X + X + X
24 3

1.00.0

-1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1

Figure 1.37 Comparison of the second best individual from
generation 0 and the correct quartic curve for the symbolic

regression problem
The best single individual in the population at generation 0 was the

S-expression below with 19 points:

(* X (+ (+ (- (% X X) (% X X)) (SIN (- X X)))
 (RLOG (EXP (EXP X))))).

This S-expression is equivalent to xex.
The sum of the absolute value of the differences between this best-

of- generation individual and the unknown curve x4+x3+x2+x for the
20 data points was 4.47 That is, its raw fitness was 4.47. The
average distance between the curve for this best individual and the
unknown curve x4+x3+x2+x for the 20 points is about 0.22 per data
point. Figure 1.38 shows that this best-of-generation individual is
considerably closer to the target curve than the second best individual
above.

94

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 +1.00.0

XeX

X + X + X + X4 3 2

Figure 1.38 Comparison of the best-of-generation individual

from generation 0 and the correct quartic curve for the
symbolic regression problem

For this problem, we define a hit to be a fitness for which the
absolute error between the S-expression and the correct curve is ≤
0.01. The best-of-generation individual from the initial random
population (namely xex) came within this hits criterion for 2 of the 20
fitness cases. That is, it scored 2 hits. All the other individuals in the
population scored only one or zero hits.

Although xex is not a particularly good fit (much less a perfect fit)
to the unknown curve x4+x3+x2+x, this individual is nonetheless
better than the worst individual in the initial random population. It is
better than the median individual. And, it is better than the second
best individual. When graphed, xex bears some similarity to the
unknown target curve x4+x3+x2+x. First, both xex and x4+x3+x2+x
are zero when x is zero. The exact agreement of the two curves at the
origin accounts for one of the two hits scored by xex and the
closeness of the two curves for another value of x near zero accounts
for the second hit. Secondly, when x approaches +1.0, xex
approaches 2.7, while x4+x3+x2+x approaches the somewhat nearby
value of 4.0. Also, when x is between 0.0 and about -0.7, xex and
x4+x3+x2+x are very close.

As usual, the Darwinian reproduction operation and the genetic
crossover operation are then applied to parents selected from the

95

current population with probabilities proportionate to fitness to breed
a new population of offspring computer programs. Although the vast
majority of the new offspring computer programs are again highly
unfit, some of them tend to be somewhat more fit than others.
Moreover, over a period of time and many generations, some of them
tend to be slightly more fit than those existing in earlier generations.

By generation 2, the best single individual in the population was the
S-expression below with 23 points:

(+ (* (* (+ X (* X (* X (% (% X X) (+ X X))))
 (+ X (* X X))
 X)
 X)

This best-of-generation individual from generation 2 is equivalent
to

x4 + 1.5x3 + 0.5x2 + x.

The sum of the absolute value of the differences between this best
individual from generation 2 and the unknown curve x4+x3+x2+x for
the 20 data points was 2.57 That is, the raw fitness of this best-of-
generation individual improved to 2.57 for generation 2 as compared
to 4.47 from generation 0. This is an average of about 0.13 per data
point. This best-of-generation individual from generation 2 scored 5
hits as compared to only 2 hits for the best-of-generation individual
from generation 0.

This best-of-generation individual from generation 2 bears much
greater similarity to the target function than any of the predecessors
discussed above. It is, for example, a polynomial. Moreover, it is a
polynomial of the correct order (i.e. 4). Moreover, the coefficients of
two of the four terms of this polynomial are correct (namely the
coefficient of the quartic term x4 and the coefficient of the linear term
x). In addition, the incorrect coefficients (1.5 for the cubic term and
0.5 for the quadratic term) are not too different from the correct
coefficients (1.0 and 1.0).

Notice that even though no numerical coefficients were explicitly
provided in the terminal set, the rational coefficient 0.5 for the
quadratic term x2 was created by the process by first creating
1

2X (by dividing XX = 1 by X+X = 2X) and then multiplying by X.

96

Similarly, the fractional rational coefficient 1.5 for the cubic term x3
was created.

By generation 34, the sum of the absolute values of the differences
between the best single individual and the unknown curve
x4+x3+x2+x for the 20 data points was 0.0. That is, the raw fitness of
the best single individual in the population for generation 34 attained
the perfect value of 0.0. This individual, of course, also scored 20
hits.

This best-of-generation individual for generation 34 was the S-
expression

(+ X (* (+ X (* (* (+ X (- (COS (- X X)) (- X X))) X)
 X))
 X))

Note that the cosine term (COS (- X X)) evaluates merely to 1.0.
This entire S-expression is equivalent to x4+x3+x2+x, which is, of
course, the unknown curve.

The best-of-generation individual from generation 34 is graphically
depicted in the Figure 1.39.

97

XX

COS

–

XX XX

–

XX XX

–

+

*

XX

*

XX

XX

+ XX

*

+

XX

Figure 1.39 Solution from generation 34 of the symbolic

regression problem
Note that the best-of-generation individual from generation 0 is not

only not the correct solution, but it is not even of the correct
functional form. Nonetheless, the genetic programming paradigm did
not get trapped in this local optima (nor any subsequent local optima).
Instead, the genetic programming paradigm was able to break out
from sub-optimal areas of the search space and discover the correct
solution to the problem.

The best-of-generation S-expression from generation 34 has 20
points. Note that there were varying numbers of points in the best-of-
generation S-expression from the various intermediate generations.
We did not specify that the solution would have 20 points nor did we
specify the shape or content of the S-expression. The size, shape, and

98

content of the S-expression that solves this problem evolved in
response to the selective pressure provided by the fitness (error)
measure.

In summary, we have shown how to use the genetic programming
paradigm to find a quartic function, in symbolic form, that perfectly
fits this given finite sample of data. This was achieved in spite of the
fact that the function set contained numerous extraneous functions
(e.g. -, %, RLOG, EXP, SIN, and COS).

12. SYMBOLIC REGRESSION WITH CONSTANT
CREATION

Symbolic regression is one form of symbolic function
identification. Problems in the area of symbolic function
identification require finding a function, in symbolic form, that fits a
given finite sampling of data points

In the previous example of symbolic regression where the unknown
curve was x4+x3+x2+x, the terminal set T consisted only of the inde-
pendent variable X. There was no explicit facility for creating a
numerical constant. Nonetheless, the constant 1.0 was created
indirectly on two occasions via the expressions (% X X) and (COS (-
X X)) and constants such as 0.5, 1.5, and other small rational
constants were created with similar expressions. However, the
process of symbolic regression requires a general method for
discovering the appropriate numeric coefficients.

The problem of constant creation can be solved by expanding the
terminal set by one terminal (called the ephemeral random constant
←). Thus, the terminal set for a symbolic regression problem with
one independent variable would become

T = {X, ←}.

During the creation of the initial random population (i.e. generation
0), whenever the ephemeral random constant ← is chosen for any
point of the tree, a random number of a specified type in a specified
range is generated and attached to the tree at that point.

For example, in the real-valued symbolic regression problem at
hand, the ephemeral random constants are of floating point type and
their range is between -1.0 and +1.0. In a problem involving integers
(e.g. induction of a sequence of integers), random integers over a

99

specified range (such as -5 to +5) are created for the ephemeral
random constants “←”.

Note that this random generation is done anew each time when an
ephemeral “←” terminal is encountered so that the initial random
population contains a variety of different random constants of the
specified type. Once generated and inserted into the S-expressions of
the initial random population, these constants remain fixed thereafter.

After the initial random generation, the numerous different random
constants arising from the ephemeral “←” terminals will then be
moved around from tree to tree by the crossover operation. These
random constants will become embedded in various sub-trees that
then carry out various operations on them.

This “moving around” of the random constants is not at all haphaz-
ard, but, instead, is driven by the overall goal of achieving ever better
levels of fitness. For example, a symbolic expression that is a
reasonably good fit to a target function may become a better fit if a
particular constant is, for example, decreased slightly. A slight
decrease can be achieved in several different ways. For example,
there may be a multiplication by 0.90, a division by 1.10, a
subtraction of 0.08, or an addition of -0.004. If a decrease of
precisely 0.09 in a particular constant would produce a perfect fit, a
decrease of 0.07 is usually more fit than a decrease of only 0.05.
Thus, the relentless pressure of the fitness function in the natural
selection process determines both the direction and magnitude of the
adjustments in numerical constants

Constant creation is illustrated in the next section.

13. EMPIRICAL DISCOVERY

An important problem area in virtually every area of science is
finding the relationship underlying empirically observed values of the
variables measuring a system. In practice, the observed data may be
noisy and there may be no known way to express the relationships
involved in a precise way.

The problem of discovering empirical relationships from actual
observed data is illustrated by the well-known non-linear econometric
exchange equation

P=
MV
Q .

100

This equation states the relationship between the gross national
product Q of an economy, the price level P, the money supply M, and
the velocity of money V.

Suppose that our goal is to find the econometric model expressing
the relationship between quarterly values of the price level P and the
quarterly values of the three other quantities appearing in the

equation. That is, our goal is to rediscover that P=
MV
Q from the

actual observed noisy time series data. Many economists believe that
inflation (which is the change in the price level) can be controlled by
the central bank via adjustments in the money supply M.

In particular, suppose we are given the 120 actual quarterly values
(from 1959:1 to 1988:4) of following four econometric time series:

• The annual rate for the United States Gross National Product in
billions of 1982 dollars (conventionally called GNP82).

• The Gross National Product Deflator (normalized to 1.0) for 1982
(called GD).

• The monthly values of the seasonally adjusted money stock M2 in
billions of dollars, averaged for each quarter (called M2).

• The monthly interest rate yields of 3-month Treasury bills,
averaged for each quarter (called FYGM3).

The four time series used here were obtained from the CITIBASE
data base of machine-readable econometric time series (Citibank29).

The actual long-term historic postwar value of the M2 velocity of
money in the United States is 1.6527 (Hallman et. al.30). Thus, the
correct exchange equation for the United States in the postwar period
is the multiplicative (non-linear) relationship

GD =
(1.6527 * M2)

GNP82

The sum of the squared errors between the actual gross national
product deflator GD from 1959:1 to 1988:4 and the fitted GD series
calculated from the above model over the entire 30-year period
involving 120 quarters (1959:1 to 1988:4) was 0.077193. The
correlation R2 was 0.993320.
MODEL DERIVED FROM FIRST TWO-THIRDS OF DATA

We first divide the 30-year, 120-quarter period into a 20-year, 80-
quarter in-sample period running from 1959:1 to 1978:4 and a 10-
year, 40-quarter out-of-sample period running from 1979:1 to 1988:4.
This allows us to use the first two-thirds of the data to create the
model and to then use the last third of the data to test the model.

101

The first major step in using the genetic programming paradigm is
to identify the set of terminals. The terminal set for this problem is

T = {GNP82, FM2, FYGM3, ←}.

The terminals GNP82, FM2, and FYGM3 correspond to the
independent variables of the model and provide access to the values
of the time series. The ← is the ephemeral random constant terminal
allowing various random floating point constants to be inserted at
random amongst the initial random LISP S-expressions. In effect, the
terminals for this problem are functions of the unstated, implicit time
variable which ranges over the various quarters.

The second major step in using the genetic programming paradigm
is to identify a set of functions. The set of functions chosen for this
problem is

F = {+, -, *, %, EXP, RLOG}

taking 2, 2, 2, 2, 1, and 1 arguments, respectively.
Notice that we are not told a priori whether the unknown functional

relationship between the given observed data (the three independent
variables) and the target function (the dependent variable, GD) is
linear, multiplicative, polynomial, exponential, logarithmic, or
otherwise. The unknown functional relationship could be any
combination of these types of functions. Notice also that we are also
not given the known constant value V for the velocity of money.

We are not told that the addition, subtraction, exponential, and
logarithm function contained in the function set and the 3-month
Treasury bill yields (FYGM3) contained in the terminal set are all
irrelevant to finding the econometric model for the dependent variable
GD of this problem.

The third major step in using the genetic programming paradigm is
identification of the fitness function for evaluating how good a given
computer program is at solving the problem at hand.

The fitness of an S-expression is the sum, taken over the 80 in-
sample quarters, of squares of differences between the value of the
price level produced by S-expression and the target value of the price
level given by the GD time series.

The initial random population (generation 0) was, predictably,
highly unfit. In one run, the sum of squared errors between the single

102

best S-expression in the population and the actual GD time series was
1.55. The correlation R2 was 0.49.

As before, after the initial random population was created, each
successive new generation in the population was created by applying
the operations of fitness proportionate reproduction and genetic
recombination (crossover).

In generation 1, the sum of the squared errors for the new best
single individual in the population improved to 0.50.

In generation 3, the sum of the squared errors for the new best
single individual in the population improved to 0.05. This is
approximately a 31-to-1 improvement over the initial random
generation. The value of R2 improved to 0.98. In addition, by
generation 3, the best single individual in the population came within
1% of the actual GD time series for 44 of the 80 in-sample points.

In generation 6, the sum of the squared errors for the new best
single individual in the population improved to 0.027. This is
approximately a 2-to-1 improvement over generation 3. The value of
R2 improved to 0.99.

In generation 7, the sum of the squared errors for the new best
single individual in the population improved to 0.013. This is
approximately a 2-to-1 improvement over generation 6.

In generation 15, the sum of the squared errors for the new best
single individual in the population improved to 0.011. This is an
additional improvement over generation 7 and represents
approximately a 141-to-1 improvement over generation 0. The
correlation R2 was 0.99.

In one run, the best single individual had a sum of squared errors of
0.009272 over the in-sample period. Figure 1.40 graphically depicts
the best-of-generation individual.

103

0.47

-0.005

0.832

%

%

%

GNP82

GNP82GNP82GNP82

-

+

*

-0.83

-0.126

%

%

GNP82

GNP82

FM2

FM2

FM2 -

-

+

+

+

*

-0.583-0.402

*

Figure 1.40 Best result for exchange equation

This individual is equivalent to

GD =
(1.634 * M2)

GNP82

104

The table below shows the sum of the squared errors and R2 for the
entire 120-quarter period, the 80-quarter in-sample period, and the
40-quarter out-of-sample period:

Data Range 1- 120 1 - 80 81 - 120
R2 0.993480 0.997949 0.990614
Sum of Squared Error 0.075388 0.009272 0.066116
Figure 1.41 shows both the gross national product deflator GD from

1959:1 to 1988:4 and the fitted GD series calculated from the above
genetically produced model for 1959:1 to 1988:4. The actual GD
series is shown as a line with dotted points. The fitted GD series
calculated from the above model is a simple line.

1959 1969 1979 1989 DATE

E
C
I
R
P

0.25

0.45

0.65

0.85

1.05

1.25

E
C
I
R
P

Figure 1.41 Gross national product deflator and fitted series

computed from genetically produced model
Figure 1.42 shows the residuals from the fitted GD series calculated

from the above genetically produced model for 1959:1 to 1988:4.

1959 1969 1979 1989
-0.10

-0.05

0.00

0.05

0.10

DATE

L
A
U
D
I
S
E
R

105

Figure 1.42 Residuals between the gross national product
deflator and fitted series computed from genetically

produced model
In Koza31, we divide the 30-year, 120-quarter period into a 10-year,

40-quarter out-of-sample period running from 1959:1 to 1968:4 and a
20-year, 80-quarter in-sample period running from 1969:1 to 1988:4
and obtain a virtually identical model.

14. SYMBOLIC INTEGRATION AND
DIFFERENTIATION

Symbolic integration (and differentiation) involve finding the
mathematical expression which is the integral (or derivative), in
symbolic form, of a given curve. Symbolic integration and
differentiation are direct extensions of the symbolic regression
process described in the previous section.

Symbolic integration involves finding the mathematical expression
which is the integral, in symbolic form, of a given curve. The given
curve may be presented either as

• a mathematical expression in symbolic form or
• a discrete sampling of data points (i.e. the symbolic form of the

given curve is not explicitly specified).
If the given curve is presented as a mathematical expression, we

first convert it into a finite sample of data points. We do this by
taking a random sample of values {xi} of the independent variable
appearing in the given mathematical expression over some
appropriate domain. We then pair each value of the independent
variable xi with the result yi of evaluating the given mathematical
expression for that value of the independent variable.

Thus, regardless of the form in which the given curve is presented,
we can begin the process of symbolic integration with a given finite
sampling of pairs of numerical values (xi, yi). If there are, say, 50 (xi,
yi) pairs (for i between 0 and 49), then, for convenience, we assume
that the values of xi have been sorted so that xi < xi+1 for i between 0
and 48. The domain values xi lie in some appropriate interval.

The goal is to find, in symbolic form, a mathematical expression
which is a perfect fit (or good fit) to the integral of the given curve
using only the given 50 pairs of numerical points.

For example, if the given curve happens to be

106

Cos x + 2x + 1,
the goal would be to find its integral, in symbolic form, namely,

Sin x + x2 + x
given the 50 pairs (xi, yi). The domain appropriate to this example
might be the interval [0, 2 π].

Symbolic integration is, in fact, merely symbolic regression with an
additional preliminary numerical integration step. Specifically, we
numerically integrate the curve defined by the given set of 50 points
(xi, yi) over the interval starting at x0 and running to x49. The integral
I(xi) is a function of xi. The value of this integral I(x0) for the first
point x0 is zero. For any other point xi, where i is between 1 and 49,
we perform a numerical integration by adding up the areas of the i
trapezoids lying between the point x0 and the point xi. We thereby
obtain an approximation to the value for the integral I(xi) of the given
curve for each point xi. We therefore obtain 50 new pairs (xi, I(xi))
for i between 0 and 49. These 50 pairs are the fitness cases for this
problem.

We then perform symbolic regression in the same manner as
described in Section 11 to find the mathematical expression for the
curve defined by the 50 new pairs (xi, I(xi)). This mathematical
expression is the integral, in symbolic form, of the curve defined by
the original 50 given points (xi, yi).

In applying the genetic programming paradigm to this problem, we
first define the terminal set to be

T = {X}.

Secondly, we define the function set for this problem to be

F = {+, -, *, %, SIN, COS, EXP, RLOG}

taking 2, 2, 2, 2, 1, 1, 1, and 1 arguments, respectively.
As each individual genetically produced function fj is generated, we

evaluate fj(xi) so as to obtain 50 pairs (xi, fj(xi)). The raw fitness of
an individual genetically produced function is the sum of the absolute
value of difference between the value fj(xi) of the individual
genetically produced function fj at domain point xi and the value of

107

the numerical integral I(xi). Standardized fitness equals raw fitness
for this problem. A hit for this problem occurs when fj(xi) comes
within 1% of the target value I(xi).

In one run, the best single S-expression in generation 4 was the
following:

(+ (+ (- (SIN X) (- X X)) X) (* X X))

This S-expression scored 50 hits and had standardized fitness of
virtually zero. The standardized fitness (error) does not reach zero
exactly due to the fact that the integral is merely a numerical
approximation and because of the small errors inherent in floating
point calculations.

This S-expression is equivalent to
Sin x + x2 + x.

which is the symbolic integral of
Cos x + 2x + 1.

One could, of course, add a constant of integration, if desired.
In another run, x4 + x3 + x2 + x was obtained as the symbolic

integral of 4x3 + 3x2+ 2x+ 1.
Symbolic differentiation involves finding the mathematical

expression which is the derivative, in symbolic form, of a given
curve. The approach is similar to that of symbolic integration except
that numerical differentiation is involved.

In symbolic differentiation, it is desirable to have a larger number of
points for numerical differentiation (e.g. 200 points) than for
numerical integration (e.g. 50 points) because of the relative
inaccuracy of numerical differentiation as compared to numerical
integration. Specifically, we numerically differentiate the curve
defined by the given set of 200 points (xi, yi) over the interval starting
at x0 and running to x199. The derivative D(xi) is a function of xi.
For any point xi other than the endpoints x0 and x199, we take the
derivative to be the average of the slope of the curve between point
xi-1 and xi and the slope of the curve between point xi and xi+1. For
the two endpoints x0 and x199 of the domain, the derivative is the
unaveraged slope of the curve. We thereby obtain a value for the
derivative D(xi) of the given curve for each point xi. We therefore

108

obtain 200 new pairs (xi, D(xi)) for i between 0 and 199. These 200
pairs are the fitness cases for this problem.

15. SOLVING EQUATIONS

The genetic programming paradigm can be used to solve equations
where the solution comes in the form of a function that satisfies the
given equation. In particular, the genetic programming paradigm can
be used to solve differential equations (with given initial conditions),
integral equations, general functional equations, and inverse
problems.

Without loss of generality, we will assume that all equations have
been transformed so that the right hand side is zero.

15.1. DIFFERENTIAL EQUATIONS

For some differential equations, it is possible, using exact analytic
methods, to find the exact function which solves the equations.
However, for most differential equations, only numerical
approximation methods are available.

The problem of solving a differential equation may be viewed as the
search in a hyperspace of compositions of functions and arguments
for a particular composition (i.e. LISP S-expression, computer
program) which satisfies the equation and its initial conditions.
EXAMPLE 1

Consider the simple differential equation
dy
dx + y Cos x = 0

having an initial value of y ^ of 1.0 for an initial value of x ^ of 0.0.
The goal is to find a function which satisfies this equation and its

initial condition, namely, the function e-Sin x.
We start by generating 200 random values of the independent

variable xi over some appropriate domain, such as the unit interval [0,
1]. We sort the 200 xi into ascending order.

We are seeking a function f(x) such that, for every one of the 200
values xi of the variable x, we get zero when we perform the
following computation: The computation is to add the derivative
f’(xi) at the point xi (i.e., dy

dx) to the product of f(xi) at point xi (i.e., y)
and the cosine of xi. This rewording of the problem immediately

109

suggests an orderly general procedure for genetically finding the
function f(x) that satisfies the given differential equation.

Given the set of 200 ascending values of xi, we define a “curve
resulting from applying the function g” to be the 200 pairs (xi, g(xi)),
where g is some operation.

When the j-th individual genetically produced function fj in the
population (i.e. S-expression) is generated by the genetic
programming paradigm, we apply this function (i.e. S-expression) fj
to generate a curve. Specifically, we obtain 200 values of fj(xi)
corresponding to the 200 values of xi. We call these 200 pairs (xi,
fj(xi)) the “curve resulting from applying the genetically produced
function fi.”

We then numerically differentiate this curve (xi, fj(xi)) with respect
to the independent variable xi. That is, we apply the function of
differentiation to obtain a new curve. Specifically, we obtain a new
set of 200 pairs (xi, fj’(xi)) which we can call the “curve resulting
from applying the differentiation function” or “the derivative curve”.

We then apply the cosine function to obtain yet another curve.
Specifically, we take the cosine of the 200 random values of xi to
obtain a new set of 200 pairs (xi,Cos xi) which we may call the
“curve resulting from applying the cosine function” or “the cosine
curve.”

We then apply the multiplication function to the cosine curve and
the y curve to obtain still another curve. In particular, we multiply
the curve consisting of the set of 200 pairs (xi, Cos xi) by fj(xi) so as
to obtain a new curve consisting of the set of 200 pairs (xi, fj(xi)*Cos
xi).

We then apply the addition function to this new curve and the
derivative curve to obtain a new curve consisting of the set of 200
pairs (xi, fj’(xi) + fj(xi)*Cos xi).

To the extent that all 200 values of fj’(xi) + fj(xi)*Cos xi are close to
the right hand side of the given differential equation (i.e. the zero
curve) for the 200 values of xi, the genetically produced function fj is
a good approximation to the solution of the given differential
equation. Equivalently, to the extent that the curve consisting of the

110

200 pairs (xi, fj’(xi) + fj(xi)*Cos xi) is close to the “zero curve” (i.e.
the curve consisting of the 200 pairs (0, 0), the genetically produced
function fj is a good approximation to the solution to the given
differential equation.

Note that the problem of solving the given differential equation is
now equivalent to a symbolic regression problem over the set of
points (xi, fj’(xi) + fj(xi)*Cos xi).

In solving differential equations, the fitness of a particular
individual genetically produced function is expressed in terms of two
components. The first component is how well the function satisfies
the differential equation as just described above. The second
component is how well the function satisfies the initial condition of
the differential equation. The first component should receive the
majority of the weight in calculating fitness. We assign it 75% of the
weight in the examples below. The second component receives the
remainder of the weight.

The first component in computing the raw fitness of a genetically
produced function fj is the sum of the absolute values of the
differences between the zero function (i.e. the right hand side of the
equation) and fj’(xi) + fj(xi)*Cos xi for i between 0 and 199, namely

∑
i=0

199
 fj’(xi) + fj(xi)*Cos xi

The closer this sum of differences is to zero, the better.
Computation of the second component in the raw fitness of a

genetically produced function fj starts with the absolute value of the
difference between the value of the genetically produced function
fj(x

 ^) for the particular given initial condition point x ^ and the given
value
y

^ for the initial condition. Since this difference is constant over all
200 points, we multiply this difference by 200 to obtain this second
component. The closer this value is to zero, the better.

For differential equations, the raw fitness of a genetically produced
function fj is 75% of the first component plus 25% of the second

111

component. The closer this overall sum is to zero, the better. Thus,
standardized fitness equals raw fitness for this problem.

We now apply the above method to solving the given differential
equation.

The first major step in using the genetic programming paradigm is
to identify the set of terminals. The terminal set here is

T = {X}.

The second major step in using the genetic programming paradigm
is to identify a set of functions. The function set for this problem is

F = {+, -, *, %, SIN, COS, EXP, RLOG}

taking 2, 2, 2, 2, 1, 1, 1, and 1 arguments, respectively.
In one run, the best individual S-expression in the initial random

population (generation 0) was, when simplified, equivalent to
e 1 - ex.

Its raw fitness was 58.09. Only 3 of the 200 points were hits. As it
happens, this individual satisfies the initial condition (i.e.
y

^ = 1.0 when
x

^ = 0.0). This non-zero raw fitness of 58.09 (averaging 0.29 for each
of the 200 points) comes entirely from the 75% component of raw
fitness representing non-satisfaction of the differential equation.

 By generation 2, the best-of-generation individual in the population
was, when simplified, equivalent to

e1 - e Sin x
Its raw fitness was 44.23. Only 6 of the 200 points were hits. Since
this individual happens to satisfy the initial condition perfectly, this
raw fitness of 44.23 (i.e. 0.221 for each of the 200 points) comes
entirely from non-satisfaction of the equation.

Although this best-of-generation individual from generation 2 is not
a solution to the differential equation, it is a better approximation to
the solution than the best-of-generation individual from generation 0.

By generation 6, the best single individual S-expression in the
population was, when simplified, equivalent to

112

e-Sin x.
The raw fitness of this best-of-generation individual is down to a

mere 0.057. Moreover, 199 of the 200 points are hits. Note that we
do not necessarily get exactly 200 hits because of errors associated
with numerical differentiation (particularly at the endpoints of the
interval). Since this individual happens to satisfy the initial condition
perfectly, this raw fitness of 0.057 (i.e. approximately 0.0003 for each
of the 200 points) comes entirely from non-satisfaction of the
equation.

This function is, in fact, the exact solution to the differential
equation and its initial conditions.

The following three illustrative abbreviated tabulations of
intermediate values for the best-of-generation individuals from
generation 0, 2, and 6 will further clarify the above process. In each
simplified calculation, we use only five equally spaced xi points in the
interval [0, 1], instead of 200 randomly generated points. These five
values of xi are shown in line 1.

The first calculation applies to the best-of-generation individual
from generation 0, namely

e 1 - e x

1 xi 0.0 .25 .50 .75 1.0

2 y = e 1 - e x 1.00 .753 .523 .327 .179

3 Cos xi 1.00 .969 .876 .732 .540

4 y * Cos xi 1.00 .729 .459 .239 .097

5 dy
dx

-.989 -.955 -.851 -.687 -.592

6 dy
dx + y * Cos x

.011 -.225 .392 -.447 -.495

Line 2 shows the value of this best-of-generation individual from
generation 0 for the five values of xi. Line 3 shows the cosine of each
of the five values of xi. Line 4 is the product of line 2 and line 3 and
equals y * Cos xi for each of the five values of xi.

Line 5 shows the numerical approximation to the derivative dy
dx for

each of the five values of xi. For the three xi points that are not
endpoints of the interval [0, 1], this numerical approximation to the
derivative is the average of the slope to the left of the point xi and the

113

slope to the right of the point xi. For the two endpoints of the interval
[0, 1], the derivative is the slope to the nearest point.

Line 6 is the sum of line 4 and line 5 and is an approximation to the
value of the left hand side of the differential equation for the five
values of xi. Recall that if the S-expression were a solution to the
differential equation, line 6 would be all zero or approximately zero
(to match the right hand side of the equation). Of course, this best-of-
generation individual from generation 0 is not a solution to the
differential equation. We did not expect the values on line 6 to be
zero.

The second table applies to the best-of-generation individual from
generation 2, namely

e 1 - e Sin x

1 xi 0.0 .25 .50 .75 1.0

2 y =e 1 - e Sin x 1.00 .755 .541 .376 .267

3 Cos xi 1.00 .969 .878 .732 .540

4 y * Cos xi 1.00 .732 .474 .275 .144

5 dy
dx

-.979 -.919 -.758 -.547 -.437

6 dy
dx + y * Cos x

.021 -.187 -.283 -.271 -.292

Lines 1 through 5 are calculated using this best-of-generation

individual from generation 2 in the same manner as above. Again,
line 6 is an approximation to the value of the left hand side of the
differential equation for the five values of xi. The sum of the absolute
value of the three non-endpoint values of line 6 is 0.74. Their
average magnitude is 0.247. If we multiply this number by 200, we
get 49.4. This value of 49.5 is close to the more accurate raw fitness
of 44.23 obtained above with 200 points even though we are using
only five xi points here (instead of 200) and the ∆x here is 0.25
(instead of an average of only 0.005). Of course, this best-of-
generation individual from generation 2 is not a solution to the
differential equation. We did not expect the values on line 6 to be
zero.

The third calculation applies to the best-of-generation individual
from generation 6, namely

114

e - Sin x

1 xi 0.0 .25 .50 .75 1.0

2 y =e - Sin x 1.0 .781 .619 .506 .431

3 Cos xi 1.0 .969 .878 .732 .540

4 y * Cos xi 1.0 .757 .543 .370 .233

5 dy
dx

-.877 -.762 -.550 -.376 -.299

6 dy
dx + y * Cos x

0.123 -.005 -.007 -.006 -.067

Line 6 is an approximation to the value of the left hand side of the

differential equation for the five values of xi. Note that the three non-
endpoint values in line 6 are

-.005, -.007, -.006.
That is, they are each very close to zero. The appearance of these
near zero numbers in line 6 indicates that we have at least a good
approximation to a solution to the differential equation. As
mentioned above, when we use 200 points (instead of just five), the
values on line 6 approximately average a mere 0.0003 for generation
6.

In summary, we solved the given differential equation for a function
which satisfied the differential equation and its initial conditions.
EXAMPLE 2

A second example of a differential equation is
dy
dx - 2y + 4x = 0

with initial condition such that y ^ = 4 when x ^ = 1.
In one run, the best single individual S-expression in generation 28

was

(+ (* (EXP (- X 1)) (EXP (- X 1))) (+ (+ X X) 1)).

This is equivalent to
e-2e2x + 2x +1,

which is the exact solution to the differential equation.

115

15.2. INTEGRAL EQUATIONS

Integral equations are equations that involve the integral of the
unknown function. Integral equations can be solved by the genetic
programming paradigm using the same general approach and tools as
described above. Of course, at some point, we take the integral of the
genetically produced function,instead of a derivative.

An example of an integral equation is

y(t) - 1 + 2 ⌡⌠
r=0

r=t
 Cos(t-r) y(r) dr = 0.

In one run, we found the solution to this integral equation, namely,
y(t) = 1 - 2te-t

15.3. INVERSE PROBLEMS

The problem of finding the inverse function is simply a problem of
symbolic regression with the values of the original independent
variable interchanged with the values of the original dependent
variable.

15.4. GENERAL FUNCTIONAL EQUATIONS

General functional equations can be solved by the genetic
programming paradigm using the same general approach and same
tool kit as for differential equations.

16. PLANNING — BLOCK STACKING

Planning in artificial intelligence and robotics requires finding a
plan that receives information from sensors about the state of the
various objects in a system and then uses that information to select a
sequence of actions to change the state of the objects in that system.
We have previously seen planning in the artificial ant problem. The
planning problem in this section involves an explicit iterative
operation.

The block stacking problem is a robotic planning problem involving
rearranging uniquely labeled blocks into a specified order on a single
target tower. In the version of the problem involving nine blocks, the
blocks are labeled with the nine different letters of “FRUITCAKE” or
“UNIVERSAL.” The goal is to automatically generate a plan
(Genesereth and Nilsson32) that solves this problem. This problem

116

illustrates the use of an iterative operator DU (“Do Until”) in the
solution of the problem.

The STACK is the ordered set of blocks that are currently in the
target tower (where the order is important). The TABLE is the set of
blocks that are currently not in the target tower (where the order is not
important). The initial configuration consists of certain blocks in the
STACK and the remaining blocks on the TABLE (see Figure 1.43).
The desired final configuration consists of all the blocks being in the
STACK in the desired order (i.e. “UNIVERSAL”) and no blocks
remaining on the TABLE.

L
A
S
R

V
I

U
N

E

Goal State

Stack

L

A

S R VI

U
N

E

Table

Stack

Initial State
Figure 1.43 A possible Initial State and the Goal State for

the Block Stacking Problem
Three sensors dynamically track the system. The sensor CS

dynamically specifies the top block of the STACK. The sensor TB
(“Top correct Block”) dynamically specifies the top block on the
STACK such that it and all blocks below it are in the correct order.
The sensor NN (“Next Needed”) dynamically specifies the block
immediately after TB (“Top Correct Block”) in the goal
“UNIVERSAL” (regardless of whether or not there are incorrect
blocks in the STACK).

Figure 1.44 shows the STACK consisting of URSAL, the sensor CS
is U, while the sensor TB (the top correct block) is R since RSAL are
in the correct order. The sensor NN (next needed) is E since E is the
block that belongs on top of RSAL.

117

L
A
S
R

V I

U

NE

CS

NN

TB

Figure 1.44 The Initial Values for the Sensor Variables NN,

TB and CS.
The first major step in using the genetic programming paradigm is

to identify the set of terminals. The terminal set T for this block
stacking problem consists of the three sensors, namely,

T = {TB, NN, CS}.

Each of these terminals is a variable atom that may assume, as its
value, one of the nine block labels or NIL.

The second major step in using the genetic programming paradigm
is to identify a set of functions. The function set F contains five
functions

F = {MS, MT, DU, NOT, EQ}

having 1, 1, 2, 1, and 2 arguments, respectively.
The three functions MS, MT, and DU are described below.
The function MS (“Move to the Stack”) has one argument. The S-

expression (MS x) moves block x to the top of the STACK if x is on
the TABLE. This function MS does nothing if x is already on the
STACK, if the table is empty, or if x itself is NIL. Both this function
and the function MT described below return NIL if they do nothing
and T if they do something; however, their real functionality is their
side effects on the STACK and TABLE, not their return values.

The function MT (“Move to the Table”) has one argument. The S-
expression (MT x) moves the top item of the STACK to the TABLE
if the STACK contains x anywhere in the STACK. This function MT
does nothing if x is on the TABLE, if the STACK is empty, or if x
itself is NIL.

118

The iterative operator DU (“Do Until”) has two arguments. The S-
expression (DU work predicate) iteratively does the WORK until the
predicate becomes satisfied (i.e. becomes non-NIL). The DU
operator is similar to the “REPEAT...UNTIL” loop found in many
programming languages. Note that the iterative DU operator differs
from the typical LISP S-expression in that the work and predicate
arguments are not evaluated outside the DU operator and then passed
to the DU operator when the DU operator is evaluated. Instead, these
arguments are evaluated dynamically inside the DU operator on each
iteration. First, the work is evaluated inside the DU operator. Then
the predicate is evaluated inside the DU operator. These two separate
evaluations are performed, in sequence, as if the LISP function EVAL
were operating inside the DU operator. Note that in an iterative
construction, the execution of the work will often change some
variable that will then be tested by predicate. Indeed, that is usually
the purpose of the loop. Thus, it is important to suppress premature
evaluation of the work and predicate arguments of the DU operator.

The genetic programming paradigm involves executing randomly
generated computer programs and genetically manipulated computer
programs. As a result, individual S-expressions in this problem can
contain an unsatisfiable termination predicate. Thus, it is a practical
necessity (when working on a serial computer) to place a limit on the
number of iterations allowed by any one execution of a DU operator.
Moreover, since the individual S-expressions in the genetic
population often contain complicated and deep nestings of numerous
DU operators, a similar limit must be placed on the total number of
iterations allowed for all DU functions that may be evaluated in the
process of evaluating any one individual S-expression for any one
case. In particular, the DU operator times out if there have been more
than 25 iterations for an evaluation of a single DU operator or if there
have been a total of more than 100 iterations for all DU operators that
are evaluated for a particular individual S-expression for a particular
fitness case. Of course, if we could execute all the individual LISP S-
expressions in parallel (as nature does) so that the infeasibility of one
individual in the population does not bring the entire process to a halt,
we would not need these limits.

Note that even when a DU operator times out, it nevertheless
returns a value. This explicit return value resulting from the
evaluation of the DU operator is, of course, in addition to the side
effects that may have already been performed by the arguments to the

119

DU function on the state variables of the system. The return value is
a Boolean value that indicates whether the predicate was successfully
satisfied or whether the DU operator timed out.

If the predicate of a DU operator is satisfied when the operator is
first called, then the DU operator does no work at all and simply
returns T.

Note that the fact that each function returns some value under all
conditions (in addition to whatever side effects it has on the STACK
and TABLE). This guarantees closure of the function set so that
every possible S-expression that might be created can be executed.

The third major step in using the genetic programming paradigm is
the identification of the fitness function for evaluating how good a
given computer program is at solving the problem at hand. The raw
fitness of a particular individual plan (i.e. computer program) for the
block stacking problem is the number of initial conditions (i.e. fitness
cases) for which the particular plan produces the desired final
configuration of blocks after the plan is executed. For this problem,
there are millions of different fitness cases of N blocks distributed
between the STACK and the TABLE. Sampling of the fitness cases
is required in order to solve evaluate the fitness of a plan in a
reasonable amount of time.

Thus, we construct a structured sampling of fitness cases for
measuring fitness. In particular, if there are N blocks, there are N+1
fitness cases in which the blocks, if any, in the initial STACK are all
in the correct order and in which there are no out-of-order blocks on
top of the correctly-ordered blocks in the initial STACK. There are
also N-1 additional fitness cases where there is precisely one out-of-
order block in the initial STACK on top of whatever number of
correctly-ordered blocks, if any, happen to be in the initial STACK.
There are additional fitness cases with more than one out-of-order
block in the initial STACK on top of various numbers of correctly-
ordered blocks in the initial STACK. In lieu of the millions of
possible fitness cases, we construct a structured sampling of fitness
cases for measuring fitness consisting of the following 166 fitness
cases:

• the l0 cases where the 0-9 blocks in the STACK are already in
correct order,

• the 8 cases where there is precisely one out-of-order block in the
initial STACK on top of whatever number of correctly-ordered
blocks, if any, happen to be in the initial STACK, and

120

• a structured random sampling of 148 additional cases with
between zero and eight correctly-ordered blocks in the initial
STACK and a random number (between two and eight) of out-of-
order blocks on top of the correctly-ordered blocks.

Raw fitness is the number of fitness cases (out of 166) that the plan
(computer program) correctly handles. A plan correctly handles a
fitness case if the STACK contains nine blocks spelling
“UNIVERSAL” when it is finished.

Raw fitness ranges between 0 and 166. Standardized fitness, in turn,
equals 166 minus raw fitness. A standardized fitness of zero
corresponds to 166 correctly handled cases.

Obviously, the construction of a sampling such as this must be done
so that the process is not misled into producing solutions that
correctly handle some unrepresentative subset of the entire problem
but cannot correctly handle the entire problem.

16.1. CORRECTLY STACKING BLOCKS

The first version of the block-stacking problem we consider
involves finding a plan (i.e. computer program) which can correctly
stack the nine blocks onto the STACK in the desired order after
starting with any of the 166 fitness cases. Each plan is executed
(evaluated) once for each of the 166 cases.

The initial random population of plans contains a variety of
complicated, inefficient, pointless, and counter-productive plans. One
initial random plan

(EQ (MT CS) NN)

unconditionally moves the top of the STACK to the TABLE and then
performs the useless Boolean comparison between the sensor value
NN and the return value of the MT function.

Another initial random plan

(MS TB).

futilely attempts to move the block TB (which already is in the
STACK) from the TABLE to the STACK.

Many initial random plans are so ill-formed that they perform no
action at all on the STACK and the TABLE. These plans score a raw
fitness of one (out of a maximum of 166) because they leave the

121

STACK untouched in the one fitness case consisting of an already
perfectly arranged STACK.

Other initial random plans are even more unfit and even disrupt a
perfectly arranged initial STACK.

Some idiosyncratic initial random plans achieve modest fitness
levels, but have no utility in general. They contain particular action
sequences that happen to work on a specific two, three, or four of the
fitness cases. For example, the plan

(EQ (MS NN) (EQ (MS NN) (MS NN)))

moves the next needed block (NN) from the TABLE to the STACK
three times. This plan works in the four particular specific fitness
cases where the initial STACK consists of six, seven, eight, or nine
correct blocks and no out-of-order blocks.

In one run, an individual plan emerged in generation 5 that correctly
handled 10 of the 166 fitness cases. This plan correctly handles the 10
fitness cases in the first group itemized above where the blocks, if
any, initially on the STACK happen to already be in the correct order
and where there are no out-of-order blocks on top of these correctly-
ordered blocks. This plan was

 (DU (MS NN) (NOT NN)).

This plan uses the iterative operator DU to do the work (MS NN) of
moving the needed block onto the STACK from the TABLE until the
predicate (NOT NN) is satisfied. This predicate is satisfied when
there are no more blocks needed to finish the STACK (i.e. the “next
needed” sensor NN is NIL).

Figure 1.45 shows this partially correct plan moving five needed
blocks (E, V, N, I, and U) to a STACK containing four blocks (R, S,
A, and L) that are already in the correct order.

122

L
A
S
R

VIU N E

Figure 1.45 Five blocks to go on top of RSAL being moved
from TABLE to STACK

This plan, of course, does not produce a correct final STACK if any
block initially on the STACK was incorrect. Thus, this plan performs
incorrectly in 156 of the 166 fitness cases. Nonetheless, this partially
correct plan will prove to be be a useful “building block” in the final
100% correct plan.

As additional generations are run, the performance of the best single
individual plan in the population typically increases somewhat from
generation to generation. These progressively improving plans each
deal correctly with a few more additional cases. At the same time, the
overall average fitness of the population also tends to increase some-
what from generation to generation as the population begins to
contain additional higher scoring plans.

In generation 10 of one run, the best single individual plan in the
population achieved a perfect score (that is, the plan produced the
desired final configuration of blocks in the STACK for 100% of the
fitness cases). This 100% correct plan was

(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN))).

Figure 1.46 graphically depicts this 100% correct plan from
generation 10.

123

EQ

NN

MS

NN

NOT

DU

CS

NOT

DU

MT

CS

Figure 1.46 100% correct, but inefficient, plan for stacking
blocks from generation 10

This plan consists of two sub-plans which are connected via the
function EQ (which is merely serving as a connective). The first sub-
plan is

(DU (MT CS) (NOT CS))

This sub-plan does the work of first moving CS (i.e. the top of the
STACK) to the TABLE. This continues until the predicate (NOT
CS) becomes T (True). This predicate becomes true when the top of
the STACK becomes NIL (i.e. the STACK becomes empty).
The second sub-plan

(DU (MS NN) (NOT NN))

does the work of iteratively moving the next needed block NN to the
STACK until there is no remaining next needed block NN.

Notice that the previously discovered partially correct plan

(DU (MS NN) (NOT NN)),

was incorporated as a subplan into the 100% correct final hierarchy.
This subplan became part of the hierarchy as a result of the crossover
operation. This subplan participated in the critical crossover
operation because its relatively high fitness (i.e. a raw fitness of 10
out of a possible 166) allowed it to be selected as a parent to
participate in the crossover operation which produced the 100%
correct final plan.

124

16.2. EFFICIENTLY STACKING BLOCKS

The 100% correct solution found in the basic version of the block
stacking problem described above is highly inefficient in that it re-
moves all the blocks, one by one, from the STACK to the TABLE
(even if they are already in the correct order on the STACK). This
plan then moves the blocks, one by one, from the TABLE to the
STACK. As a result, this plan uses 2319 block movements to handle
the 166 cases. We should not be surprised by this since the concept
of efficiency was not involved in any way in the basic version of the
problem described above.

The most efficient way to solve this version of the block stacking
problem, in terms of minimizing total block movements, is to remove
only the out-of-order blocks from the STACK and then to move the
next needed blocks to the STACK from the TABLE. This approach
uses only 1641 block movements to handle the 166 fitness cases.

Note, however, that nothing in the fitness function we defined
above for the basic version of the block stacking problem gave any
consideration whatsoever to efficiency as measured by the total
number of block movements involved. The only consideration in the
fitness function that we defined above was whether or not the plan
(computer program) correctly handled each of the 166 fitness cases
(either at its natural time of termination or when it timed out).

We can, however, simultaneously breed a population of plans
(computer programs) for two attributes at one time. In particular, we
can specifically breed a population of plans for both correctness and
efficiency by using a combined fitness measure that assigns a
majority of the weight (say 75%) to correctness and a minority of
weight (say 25%) to a secondary attribute (i.e. efficiency).

Specifically, if a plan correctly handles all 166 fitness cases, it
would receive 75 points towards the combined fitness measure. If a
plan correctly handles zero cases out of 166, it would receive zero
points towards the combined fitness measure. If a plan correctly
handled 40% of the 166 cases (i.e. 67 cases), it would receive 30
points (40% of 75) towards the combined fitness measure. Then, if
that plan took 1641 block movements, it would receive 25 additional
points towards the combined fitness measure. If the plan took
between 0 and 1640 block movements to perform its work, the 25
points available for efficiency would be scaled linearly upwards so
that a plan making zero block movements would receive zero of the
25 points. If the plan made between 1642 and 2319 block movements,

125

the 25 points available for efficiency would be scaled linearly
downwards so that a plan making 2319 block movements would
receive zero of the 25 points. If a plan made more than 2319 block
movements, it would also receive zero of the 25 points available for
efficiency.

In one run, the best single individual from the initial random
population performed correctly in only l of the 166 cases and made a
total of 6590 block movements. This plan was both incorrect and
inefficient.

However, by generation 11, the best individual in the population
was

(DU (EQ (DU (MT CS) (EQ CS TB))
 (DU (MS NN) (NOT NN)))
 (NOT NN))

This plan is both l00% correct and 100% efficient in terms of total
block movements. It uses the minimum number (1641) of block
movements to correctly handle all 166 fitness cases.

This l00% correct and 100% efficient plan is graphically depicted in
Figure 1.47.

NN

NOT

DU

CS

MT EQ

CS TB NN

MS

NN

NOT

DU

EQ

DU

Figure 1.47 100% correct and 100% efficient solution to the

block stacking problem
In this plan, the sub-plan

(DU (MT CS) (EQ CS TB))

iteratively moves CS (the top block) of the STACK to the TABLE
until the predicate (EQ CS TB) becomes satisfied. This predicate

126

becomes satisfied when CS (the top of the stack) equals TB (top
correct block in the STACK).

Figure 1.48 shows the out-of-order blocks (I and V) being moved to
the TABLE from the STACK until R becomes the top of the STACK.
When R is the top of the STACK, CS equals TB.

L
A
S
R
V
I

U N E

Figure 1.48 Out-of-order blocks I and V being moved from
STACK to the TABLE

Then, the previously discovered second sub-plan

(DU (MS NN) (NOT NN))

iteratively moves the next needed blocks (NN) to the STACK until
there is no longer any next needed block.

Notice that the function EQ serves only as a connective between the
two sub-plans. Notice also that the outermost DU function performs
no function (but does no harm) since the predicate (NOT NN) is
satisfied at the same time as the identical predicate of the second sub-
plan. In that regard, these functionless elements are similar to the
approximately 99% of nucleotide bases (out of approximately 2.87
billion) in a human genome that never get expressed into protein.

17. OPTIMAL CONTROL

Problems of optimal control involve a system that is described by
state variables. The future state of the system is determined by the
choice of certain control variables. The objective in optimal control
is to choose the control variables so as to cause the system to go to a
specified target state with an optimal (typically minimal) cost.

The problem of balancing a broom in minimal time by applying a
bang-bang force from either direction is a well-known optimal control
problem (Widrow33). The broom balancing problem involves a push
cart with mass mc moving on a one dimensional frictionless track and

127

a broom (inverted pendulum) of mass mb pivoting on the top of the
cart. The broom has an angle θ (measured from the vertical) and an
angular velocity ω. The distance from the center of mass of the
broom to the pivot is λ.

There is one control variable for this system, namely, a bang-bang
force F of fixed magnitude which can be applied to the center of mass
of the cart at each time step so as to accelerate the cart towards either
the positive or negative direction along the track.

There are four state variables of this system, namely, position x,
velocity v, angle θ , and angular velocity ω.

Figure 1.49 shows the cart at time t with position x(t), velocity v(t),
an angle θ (t) between the broom and the vertical, and angular
acceleration ω (t). The bang-bang force is being applied so as to
accelerate the cart towards the positive direction.

Force

Angle (t)θ

Velocity V(t)

Position X(t)
X

0.0

Angular
Velocity (t)ω

Figure 1.49 Moving cart with pivoting broom

At each time step, the choice of value of the control variable (i.e.
the quantity u equal to a multiplier of either +1 or -1 to the magnitude
F of the force F) at time step t causes a change in the state variables

of the system at time step t+1.
The state transitions of this system are expressed by non-linear

differential equations. At each discrete time step τ , the current state
of the system and the force being applied at that time step are used to
compute the state of the system at the next time step.

In particular, the angular acceleration of the broom Φ (t) at time t is
given by (Anderson34) as

128

Φ (t) =
gSin θ + Cos θ

-F -mp λ ω θ 2 Sin θ
mc + mp

λ






4

3 -
mp Cos2 θ
mc + mp

The angular velocity ω (t+1) of the broom at time t+1 is therefore
ω (t+1) = ω (t) + τ Φ (t)

Then, as a result of this angular acceleration Φ (t), the angle θ (t+1)
at time t+1 is, using Euler approximate integration,

θ (t+1) = θ (t) + τ ω (t).
The acceleration a(t) of the cart on the track is given by

a(t) =
F + mp λ [θ 2 Sin θ - ω Cos θ]

mc + mp

The velocity v(t+1) of the cart on the track at time t+1 is therefore
v(t+1) = v(t) + τ a(t).

The position x(t+1) of the cart on the track at time t+1 is
x(t+1) = x(t) + τ v(t).

The problem is to find a time-optimal control strategy (i.e. a
computer program) for balancing the broom that satisfies the
following three conditions:

• The control strategy (computer program) specifies how to apply
the bang-bang force at each time step for any combination of the
state variables .

• The system comes to rest with the broom balanced (i.e. reaches a
target state with approximate speed 0.0, approximate angle θ of
0.0, and approximate angular velocity ω of 0.0).

• The time required is minimal.
The constants here are mc = 0.9 kilogram, mb = 0.1 kilogram,

gravity g=1.0 meters/sec2, time step τ =0.02 seconds, and length λ =
0.8106 meters.

The first major step in using the genetic programming paradigm is
to identify the set of terminals. In this section, we consider only the
particular version of the broom balancing problem that controls the
three state variables of velocity v, angle θ , angular velocity ω). Thus,
the terminal set for this problem is

T = {v, θ , ω , ←},

129

where ← is the ephemeral random constant for floating point random
numbers.

The second major step in using the genetic programming paradigm
is to identify the set of functions. The function set for this problem
consists of addition, subtraction, multiplication, division, the sign
function (SIG), the absolute value function (ABS), the square root of
absolute value function (SRT), the square function (SQ), the cube
function (CUB), and the greater-than function (GT). The greater-than
function GT is a function of two arguments which returns +1 if its
first argument is greater than its second argument and returns -1
otherwise.

That is, the function set for this problem is

F= {+, -, *, %, SIG, ABS, SRT, SQ, CUB, GT}

taking 2, 2, 2, 2, 1, 1, 1, 1, 1, and 2 arguments, respectively.
The use of the protected division function (%), the square root of

absolute value function (SRT), and the greater-than function (GT)
together guarantee closure of the function set.

Since we do not know the exact mathematical solution to this
problem, we have no guarantee as to the sufficiency of the function
set.

We included both the SIG and ABS functions, the square function
(SQ), and cube function (CUB) merely because these extraneous
functions might prove useful. Each additional function in the
function set of the genetic programming paradigm usually slightly
reduces the efficiency of the run. On the other hand, the solution
produced by the genetic programming paradigm rarely comes in the
precise form we anticipate. Moreover, the large benefits produced by
having one additional function in facilitating a rapid and relatively
parsimonious solution often far overweights the slight cost of having
one extraneous function in the function set. For example, the
artificial ant problem (Section 7) can be solved without having both
the LEFT and RIGHT functions; however, the solution comes much
more slowly and the solution is far less parsimonious. We believe
that, when in doubt, it is often better to include potentially extraneous
functions.

The third major step in setting up the genetic programming
paradigm is to identify the fitness function for the problem. Each
control strategy is executed (evaluated) on every time step of each
fitness case. This problem requires an output interface (wrapper) to

130

guarantee that every value returned as a result of the execution of a
control strategy is translated into some appropriate bang-bang force.
For this problem, the wrapper specifies that any positive numerical
output will be interpreted so as to apply the bang-bang force F to
accelerate the system towards the positive direction. Any other output
(of whatever type) will be interpreted so as to apply the bang-bang
force F to accelerate the system towards the negative direction.

If an output interface (wrapper) is needed at all, the nature of the
wrapper needed by a particular problem flows from the choice of the
terminal set and the function set for the problem. Most problems do
not require any wrapper in the genetic programming paradigm
because we are free to choose the functions and terminals in terms
that are very natural for the problem. This particular problem
requires a wrapper since we want a binary result (i.e. the bang-bang
force) whereas the state variables (terminals) and functions applied to
the state variables are real-valued. If a wrapper is required at all, it is
typically a very simple one (as is the case here). The randomizer
problem (Section 9) required a similar wrapper to create a binary
result.

Figure 1.50, shows a control surface partitioning the three
dimensional v-θ− ω state space. When the system is at a point
(v, θ,ω)in the state space that is above the control surface, the force F
is applied so as to accelerate the cart towards the positive direction.
Otherwise, the force is applied so as to accelerate the cart towards the
negative direction.

131

Figure 1.50 Illustrative control surface partitioning the
three dimensional state space for the broom balancing

problem
The fitness cases for this problem consists of 10 initial condition

cases. Position is chosen randomly between -0.2 and +0.2 meters.
Velocity v is chosen randomly between -0.2 and +0.2 meters/second.
Angle θ is chosen randomly between -0.2 radians (about 11.5 degrees)
and +0.2 radians. Angular velocity ω is chosen randomly between -
0.2 and +0.2 radians per second. The force F is 1.0 Newtons.

Time was discretized into 300 time steps of .02 seconds. The total
time available before the system times out for a given control strategy
is thus 6 seconds. If the square root of the sum of the squares of the
velocity v, angle θ , and angular velocity ω is less than 0.07 (the hit
criterion), the system is considered to have arrived at its target state
(i.e. with the broom balanced and the cart at rest). If a particular
control strategy brings the system to the target state for a particular
initial condition case, its fitness for that initial condition case is the
time required (in seconds). If a control strategy fails to bring the
system to the target state before it times out for a particular initial
condition case, its fitness for that case is set to 6 seconds (i.e. the

132

maximum). The “fitness” of a control strategy is the average time for
the strategy over all 10 fitness cases.

The initial population of random control strategies in generation 0
includes many highly unfit control strategies, including totally blind
strategies that ignore all the state variables, partially blind strategies
that ignore some of the state variables, strategies that repetitively
apply the force from only one direction, strategies that are correct
only for a particular few specific fitness cases, strategies that are
totally counter-productive, and strategies that cause wild oscillations
and meaningless gyrations.

In one run, the average time consumed by the initial random
strategies in generation 0 averaged 5.3 seconds. In fact, a majority of
these 300 random individuals “timed out” at 6 seconds (and very
likely would have timed out even if more time had been available).
However, even in this highly unfit initial random population, some
control strategies are somewhat better than others.

133

The best single control strategy in generation 0 was the non-linear
control strategy

v2+ θ
which averaged 3.77 seconds. Note that this control strategy is
partially blind in that it does not even consider the state variable ω in
specifying how to apply the bang-bang force.

The average population fitness improved to 5.27, 5.23, 5.15, 5.11,
5.04, and 4.97 seconds per fitness case in generations 1 through 6,
respectively.

The best single individual of generation 4 was the simple linear
control strategy

(+ (+ ANG AVL) AVL).

This S-expression is equivalent to
θ + 2 ω.

The control surface corresponding to this S-expression is merely a
plane. In generation 6, the best single individual was the non-linear
control strategy

 θ + √ (| ω | - ω 2).
This individual performed in an average of 2.66 seconds. Moreover,

this individual succeeded in bringing in 7 out of the 10 fitness cases
to the target state. This compares to only 4 such hits for the best
single individual of generation 0 (where, in fact, about two thirds of
the individuals in the population scored only one “hit”).

By generation 10, the average population fitness had improved
further to 4.8 seconds and scored 8 hits. The best single individual
was

θ + 2 ω - v2.
Note that this individual is not partially blind and considers all three

state variables.
By generation 14, the average fitness had improved to 4.6 seconds.

And, for the first time, the mode of the hits histogram moved from 1
(where it started at generation 0) to a higher number (namely 4). In
generation 14, 96 of the 300 individuals scored 4 hits. This undulating
left-to-right “slinky-like” motion in the hits histogram occurs as the
system progressively learns.

The best single individual of generation 16 is the S-expression

(+ (* (SQ (+ ANG AVL)) (SRT AVL))
 (+ (- ANG (SQ VEL)) AVL))

134

This s-expression is equivalent to
√ω (θ + ω)2 + ω + θ – v2

Figure 1.51 shows the highly non-linear control surface
corresponding to this S-expression for generation 16.

Figure 1.51 Control surface for best-of-generation

individual for generation 16 of broom balancing problem
The best single individual of generation 20 is the S-expression

(+ (* (ABS (SQ (+ ANG AVL))) (SRT AVL))
 (+ (- ANG (SQ VEL)) AVL))

This s-expression is equivalent to
√ω (ω + θ)2 + ω + θ – v2

The highly non-linear control surface corresponding to this S-
expression for generation 20 is only slightly different from that of
generation 16.

In generation 24, we attained one individual that scored 10 hits. The
best individual in generation 24 is, when simplified, the non-linear
control strategy

 v + θ + 2 ω + θ 3.
This individual had a raw fitness of 2.63 seconds.

135

By generation 24, the population average fitness improved to 4.2
seconds.

Generation 27 is the last time when we see a linear control strategy
as the best individual in the population. The best single individual in
the population at generation 27 was

v + 2 θ + 3 ω .
This individual scored 10 hits and had fitness of 2.16 seconds. Note

that the computer program or control strategy can be viewed as
defining the optimal control surface that partitions the state space into
parts. For this particular generation, the control surface is merely a
plane.

In generation 33, the best single individual bears a resemblance to
the ultimate solution we attain in generation 46. In generation 33, the
best single individual is

8 ω3 + v + θ + ω .
This individual had fitness 1.57 seconds. Moreover, 15% of the

individuals in the population in generation 33 scored 10 hits.
The best single individual for generation 34 was the S-expression

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG)
 (ABS (ABS (SQ (* (* (SRT 0.24000001)
 (+ (SRT ANG) AVL))
 (ABS VEL))))))

This s-expression is equivalent to

(2ω)3 + v + ω + θ + []√0.24(√θ + ω) v 2

Figure 1.52 shows the non-linear control surface corresponding to
this S-expression for generation 34.

136

Figure 1.52 Control surface for the best-of-generation

individual for generation 34 of the broom balancing problem
By generation 35, the high point of the hits histogram of the

population moved from 4 hits to 10 hits. In particular, 30% of the
individuals in the population scored 10 hits. The best single
individual for generation 35 was

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG)
 (ABS (ABS (SQ ANG))))

This s-expression is equivalent to
(2ω)3 + v + ω + θ + θ 2

The best single individual for generation 40 was the S-expression

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG)
 (+ (+ (CUB (+ (+ VEL AVL) ANG)) (+ VEL AVL)) ANG))

This S-expression is equivalent to
(2ω)3 + 2(v + ω + θ) + ()v + ω + θ 3

The best single individual for generation 44 was the S-expression

137

(+ (+ ANG AVL) (+ (+ (+ (CUB (+ AVL AVL))
 (+ VEL AVL)) ANG) VEL))

This s-expression is equivalent to
2(v + ω + θ) + (2ω)3

Finally, in generation 46, the best single individual in the
population was the S-expression

(+ (+ (+ (CUB (+ AVL AVL)) (+ VEL AVL)) ANG)
 (+ (* (+ VEL AVL) (+ (SRT ANG) AVL)) ANG))

This S-expression corresponds to the following 8-term non-linear
control strategy:

v + 2 θ + ω + 8 ω 3 + ω 2 + v ω + v  θ + ω  θ .
Figure 1.53 shows the non-linear control surface corresponding to

this S-expression for generation 46.

Figure 1.53 Control surface for the best-of-generation

individual for generation 46 of the broom balancing problem
Figure 1.54 shows the progressive improvement (decrease) during

this run of the average raw fitness of the population and the best-of-
generation individual. The raw fitness of the worst single individual
in the population is at the top of the graph for almost every generation

138

indicating the presence of at least one individual that timed out for all
10 fitness cases.

0 23 46
0

2

4

6

Worst of Gen.
Average
Best of Gen.

Broom Balancing - Best of Gen., Worst and Average

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

Figure 1.54 Standardized fitness for worst-of-generation

individual, average standardized fitness for population, and
standardized fitness for best-of-generation individual for

broom balancing problem
There is no known solution for this problem nor is there any

specific test we can perform on an apparent solution that we obtain to
verify that it is the optimum.

The decision as to when to terminate a run presents some difficulty
in optimization problems in general since we are seeking both the
unknown optimal time and the computer program that achieves this
unknown time.

After its discovery, this single best control strategy found in
generation 46 was retested on 1000 additional random initial
condition points. It performed in an average of 1.51 seconds.

In another test, this control strategy from generation 46 averaged
2.65 seconds when the initial conditions consisted of the 8 corners of
the v- θ - ω cube. In another test, it took 4.24 seconds when the initial
conditions consisted of the hardest two corners of the cube (i.e. where
the velocity, angle, and angular velocity have the same sign). This
control strategy never timed out for any internal point or any corner
point of the cube.

A pseudo optimum strategy developed by Keane (Koza and
Keane35,36) served as an approximate guide for verifying the

139

attainment of the optimal value for time. This pseudo optimum
strategy is an approximate solution to a linear simplification of the
problem.

The pseudo optimum strategy averaged 1.85 seconds over the 1000
random fitness cases in the retest. It averaged 2.96 seconds for the 8
corners of the cube. Moreover, it was unable to handle the 2 worst
corners of the cube.

These results (in average seconds per fitness case) are summarized
in the table below:

PERFORMANCE FOR 3-DIMENSIONAL BROOM
BALANCING PROBLEM

Control Strategy 1000
Points

8 Corners Worst 2
Corners

Benchmark Pseudo Optimum 1.85 2.96 Infinite
v + 2 θ + ω + 8 ω 3 + ω 2
 + v ω + v  θ + ω  θ

1.51 2.65 4.24

We know of no control strategy for this formulation of the broom
balancing problem as good as

v + 2 θ + ω + 8 ω 3 + ω 2 + v ω + v  θ + ω  θ .
from generation 46 of the run described above. We do know that this
control strategy had the best time of the many similar control
strategies that we discovered; that there were numerous other control
strategies that were only slightly worse (thereby suggesting possible
convergence); and that this particular control strategy is slightly better
than the benchmark psuedo optimum strategy developed by Keane.

Figure 1.55 graphically depicts the control strategy from generation
46.

θ

√

*

ω

θ

√

*

v

*

v ω

*

2 θ

ωv

+

*

8

ω

3 ω

2

Figure 1.55 Best-of-generation individual from generation

46 of the broom balancing problem.

140

18. MINIMAX STRATEGY FOR A GAME

The problem of discovering a strategy for playing a game is an
important problem in game theory.

In a game, there are two or more independently-acting players who
make choices (moves) and receive a payoff based on the choices they
make.

A strategy for a given player in a game is a way of specifying what
choice the player is to make at a particular point in the game from all
the allowable choices at that time, given all the information that is
available to the player at that time.

The problem of discovering a strategy for playing a game can be
viewed as requiring the discovery of a computer program. Depending
on the game, the desired computer program takes as its input either
the entire history of past moves in the game or the current state of the
game. The desired computer program then produces the next move as
its output.

Consider the discrete 32-outcome game whose game tree is
presented in extensive form in Figure 1.56.

141

Figure 1.56 32-outcome game tree with payoffs

L
R

R
L

L

L

L

L
L

L

R

O
O

O
O

X
X

O

L
R

R

R

L

L

L

L
L

L
R

R
R

R
R

R
R

R

R

O
O

O
O

X
X

O

X

L
R

12

10
12

14
12

16
10

12
16

6
2

4
8

10
14

X
22

30
26

18
4

20
8

32
12

16
24

10
2

14
6

28

31
32

15
16

7
8

24
23

3
4

20
19

28
27

11
12

2
1

18
17

26
25

9
10

30
29

13
14

5
6

22
21

142

This game is a two-person, competitive, zero-sum 32-outcome
game in which the players make alternating moves. On each move, a
player can choose to go L (left) or R (right). Each internal point of this
tree is labeled with the player who must move. Each line is labeled
with the choice (either L or R) made by the moving player. Each
endpoint of the tree is labeled with the payoff (to player X). After
player X has made three moves and player O has made two moves,
player X receives (and player O pays out) the particular payoff shown
at the particular endpoint of the game tree.

Since this game is a game of complete information, each player has
access to complete information about his opponent's previous moves
(and his own previous moves). This historical information is
contained in five variables XM1 (X's move 1), OM1 (O's move 1), and
XM2 (X's move 2), OM2 (O's move 2). These variables each assume
one of three possible values: L (left), R (right), or U (undefined). A
variable is undefined (U) prior to the time when the move to which is
refers has been made. Thus, at the beginning of the game, all five
variables are undefined. The particular variables that are defined and
undefined indicate the point to which play has progressed during the
play of the game. For example, if both players have moved once, XM1
and OM1 are defined (each as either L or R) but the other three
variables (XM2, OM2, and XM3) are undefined (i.e. have the value U).

A strategy for a particular player in a game specifies which choice
that player is to make for every possible situation that may arise for
that player. In particular, in this game, a strategy for player X must
specify his first move if he happens to be at the beginning of the
game. Second, a strategy for player X must also specify his second
move if player O has already made one move. Third, a strategy for
player X must also specify his third move if player O has already
made two moves.

Since Player X moves first, player X's first move is not conditioned
on any previous move. But, player X's second move will depend on
Player O's first move (i.e. OM1) and, in general, it will also depend on
his own first move (XM1). Similarly, player X's third move will
depend on player O's first two moves and, in general, his own first
two moves.

Similarly, a strategy for player O must specify what choice player O
is to make for every possible situation that may arise for player O.

A strategy here is a computer program whose inputs are the relevant
historical variables (XM1, OM1, XM2, and OM2) and whose output is a

143

move (L or R) for the player involved. Note that there is no reference
to XM3 since the game ends as soon as X makes his third move.

Four testing functions CXM1, COM1, CXM2, and COM2 provide the
facility to test each of the historical variables (XM1, OM1, XM2, and
OM2) that are relevant to deciding upon a player's move. Each of these
functions is a specialized form of the CASE function in LISP. For
example, function CXM1 has three arguments and evaluates its first
argument if XM1 (X's move 1) is undefined, evaluates its second
argument if XM1 is L (Left), and evaluates its third argument if XM1 is
R (Right). Functions CXM2, COM1, and COM2 are similarly defined.

The first and second major steps in using the genetic programming
paradigm are to identify the terminal set and the function set. The
terminal set for this problem is

T = {L, R}.

The function set is

F = {CXM1, COM1, CXM2, COM2}.

Each of these functions takes three arguments.
The third major step in using the genetic programming paradigm is

to identify the fitness function. The fitness of a particular strategy for
a particular player in a game is the average payoff received when that
strategy is played against all possible sequences of combinations of
moves by the opposing player.

Thus, when we compute the fitness of an X strategy, we must test
the X strategy against all 4 possible combinations of O moves — that
is, O's choice of L or R for his moves 1 and 2. When we compute the
fitness of an O strategy, we must test it against all 8 possible
combinations of X moves — that is, X's choice of L or R for his
moves 1, 2, and 3. Note that it is not sufficient, in general, for player
X to play only against an opponent who plays the minimax strategy
because X must also learn to take advantage of mistakes (non-
minimax play by the opponent).

When two minimax strategies are played against each other in this
particular game, the payoff is 12, which is the value of this game. A
minimax strategy typically takes advantage of non-minimax play by
the other player.

A hit for this problem (which we also sometimes call a minimax hit
in problems involving games) is the number of fitness cases (out of 4

144

for player X or 8 for player O) where the strategy being tested
achieves a payoff at least as good as the minimax strategy.

We now proceed to evolve a game-playing strategy for player X for
this game. The minimax strategy for player O serves as the
environment for evolving game-playing strategies for player X.

In one run, the best single individual game-playing strategy for
player X in generation 6 was

(COM2 (COM1 (COM1 L (CXM2 R (COM2 L L L)
 (CXM1 L R L))
 (CXM1 L L R)) L R)
 L (COM1 L R R).

Note that this strategy for player X is a composition of the four
functions (CXM1, COM1, CXM2, COM2) and two terminals (L and R) and
that it returns a value of either L or R.

This strategy for player X simplifies to

(COM2 (COM1 L L R) L R).

The interpretation of this strategy for player X is as follows. If both
OM2 (O's move 2) and OM1 (O's move 1) are undefined (U), it must be
player X's first move. That is, we are at the beginning of the game
(i.e. the root of the game tree). In this situation, the first argument of
the COM1 function embedded inside the COM2 function of this strategy
specifies that player X is to move L. The left move by player X at the
beginning of the game is player X's minimax move because it takes
the game to a point with minimax value 12 (to player X) as opposed
to a point with only minimax value 10.

If OM2 (O's move 2) is undefined but OM1 is defined, it must be
player X's second move. In this situation, this strategy specifies that
player X moves L if OM1 (O's move 1) was L and player X moves R if
OM1 was R. If OM1 (O's move 1) was L, player O has moved to a
point with minimax value 16. Player X should then move L (rather
than R) because that move will take the game to a point with minimax
value 16 (rather than 8). If OM1 was R, player O has moved to a point
with minimax value 12. This move is better for O than moving L.
Player X should then move R (rather than L) because that move will
take the game to a point with minimax value 12 (rather than 4).

If both OM1 and OM2 are defined, it must be player X's third move. If
OM2 was L, player X can either choose between a payoff of 32 or 31 or
between a payoff of 28 or 27. In either case, player X moves L. If OM2

145

was R, player X can choose between a payoff of 15 or 16 or between a
payoff of 11 or 12. In either case, player X moves R. In this situation,
this S-expression specifies that player X moves L if OM2 (O's move 2)
was L and player X moves R if OM2 was R.

If player O has been playing its minimax strategy, this S-expression
will cause the game to finish at the endpoint with the payoff of 12 to
player X. However, if player O was not playing his minimax strategy,
this strategy will cause the game to finish with a payoff of 32, 16, or
28 for player X. The total of the 12, 32, 16, and 28 is 88. The
attainment of these four values for player X (each better than 12)
constitutes 4 hits for player X.

Note that we needed the minimax strategy for player O to serve as
the environment for evolving this game-playing strategy for player X.

We now proceeded to evolve a game-playing strategy for player O
for this game. The minimax strategy for player X serves as the
environment for evolving game-playing strategies for player O.

In one run of the genetic programming paradigm, the best single
individual strategy for player O in generation 9 had a fitness of 52
and scored 8 hits. This minimax O strategy was

(CXM2 (CXM1 L (COM1 R L L) L) (COM1 R L (CXM2 L L R))
 (COM1 L R (CXM2 R (COM1 L L R) (COM1 R L R)))).

This strategy for player O simplifies to

(CXM2 (CXM1 # R L) L R).

Note that, in simplifying this strategy, we inserted the filler symbol
to indicate a situation that can never arise.

Note that we needed the minimax strategy for player X to serve as
the environment for evolving this game-playing strategy for player O.

19. EMERGENT BEHAVIOR FOR AN ANT COLONY

The repetitive application of seemingly simple rules can lead to
complex overall “emergent behavior” (Forrest37). Examples of
complex overall behavior that emerges from relatively simple rules
occur in the study of cellular automata, Lindenmayer systems,
fractals, and chaos as well as in nature.

Emergent functionality, according to Steels38, means that an overall
function is not achieved in the familiar way by a hierarchical system

146

of components, but, instead, indirectly by the interaction of more
primitive components with the world and among themselves.

Emergent functionality is one of the main themes of research in
artificial life (Langton et. al.39, Farmer et. al.40).

One avenue of work in emergent behavior involves researchers
writing sets of rules that produce the desired complex overall
behavior. In this section, we use the genetic programming paradigm
to evolve the sets of rules.

In this section, we genetically breed a computer program
controlling the behavior of an individual ant which, when
simultaneously executed in parallel by all the ants in an ant colony,
causes the emergence of interesting higher level collective behavior
for the colony as a whole.

In particular, the goal is to genetically evolve a common computer
program governing the behavior of the individual ants such that the
collective behavior of the ants consists of efficient transportation of
food to the colony. In nature, when an ant discovers food, it deposits
a trail of chemicals (called pheromones) as it returns to the nest with
the food. The pheromonal cloud (which dissipates over time) aids
other ants in efficiently locating and exploiting the food source
(Travers and Resnick41, Resnick42). An equivalent problem involves
robots on the moon bringing rock samples back to the space ship
(Steels38).

In this problem, 144 pellets of food are piled eight deep in two 3-
by-3 piles located in a 32-by-32 toroidal area. There are 20 ants. The
state of each ant consists of its position and the direction it is facing
(out of eight possible directions). Each ant initially starts at the nest
and faces in a random direction. Each ant in the colony is governed
by a common computer program associated with the colony.

The following nine operations are available in this problem:
• MOVE-RANDOM randomly changes the direction in which an

ant is facing and then moves the ant two steps in the new
direction.

• MOVE-TO-NEST moves the ant one step in the direction of the
nest. This implements the gyroscopic ability of ants to navigate
back to their nest.

• PICK-UP picks up food (if any) at the current position of the ant
if the ant is not already carrying food.

• DROP-PHEROMONE drops pheromones at the current position
of the ant (if the ant is carrying food). The pheromones

147

immediately forms a 3-by-3 cloud around the drop point. The
cloud decays over a period of time.

• IF-FOOD-HERE is a two-argument function that executes its first
argument if there is food at the ant's current position and,
otherwise, executes the second (else) argument.

• IF-CARRYING-FOOD is a similar two-argument function that
tests whether the ant is currently carrying food.

• MOVE-TO-ADJACENT-FOOD-ELSE is a one-argument
function that allows the ant to test for immediately adjacent food
and then move one step towards it. If food is present in more than
one adjacent position, the ant moves to the position requiring the
least change of direction. If no food is adjacent, the “else” clause
of this function is executed.

• MOVE-TO-ADJACENT-PHEROMONE-ELSE is a function
similar to the above based on adjacency of pheromones.

• PROGN is the LISP connective function that executes its
arguments in sequence

Each of the 20 ants in a given colony executes the colony's common
computer program at each time step. The execution of the common
program is done serially for each ant for a given time step. Thus, the
action of one ant can alter the state of the system for other ants (e.g.
by picking up food or dropping pheromones). Since the ants initially
face in random directions, make random moves, and encounter a
changing pattern of food and pheromones created by the activities of
other ants, the 20 ants almost always have different states and pursue
different trajectories.

The first major step in using the genetic programming paradigm is
to identify the set of terminals. The terminal set for this problem is

T = {MOVE-RANDOM, MOVE-TO-NEST, PICK-UP, DROP-
PHEROMONE}

The second major step in using the genetic programming paradigm
is to identify the set of functions. The function set for this problem is

F = {IF-FOOD-HERE, IF-CARRYING-FOOD, MOVE-TO-
ADJACENT-FOOD-ELSE, MOVE-TO-ADJACENT-
PHEROMONE-ELSE, PROGN}

The third major step in using the genetic programming paradigm is
to identify the fitness function. The raw fitness of a computer
program is measured by how many of the 144 food pellets are

148

transported to the nest within the allotted time (which limits both the
total number of time steps and the total number of operations which
any one ant can execute) when all the ants execute the given program.

Note that there are no explicit fitness cases in this problem. There
are sufficient ants (each with their own initial facing direction) so that
the fitness cases can be implicit.

Mere random motion by the 20 ants in a colony will, on average,
only bring the ants into contact with about 56 of the 144 food pellets
within the allotted time. Of course, the task is substantially more
complicated than merely coming in contact with food at random.
After coming into contact with food, the ants must pick up the food
and then move towards the colony. Moreover, even this sequence of
behavior is not sufficient to efficiently solve the problem in any
reasonable amount of time. When ants come in contact with food,
they must do something which makes the task easier than mere
random search thereafter. In particular, ants which come in contact
with food must also establish a pheromonal trail as they carry the
food back to the colony. This allows other ants to use the existence
of the pheromonal trail as a guide to the location of the food. Of
course, in addition, all ants must always be on the lookout for such
pheromonal trails and must, if they are not already carrying food,
follow such trails to the food when they encounter such trails.

In a typical run, 93% of the random computer programs in the
initial random generation did not transport even one of the 144 food
pellets to the nest within the allotted time. About 3% of these initial
random programs transported only one of the 144 pellets. Even the
best single computer program of the random computer programs
created in the initial generation successfully transported only 41
pellets (i.e. only about 2 per ant).

As the genetic programming paradigm is run, the population as a
whole and its best single individual both generally improve from
generation to generation.

In one run, the best single individual in the population on
generation 10 scored 54; the best-of-generation individual on
generation 20 scored 72; the best-of-generation individual on
generation 30 scored 110; the best-of-generation individual on
generation 35 scored 129; the best-of-generation individual on
generation 37 scored 142; and, the best-of-generation individual
scored 144 (i.e. 100%) on generation 38.

149

Figure 1.57 shows the progressive improvement during that run of
the worst single individual in the population, the average standardized
fitness of the population, and the best-of-generation individual.

0 19 38
0

72

144

Worst of Gen.
Average
Best of Gen.

Ant Colony — Best of Generation, Worst and Average

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

Figure 1.57 Standardized fitness for worst-of-generation

individual, average standardized fitness for population, and
standardized fitness for best-of-generation individual for

emergent behavior in the ant colony
On generation 38, a program emerged which allows the 20 ants to

successfully transport all 144 food pellets to the nest within the
allotted time. This 100% fit program is shown below:

(PROGN (PICK-UP) (IF-CARRYING-FOOD (PROGN (MOVE-TO-
ADJACENT-PHEROMONE-ELSE (MOVE-TO-ADJACENT-FOOD-ELSE
(MOVE-TO-ADJACENT-FOOD-ELSE (MOVE-TO-ADJACENT-FOOD-
ELSE (PICK-UP))))) (PROGN (PROGN (PROGN (PROGN (MOVE-
TO-ADJACENT-FOOD-ELSE (PICK-UP)) (PICK-UP)) (PROGN
(MOVE-TO-NEST) (DROP-PHEROMONE))) (PICK-UP)) (PROGN
(MOVE-TO-NEST) (DROP-PHEROMONE)))) (MOVE-TO-ADJACENT-
FOOD-ELSE (IF-CARRYING-FOOD (PROGN (PROGN (DROP-
PHEROMONE) (MOVE-TO-ADJACENT-PHEROMONE-ELSE (IF-
CARRYING-FOOD (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))
(MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))))) (MOVE-TO-
NEST)) (IF-FOOD-HERE (PICK-UP) (IF-CARRYING-FOOD
(PROGN (IF-FOOD-HERE (MOVE-RANDOM) (IF-CARRYING-FOOD
(MOVE-RANDOM) (PICK-UP))) (DROP-PHEROMONE)) (MOVE-TO-
ADJACENT-PHEROMONE-ELSE (MOVE-RANDOM))))))))

The 100% fit program above is essentially equivalent to the
simplified program below:

150

1 (PROGN (PICK-UP)
2 (IF-CARRYING-FOOD
3 (PROGN (MOVE-TO-ADJACENT-PHEROMONE-ELSE
4 (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP)))
5 (MOVE-TO-ADJACENT-FOOD-ELSE (PICK-UP))
6 (MOVE-TO-NEST)
7 (DROP-PHEROMONE)
8 (MOVE-TO-NEST)
9 (DROP-PHEROMONE))
10 (MOVE-TO-ADJACENT-FOOD-ELSE
11 (IF-FOOD-HERE
12 (PICK-UP)
13 (MOVE-TO-ADJACENT-PHEROMONE-ELSE
14 (MOVE-RANDOM))))))

This computer program is a prioritized sequence of conditional
behaviors that work together to solve the problem. First, the
computer program causes the ant to pick up any food it may
encounter. Failing that, the second priority established by this
conditional sequence causes the ant to follow a previously established
pheromonal trail. And, failing that, the third priority of this
conditional sequence causes the ant to move at random.

This simplified program prioritizes the activities of the ant and can
be interpreted as follows: The ant begins (line 1) by picking-up the
food, if any, located at the ant's current position. If the test on line 2
determines that the ant is now carrying food, then lines 3 through 9
are executed. Otherwise, lines 10 through 14 are executed.

Line 3 moves the ant to the adjacent pheromones (if any). If there
is no adjacent pheromone, line 4 moves the ant to the adjacent food
(if any). In view of the fact that the ant is already carrying food, these
two potential moves on lines 3 and 4 generally distract the ant from
the most direct return to the nest and therefore merely reduce
efficiency. Line 5 is a similar distraction. Note that the PICK-UP
operations on lines 4 and 5 are redundant since the ant is already
carrying a food pellet. Given that the ant is already carrying food, the
sequence of MOVE-TO-NEST on line 6 and DROP-PHEROMONE
on line 7 is the winning combination that establishes the pheromone
trail as the ant moves towards the nest with the food. This move
sequence is repeated redundantly in lines 8 and 9. The establishment
of the pheromone trail between the pile of food and the nest is an
essential part of efficient collective behavior for exploiting the food
source.

Lines 10 through 13 apply when line 2 determines that the ant is not
carrying food. Line 10 moves the ant to adjacent food (if any). If

151

there is no adjacent food but there is food at the ant's current position
(line 11), the ant picks up the food (line 12). On the other hand, if
there is no food at the ant's current position (line 13), the ant moves
towards any adjacent pheromones (if any). If there are no adjacent
pheromones, the ant moves randomly (line 14).

The collective behavior of the ant colony governed by the above
100% fit program above can be visualized as a series of major phases.
The first phase occurs when the ants have just emerged from the nest
and are randomly searching for food.

Figure 1.58 represents time step 3 of the execution of the 100% fit
program above. The two 3-by-3 piles of food are shown in black in
the western and northern parts of the grid. The nest is indicated by
nine + signs slightly southeast of the center of the grid. The ants are
shown in gray with their facing direction indicated.

Figure 1.58 The First phase of the emergent behavior in an

ant colony
The second phase occurs when some ants have discovered some

food, have picked up the food, and have started back towards the nest
dropping pheromones as they go. The beginnings of the pheromonal
clouds around both the western and northern piles of food are shown
in Figure 1.59 (representing time step 12).

152

Figure 1.59 The Second phase of the emergent behavior in

an ant colony
The third phase occurs when pheromonal trails have been

established linking both piles of food with the colony. The first two
(of the 144) food pellets have just reached the nest in Figure 1.60
(representing time step 15).

Figure 1.60 The Third phase of the emergent behavior in an

ant colony
This third phase persists for some time as the ants transport the bulk

of the food from the piles to the colony.

153

Figure 1.61 shows the premature (and temporary) disintegration of
the pheromonal trail connecting the northern pile of food with the
nest while food still remains in the northern pile. The pheromonal
trail connecting the western pile of food with the nest is still intact.
118 of the 144 food pellets have been transported to the nest at this
point (at time step 129).

Figure 1.61 Premature disintegration of the pheromonal
trail in the problem of emergent behavior in an ant colony

Figure 1.62 (representing time step 152) shows the western pile has
been entirely cleared by the ants and the pheromonal trail connecting
it to the nest has already dissipated. The former location of the
western pile is shown as a blank white area. 136 of the 144 food
pellets have been transported to the nest at this point. The
pheromonal trail connecting the nest to the northern pile (with 8
remaining food pellets) has been reestablished.

154

Figure 1.62 Exhaustion of the western pile of food in the

problem of emergent behavior in an ant colony
Shortly thereafter, the run ends with all 144 food pellets in the nest.
A visualization of the application of the genetic programming

paradigm to this problem (as well as to planning, empirical
discovery, inverse kinematics, game playing, and the Boolean 11-
multiplexer problems) can be viewed in the Artificial Life II Video
Proceedings videotape [Koza and Rice43].

20. ADDITIONAL EXAMPLES

The genetic programming paradigm can be applied in many
additional problem domains.

For example, induction of decision trees and concept formation can
be done using the genetic programming paradigm (Koza44).

In addition, when the LISP S-expressions return more than one
value, even more complex structures can be evolved using the genetic
programming paradigm. One example is the simultaneous discovery
of both the architecture and weights for a neural network (Koza and
Rice45).

Also, more than one population can be evolved at the same time to
solve problems such as simultaneously evolving minimax strategies
for both players in a game (Koza46, 47).

Additional information and examples can be found in Koza28, 48.

155

21. CONCLUSIONS

We have shown that many seemingly different problems in machine
learning and artificial intelligence can be viewed as requiring the
discovery of a computer program that produces some desired output
for particular inputs. We have also shown that the recently developed
genetic programming paradigm described herein provides a way to
search for a highly fit individual computer program.

22. ACKNOWLEDGEMENTS

James Rice of the Knowledge Systems Laboratory created all of the
graphics herein, aided in programming many of the problems
presented herein, and provided numerous useful comments on this
chapter.

Lawrence Davis, John Holland, Martin Keane, John Perry, Rick
Riolo, Tom Westerdale, Stewart Wilson provided numerous useful
comments and discussions on various drafts of the material in this
chapter.

23. REFERENCES

1. Holland, John H. Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press 1975.

2. Goldberg, David E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley l989.

3. Davis, Lawrence (editor) Genetic Algorithms and Simulated
Annealing. London: Pittman l987.

4. Davis, Lawrence. Handbook of Genetic Algorithms. New York:
Van Nostrand Reinhold.1991.

5. Schaffer, J. D. (editor). Proceedings of the Third International
Conference on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers Inc. 1989.

6. Rawlins, Gregory (editor). Proceedings of Workshop on the
Foundations of Genetic Algorithms and Classifier Systems.
Bloomington, Indiana. July 15-18, 1990. San Mateo, CA:
Morgan Kaufmann 1991.

7. Belew, Rik and Booker, Lashon (editors) Proceedings of the
Fourth International Conference on Genetic Algorithms. San
Mateo, Ca: Morgan Kaufmann 1991.

156

8. Davis, Lawrence and Steenstrup, M. Genetic algorithms and
simulated annealing: An overview. In Davis, Lawrence (editor)
Genetic Algorithms and Simulated Annealing London: Pittman
l987.

9. De Jong, Kenneth A. Learning with genetic algorithms: an
overview. Machine Learning, 3(2), 121-138, 1988.

10. Smith, Steven F. A Learning System Based on Genetic Adaptive
Algorithms. PhD dissertation. Pittsburgh, PA University of
Pittsburgh 1980.

11. Holland, John H. Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel rule-
based systems. In Michalski, Ryszard S., Carbonell, Jaime G.
and Mitchell, Tom M. Machine Learning: An Artificial
Intelligence Approach, Volume II. P. 593-623. Los Altos, CA:
Morgan Kaufmann l986.

12. Holland, John H, Holyoak, K.J., Nisbett, R.E., and Thagard, P.A.
Induction: Processes of Inference, Learning, and Discovery.
Cambridge, MA: MIT Press l986.

13. Wilson, Stewart. W. Classifier Systems and the animat problem.
Machine Learning, 3(2), 199-228, 1987.

14. Wilson, Stewart W. Bid competition and specificity
reconsidered. Journal of Complex Systems. 2(6), 705-723, 1988.

15. Forrest, Stephanie. Parallelism and Programming in Classifier
Systems. London: Pittman 1991.

16. Wilson, Stewart. W. Hierarchical credit allocation in a classifier
system. Proceedings of the Tenth International Joint Conference
on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann,
217-220, 1987.

17. Goldberg, David E., Korb, Bradley, and Deb, Kalyanmoy. Messy
genetic algorithms:Motivation, Analysis, and First Results.
Complex Systems. 3(5) October 1989. Pages 493-530.

18. Cramer, Nichael Lynn. A representation for the adaptive
generation of simple sequential programs. In Grefenstette, John
J.(editor). Proceedings of an International Conference on
Genetic Algorithms and Their Applications. Hillsdale, NJ:
Lawrence Erlbaum Associates l985.

19. Fujiki, Cory and Dickinson, John. Using the genetic algorithm to
generate LISP source code to solve the prisoner's dilemma. In
Grefenstette, John J.(editor). Genetic Algorithms and Their
Applications: Proceedings of the Second International

157

Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence
Erlbaum Associates l987.

20. Quinlan, J. R. An empirical comparison of genetic and decision-
tree classifiers. Proceedings of the Fifth International
Conference on Machine Learning. San Mateo, CA: Morgan
Kaufmann 1988.

21. Barto, A. G., Anandan, P., and Anderson, C. W. Cooperativity in
networks of pattern recognizing stochastic learning automata. In
Narendra,K.S. Adaptive and Learning Systems. New York:
Plenum 1985.

22. Lenat, Douglas B. AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic Search. PhD Dissertation.
Computer Science Department. Stanford University. 1976.

23. Lenat, Douglas B. The role of heuristics in learning by discovery:
Three case studies. In Michalski, Ryszard S., Carbonell, Jaime
G. and Mitchell, Tom M. Machine Learning: An Artificial
Intelligence Approach, Volume I. P. 243-306. Los Altos, CA:
Morgan Kaufman l983.

24. Lenat, Douglas B. and Brown, John Seely. Why AM and
EURISKO appear to work. Artificial Intelligence. 23 (1984).
269-294.

25. Jefferson, David et. al. The Genesys System: Evolution as a
theme in artificial life. In Farmer, Doyne, Langton, Christopher,
Rasmussen, S., and Taylor, C. (editors) Artificial Life II, Santa
Fe Institute Studies in the Sciences of Complexity. Volume XI.
Redwood City, CA: Addison-Wesley. 1991.

26. Anderson, Stuart L. Random number generators on vector
supercomputers and other advanced architectures. SIAM Review.
32(2). Pages 221-251. June 1990.

27. Knuth, Donald E. The Art of Computer Programming. Volume 2.
Reading, MA: Addison-Wesley 1981.

28. Koza, John R. Genetic Programming. Cambridge, MA: MIT
Press 1991. (Forthcoming).

29. Citibank, N. A. CITIBASE: Citibank Economic Database
(Machine Readable Magnetic Data File), 1946-Present. New
York: Citibank N.A. 1989.

30. Hallman, Jeffrey J., Porter, Richard D., Small, David H. M2 per
Unit of Potential GNP as an Anchor for the Price Level.
Washington,DC: Board of Governors of the Federal Reserve
System. Staff Study 157, April 1989.

158

31. Koza, John R. A genetic approach to econometric modeling. In
Bourgine, Paul and Walliser, Bernard. Proceedings of the 2nd
International Conference on Economics and Artificial
Intelligence. Pergamon Press 1991.

32. Genesereth, Michael R. and Nilsson, Nils J. Logical
Foundations of Artificial Intelligence. Los Altos, CA: Morgan
Kaufmann 1987.

33. Widrow, Bernard. The original adaptive neural net broom
balancer. IEEE International Symposium on Circuits and
Systems. Vol. 2. 1987.

34. Anderson, Charles W. Learning to control and inverted
pendulum using neural networks. IEEE Control Systems
Magazine. 9(3). Pages 3l-37. April l989.

35. Koza, John R. and Keane, Martin A. Cart centering and broom
balancing by genetically breeding populations of control strategy
programs. In Proceedings of International Joint Conference on
Neural Networks, Washington, January 15-19, 1990. Volume I.
Hillsdale, NJ: Lawrence Erlbaum 1990.

36. Koza, John R. and Keane, Martin A. Genetic breeding of non-
linear optimal control strategies for broom balancing. In
Proceedings of the Ninth International Conference on Analysis
and Optimization of Systems. Antibes, June, 1990. Pages 47-56.
Berlin: Springer-Verlag, 1990.

37. Forrest, Stephanie (editor). Emergent Computation: Self-
organizing, Collective, and Cooperative Computing Networks.
Cambridge, MA: MIT Press 1990. Also in Physica D 1990.

38. Steels, Luc. Towards a theory of emergent functionality. In
Meyer, Jean-Arcady and Wilson, Stewart W. From Animals to
Animats: Proceedings of the First International Conference on
Simulation of Adaptive Behavior. Paris. September 24-28, 1990.
Cambridge, MA: MIT Press 1991.

39. Langton, Christopher G. Artificial Life II, Santa Fe Institute
Studies in the Sciences of Complexity. Volume VI. Redwood
City, CA: Addison-Wesley. 1989.

40. Farmer, Doyne, Langton, Christopher, Rasmussen, S., and
Taylor, C. (editors) Artificial Life II, SFI Studies in the Sciences
of Complexity. Volume XI. Redwood City, CA: Addison-Wesley
1991.

159

41. Travers, Michael and Resnick, Mitchel. Behavioral Dynamics of
an Ant Colony: Views from Three Levels. Videotape.
Cambridge, MA: MIT Media Laboratory 1990.

42. Resnick, Mitchel. Animal simulations with *Logo: massive
parallelism for the masses. In Meyer, Jean-Arcady and Wilson,
Stewart W. From Animals to Animats: Proceedings of the First
International Conference on Simulation of Adaptive Behavior.
Paris. September 24-28, 1990. Cambridge, MA: MIT Press 1991.

43. Koza, John R. and Rice, James P. A genetic approach to
artificial intelligence. In C. G. Langton Artificial Life II Video
Proceedings. Addison-Wesley 1991.

44. Koza, John R. Concept formation and decision tree induction
using the genetic programming paradigm. In Schwefel, Hans-
Paul and Maenner, Reinhard (editors) Parallel Problem Solving
from Nature. Berlin: Springer-Verlag. 1991.

45. Koza, John R. and Rice, James P. Genetic generation of both the
weights and architecture for a neural network. In Proceedings of
International Joint Conference on Neural Networks, Seattle, July
1991. IEEE Press.

46. Koza, John R. Evolution and co-evolution of computer programs
to control independent-acting agents. In Meyer, Jean-Arcady and
Wilson, Stewart W. From Animals to Animats: Proceedings of
the First International Conference on Simulation of Adaptive
Behavior. Paris. September 24-28, 1990. Cambridge, MA: MIT
Press 1991.

47. Koza, John R. Genetic evolution and co-evolution of computer
programs. In Farmer, Doyne, Langton, Christopher, Rasmussen,
S., and Taylor, C. (editors) Artificial Life II, SFI Studies in the
Sciences of Complexity. Volume XI. Redwood City, CA:
Addison-Wesley 1991.

48. Koza, John R. Hierarchical genetic algorithms operating on
populations of computer programs.“ In Proceedings of the 11th
International Joint Conference on Artificial Intelligence (IJCAI).
San Mateo: Morgan Kaufman 1989.

