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Abstract:   It is difficult to write programs for both 

Lindenmayer systems and cellular automata.  This paper 
demonstrates the possibility of discovering the rewrite rule for 
Lindenmayer systems and the state transition rules for cellular 
automata by means of genetic programming.  Genetic 
programming is an extension of the genetic algorithm in which 
computer programs are genetically bred to solve problems.   We 
demonstrate the use of genetic programming to discover the 
rewrite rules for a Lindenmayer system for the quadratic Koch 
island using a pattern matching measure as the driving force for 
the evolutionary process.  We also demonstrate the use of 
genetic programming to discover the state transition rules for a 
one-dimensional and two-dimensional cellular automata using 
entropy as the driving force for the evolutionary process.  

1 Introduction and Overview 
Interesting behavior often emerges from the repetitive 
application of seemingly simple rules.  Both Lindenmayer 
systems and cellular automata often produce interesting 
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emergent behavior.  Lindenmayer systems are grammatical 
systems controlled by an initial condition and one or more 
rewriting rules.  Cellular automata are dynamical systems 
controlled by an initial condition and a locally applied state 
transition rule.  However, it is difficult to discover the rules that 
produce desired behavior in both Lindenmayer systems and 
cellular automata.  This problem is called the “inverse” problem 
for Lindenmayer systems and cellular automata.  This paper 
demonstrates the possibility of discovering the rewrite rule for 
Lindenmayer systems and the state transition rules for cellular 
automata by means of genetic programming.  Genetic 
programming provides a way to search the space of all possible 
programs composed of certain terminals and primitive functions 
to find a function which solves, or approximately solves, a 
problem.   

Section 2 of this paper provides background on genetic 
algorithms and genetic programming.  Section 3 describes 
genetic programming.  Section 4 describes Lindenmayer 
systems. Section 5 demonstrates the use of genetic programming 
to discover the rewrite rules for a Lindenmayer system for the 
quadratic Koch island using a pattern matching measure as the 
driving force for the evolutionary process.  Section 6 
demonstrates the use of genetic programming to discover the 
state transition rules for a one-dimensional and two-dimensional 
cellular automata using entropy as the driving force for the 
evolutionary process.   

2 Background on Genetic Algorithms and Genetic 
Programming 
John Holland's pioneering 1975 Adaptation in Natural and 
Artificial Systems described how the evolutionary process in 
nature can be applied to artificial systems using the genetic 
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algorithm operating on fixed length character strings [Holland 
1975].  Holland demonstrated that a population of fixed length 
character strings (each representing a proposed solution to a 
problem) can be genetically bred using the Darwinian operation 
of fitness proportionate reproduction and the genetic operation 
of recombination.  The recombination operation combines parts 
of two chromosome-like fixed length character strings, each 
selected on the basis of their fitness, to produce new offspring 
strings.  Holland established, among other things, that the 
genetic algorithm is a near optimal approach to adaptation in 
that it maximizes expected overall average payoff when the 
adaptive process is viewed as a multi-armed slot machine 
problem requiring an optimal allocation of future trials given 
currently available information.  The genetic algorithm has 
proven successful at searching nonlinear multidimensional 
spaces in order to solve, or approximately solve, a wide variety 
of problems [Goldberg 1989, Davis 1987, Davis 1991, Davidor 
1991, Forrest 1991, Michalewicz 1992].  Recent conference 
proceedings provide an overview of current work in the field 
[Schaffer 1989, Forrest 1990, Belew and Booker 1991, Rawlins 
1991, Meyer and Wilson 1991, Schwefel et al. 1991, Langton et 
al. 1992, Whitley 1993].   

It is difficult, unnatural, and overly restrictive to attempt to 
represent hierarchies of dynamically varying size and shape with 
fixed length character strings.  For many problems, the most 
natural representation for a solution is a hierarchical 
composition of primitive functions and terminals (i.e., a 
computer program) of indeterminate size and shape, as opposed 
to character strings whose size has been determined in advance.    

Genetic programming provides a way to find a computer 
program of unspecified size and shape to solve, or 
approximately solve, a problem.  The book Genetic 
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Programming: On the Programming of Computers by Means of 
Natural Selection [Koza 1992] describes genetic programming 
in detail.  A videotape visualization of applications of genetic 
programming can be found in the Genetic Programming: The 
Movie [Koza and Rice 1992].  Specifically, genetic 
programming has been successfully applied to problems such as 
• classification and pattern recognition (e.g., distinguishing two 

intertwined spirals), 
• evolution of a subsumption architecture for robotic control, 
• discovering control strategies for backing up a tractor-trailer 

truck, centering a cart, and balancing a broom on a moving 
cart, 

• generation of maximal entropy sequences of random numbers, 
• empirical discovery (e.g., rediscovering the well-known non-

linear econometric "exchange equation" MV = PQ from actual, 
noisy time series data for the money supply, the velocity of 
money, the price level, and the gross national product of an 
economy), 

• symbolic "data to function" regression, symbolic integration, 
symbolic differentiation, symbolic solution to general 
functional equations (including differential equations with 
initial conditions, and integral equations) and sequence in-
duction,  

• Boolean function learning (e.g., learning the Boolean 11-multi-
plexer function and 11-parity functions), 

• planning (e.g., navigating an artificial ant along a trail), 
• discovering inverse kinematic equations to control the 

movement of a robot arm to a designated target point, 
• induction of decision trees for classification, 
• optimization problems (e.g., finding an optimal food foraging 

strategy for a lizard),  
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• emergent behavior (e.g., discovering a computer program 

which, when executed by all the ants in an ant colony, enables 
the ants to locate food, pick it up, carry it to the nest, and drop 
pheromones along the way so as to produce cooperative 
emergent behavior), 

• finding minimax strategies for games (e.g., differential pursuer-
evader games, discrete games in extensive form) by both 
evolution and co-evolution, and 

• simultaneous architectural design and training of neural 
networks.  

3 Steps Required to Execute Genetic Programming 
Genetic programming, like the conventional genetic algorithm, 
is a domain independent method.  Genetic programming 
proceeds by genetically breeding populations of compositions of 
the primitive functions and terminals (i.e., computer programs) 
to solve problems by executing the following three steps: 
(1) Generate an initial population of random computer 

programs composed of the primitive functions and terminals 
of the problem. 

(2) Iteratively perform the following sub-steps until the 
termination criterion has been satisfied: 
(a) Execute each program in the population and assign it a 

fitness value according to how well it solves the problem. 
(b) Create a new population of programs by applying the 

following two primary operations.  The operations are 
applied to program(s) in the population selected with a 
probability based on fitness (i.e., the fitter the program, the 
more likely it is to be selected). 
(i) Reproduction: Copy existing programs to the new 

population. 
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(ii) Crossover: Create two new offspring programs for the 

new population by genetically recombining randomly 
chosen parts of two existing programs.  The genetic 
crossover (sexual recombination) operation (described 
below) operates on two parental computer programs and 
produces two offspring programs using parts of each 
parent.  

(3) The single best computer program in the population 
produced during the run is designated as the result of the run of 
genetic programming.  This result may be a solution (or 
approximate solution) to the problem.   

3.1 Crossover Operation 
The crossover operation for the genetic programming paradigm 
is a sexual operation that operates on two parental LISP S-
expressions and produces two offspring S-expressions using 
parts of each parent. Typically the two parents are hierarchical 
compositions of functions of different size and shape. In 
particular, the crossover operation starts by selecting a random 
crossover point in each parent and then creates two new off-
spring S-expressions by exchanging the sub-trees (i.e. sub-lists) 
between the two parents.  Because entire sub-trees are swapped, 
this genetic crossover (recombination) operation produces 
syntactically and semantically valid LISP S-expressions as 
offspring regardless of which point is selected in either parent.   

For example, consider the parental LISP S-expression:  
(OR (NOT D1) (AND D0 D1)) 

And, consider the second parental S-expression below:  
(OR (OR D1 (NOT D0)) 
    (AND (NOT D0) (NOT D1)) 

These two LISP S-expressions can be depicted graphically as 
rooted, point-labeled trees with ordered branches. Assume that 
the points of both trees are numbered in a depth-first way 
starting at the left. Suppose that the second point (out of 6 points 
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of the first parent) is randomly selected as the crossover point 
for the first parent and that the sixth point (out of 10 points of 
the second parent) is randomly selected as the crossover point of 
the second parent. The crossover points are therefore the NOT in 
the first parent and the AND in the second parent. 

The two parental LISP S-expressions are shown  are shown in 
figure 1.  The numbers on the points of the trees are for 
reference only. 
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Figure 1  Two parental computer programs. 

The two crossover fragments are two sub-trees shown in figure 
2 and are underlined in the two parents above. 

NOT

D1

AND

NOT NOT

D0 D1
  

Figure 2  The crossover fragments resulting from selection of 
point 2 of the first parent and point 6 of the second parent as 

crossover points. 
These two crossover fragments correspond to the bold, 

underlined sub-expressions (sub-lists) in the two parental LISP 
S-expressions shown above.   

The first offspring S-expression is 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)), 

and happens to be the even-2-parity function. 
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The second offspring is 
(OR (OR D1 (NOT D0)) (NOT D1)). 

The two offspring resulting from crossover are shown in figure 
3.  Details can be found in Koza [1992].   
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Figure 3  The two offspring produced by crossover. 

4 Lindenmayer Systems 
Lindenmayer systems (L-Systems) were conceived as a 
mathematical theory of plant development [Lindenmayer 1968].  
L-systems are grammatical rewriting systems wherein a 
complex object can be defined by successively replacing parts of 
a simple initial object (the axiom) using one or more rewriting 
rules (productions) [Prusinkiewicz and Hanan 1980, 
Prusinkiewicz and Lindenmayer 1990].  

In a deterministic context-free L-system, the predecessor string 
(left side) of each rewriting rule consists of only a single symbol 
of the alphabet and a particular symbol from the alphabet 
appears on the left side of only one rule.  When the current 
string is rewritten, all occurrences of each symbol which can be 
rewritten are simultaneously replaced by its successor string (the 
right side of its rewriting rule).  L-systems acquire their local 
and distributed character because of this simultaneous and 
parallel rewriting.   

The complex objects generated by L-systems are often 
visualized by means of a geometric interpretation of the strings.  
In the turtle interpretation of strings, one symbol from the 
alphabet (say F) might be interpreted as a straight line segment 
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and might be visualized by moving the turtle forward by one 
unit.  The operation + (called L+ later) might be interpreted by 
rotating the turtle in a positive direction (counterclockwise) by a 
specified angle φ whereas the operation - (called L- later) 
would be interpreted as a clockwise rotation by angle φ.  
Without loss of generality, we assume the original straight line 
is of unit length and is initially oriented north throughout this 
paper.   

4.1 Example of an L-System – The von Koch Snowflake 
For example, consider the L-system for the von Koch snowflake 
[Prusinkiewicz and Lindenmayer 1990].  Three items need to 
specified.  The axiom consists of the string F++F++F.  The set 
of productions consists of the single rewriting rule 

F  ∅  F-F++F-F.   

The angle φ is 60�.   
Figure 4 shows the turtle interpretation of the axiom (iteration 

0) F++F++F for the von Koch snowflake.   

 
Figure 4. Iteration 0 (the axiom) F++F++F for the von Koch 

snowflake 
Creation of iteration 1 requires three applications of the 

rewriting rule to the axiom (iteration 0) in order to produce the 
string for iteration 1, namely 

F-F++F-F++F-F++F-F++F-F++F-F. 
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 Figure 5 shows the turtle interpretation for iteration 1 of the 

von Koch snowflake.  The size of the objects at later iterations 
generally grow, so we rescale all figures to the original size.  

 
Figure 5  Iteration 1 of the von Koch snowflake 

Figure 6 shows the turtle interpretation for the string produced 
when this rewriting process for the von Koch snowflake is 
continued to iteration 4.   

  
Figure 6  Iteration 4 of the von Koch snowflake 

4.2 Example of a Plant Defined Using a Bracketed L-
System 
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Bracketed L-system employ the additional feature of bracket.  
Upon completion of execution of a substring in a rewriting rule 
that is enclosed in a pair of brackets, the turtle is rubber-banded 
back to its position and orientation at the start of the execution 
of the bracketed substring. 

For example, consider the L-system for a plant [Prusinkiewicz 
and Lindenmayer 1990].  The axiom consists merely of F.  The 
angle φ is 26�.  The single production is 

F  ∅  F[+F]F[-F]F.  

Figure 7 shows the turtle interpretation for iteration 1 of a plant 
using this bracketed L-system rule.  The axiom (iteration 0) 
consists merely on a single vertical line segment.  Iteration 1 is 
created by replacing the axiom with five line segments.  The 
first F in the rewriting rule is interpreted as a line segment going 
forward in the current direction (i.e., north).  The [+F] is 
interpreted as a counterclockwise (i.e., left) turn of 26� and a 
line segment in the new northwesterly direction.  Because of the 
brackets, the turtle is rubber-banded back to its position and 
restored to its orientation prior to the left turn (i.e., north).  The 
third F is interpreted as a line segment going forward in the 
now-restored northerly direction.  The [-F] is interpreted as a 
clockwise (i.e., right) turn of 26� and a line segment in the new 
northeasterly direction.  Similarly, because of the brackets, the 
turtle is rubber-banded back, so that the fifth and final F is 
interpreted as a line segment going forward in the now-restored 
northerly direction. 



12 

 
Figure 7  Iteration 1 of a plant using a bracketed L-system 

rule 
Figure 8 shows the turtle interpretation for the string produced 

when this rewriting process for a plant using this bracketed L-
system rule is continued to iteration 4.   

 
Figure 8  Iteration 4 of a plant using a bracketed L-system 

rule 

5 The Inverse Problem for L-Systems 
The “inverse” or “inference” problem for Lindenmayer systems 
involves finding the rewriting rules for a given structure or 
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sequence of structures.  In this paper, we consider a version of 
this inverse problem wherein the goal is to discover the 
rewriting rule, given the axiom and given the angle.  Notice that 
we can, in general, determine the angle by measurement of the 
target object.  In other words, we will be seeking a composition 
of the primitive functions and terminals (i.e., a computer 
program) that solves the problem.  We will use genetic 
programming to discover the desired rewriting rule.   

5.1 The Quadratic Koch Island 
We will use the quadratic Koch island as the illustrative 
problem.  The angle is 90� for the quadratic Koch island. The 
axiom is F+F+F+F (a square).  The rewriting rule is 

F  ∅  F-F+F+FF-F-F+F. 

Figure 9 shows iteration 1 for the quadratic Koch island. 

 
Figure 9  Iteration 1 for the Quadratic Koch island 

Figure 10 shows iteration 2 for the quadratic Koch island. 
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Figure 10  Iteration 2 for the Quadratic Koch island 

5.2 Preparatory Steps for Using Genetic Programming 
There are five major steps in preparing to use genetic 
programming, namely determining 
(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 
(5) the method for designating a result and the criterion for 

terminating a run. 
The terminal set T for this problem can be viewed as consisting 

of three zero-argument functions of this problem.  
T = {L+, L-, F}. 

The function set F for this problem consists of  
F = {BRACKET, PROGN}, 

taking one and two arguments, respectively.  
The two-argument PROGN function is the ordinary LISP 

connective that evaluates (executes) both of its arguments in 
sequence.    

The one-argument BRACKET function causes the turtle to 
execute the single argument of BRACKET and then rubber-bands 
the turtle to its position and orientation at the start of the 
evaluation of the BRACKET function.  The rewriting rule for the 
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quadratic Koch island does not necessarily require the use of 
brackets; however, as it happens, brackets appear in the solution 
discovered herein.   

Each function-defining branch is a composition of primitive 
functions from the function set F and terminals from the 
terminal set T.   

The third major step in preparing to use genetic programming 
is the identification of the fitness measure for evaluating the 
goodness of each individual in the population.  For this problem, 
fitness is measured according to how well a particular individual 
in the population matches the target quadratic Koch island.  A 
minimal enclosing square is placed around the quadratic Koch 
island after iteration 2 and the enclosing square is divided into a 
100 by 100 grid.  The fitness is the number of cells in this grid 
(out of 10,000) for which the individual in the population 
behaves differently than the quadratic Koch island.   The smaller 
this number, the better.  A 100% correct individual would have a 
fitness of zero.  Specifically, the fitness is incremented for each 
cell (1) entered by the quadratic Koch island on iteration 2 but 
not entered by the object on iteration 2, and (2) entered by the 
object on iteration 2 but not entered by quadratic Koch island on 
iteration 2.  The magnitude of these increments are selected to 
be 9 and 1 respectively, so that an individual that draws no lines 
scores the same as an individual that paints lines in all 10,000 
cells.  The worst possible value of fitness is 17,808.  This worst 
possible value is also assigned to any object that attempts to 
draw more than 1,280 line segments. 

Although the above fitness measure is based on the matching 
of two patterns, genetic programming of Lindenmayer systems 
lends itself to fitness measures computed by means of 
biologically meaningful simulations involving scarce resources 
(e.g., sunlight falling on a plant) or to implicit fitness measures 
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based on the competitive interactions of the growing objects in a 
simulated environment.   

The fourth major step in preparing to use genetic programming 
is the selection of values for certain parameters.  Our choice of 
4,000 as the population size and our choice of 51 as the 
maximum number of generations to be run reflect an estimate on 
our part as to the likely difficulty of this problem and the 
practical limitations on available computer time and memory.  
Our choice of values for the various secondary parameters that 
control a run of genetic programming are the same default 
values as we have consistently used on numerous other 
problems [Koza 1992], except that we continue our recently 
adopted practice of using tournament selection (with a group 
size of seven) as the selection method (as opposed to fitness 
proportionate reproduction).   

Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criterion for terminating a 
run and the selection of the method for designating a result.  We 
will terminate a given run if we encounter a 100% correct 
individual or after 51 generations.  We designate the best 
individual obtained during the run (the best-so-far individual) as 
the result of the run.   

5.3 Results for the Quadratic Koch island 
A review of one particular successful run will serve to illustrate 
how genetic programming operates to solve this problem.   

Genetic programming starts by randomly generating 4,000 
individual compositions of the terminals form the terminal set 
and the functions from the function set for this problem.  As one 
would expect, none of the 4,000 randomly generated individuals 
in the initial generation of the population (generation 0) are very 
good.  The worst 12% of the population for generation 0 score 
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the worst possible value, namely 17,808.   They either do not 
draw anything at all or they exceed the maximum allowable 
number of line segments.   

However, even in a randomly created population of programs, 
some individuals are better than others.  For example, the next 
better individual from the 13% percentile of the population for 
generation 0 scores 9,252 and is 

F  ∅  F+[-]-F-++--F-FF-. 

Figure 11 shows this individual from the 13% percentile of the 
population for generation 0 for the quadratic Koch island. 

 
Figure 11  Individual from the 13th percentile of generation 0 

for the quadratic Koch island 
The second-best individual from generation 0 scores 7,776, 

and, when written in the style of L-systems, is 
F  ∅  FFF+F-F-. 

and is shown in figure 12. 
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Figure 12  Second-Best individual from generation 0 for the 

quadratic Koch island. 
The best-of-generation individual from generation 0 scores 

6,522 and is 
(PROGN (PROGN (PROGN (PROGN (F) (L+)) (PROGN (F) (F))) (PROGN (PROGN (L-) (L-)) (PROGN (L+) 
(L+)))) (PROGN (PROGN (PROGN (L+) (F)) (PROGN (F) (L-))) (BRACKET (PROGN (F) (F))))). 

When written in the style of L-systems, this best-of-generation 
individual from generation 0 is 

F  ∅  F+FF--+++FF-[FF]. 

Figure 13 shows this best-of-generation individual from 
generation 0 for the quadratic Koch island. 

 
Figure 13  Best-of-generation individual from generation 0 for 

the quadratic Koch island 
After applying the Darwinian reproduction operation and the 

genetic recombination (crossover) operations to the 4,000 
individuals in the population, we find that the best-of-generation 
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individual in generation 1 has an improved fitness of 6,446.  
When written in the style of L-systems, this individual is 

F  ∅  F+FF[F]+FF-[FF]. 

Figure 14 shows this best-of-generation individual from 
generation 1 for the quadratic Koch island. 

 
Figure 14 Best-of-generation individual from generation 1 

As genetic programming proceeds from generation to 
generation, the population tends to improve. 

Figure 15 shows that the best-of-generation individual from 
generation 3 has no lines in the central area of the object.  The 
emergence of the empty central area is one step in the progress 
toward the eventual solution of this problem.  This individual 
has fitness of 6,254. 

 
Figure 15  Best-of-generation individual from generation 3 

with an empty central area 
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The best-of-generation individual from generation 5 has fitness 
of 4,488 and, when written in the style of L-systems, is 

F  ∅  [-+F-F++---FF+-FFFF+++FF+]-F-FF-F+FF[+F].  

Figure 16 shows this best-of-generation individual from 
generation 5.  While this object does not yet bear much 
resemblance to the target quadratic Koch island, it is 
nevertheless better than its predecessors.   

 
Figure 16  Best-of-generation individual from generation 5 

The best-of-generation individual from generation 19 has fitness 
of 520 and, when written in the style of L-systems, is 

F  ∅  [F][F-F+F--+++FF-[F][[-F]F]+-F+--F]FFFF.  

Figure 17 shows this best-of-generation individual from 
generation 19.  Notice the empty area in the central area now 
resembles a St. Andrew's cross (as it does in the target quadratic 
Koch island).  

 
Figure 17  Best-of-generation individual from generation 19 
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Figure 18 shows, by generation, the fitness of the best-of-
generation individual and the average fitness of the population 
as a whole.  As can be seen, the fitness of the best-of-generation 
individual and the average fitness of the population as a whole 
tend to improve (i.e., drop) from generation to generation.   
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Figure 18  Fitness curves 

Figure 19 shows, by generation, the structural complexity (i.e., 
number of functions and terminals) of the best-of-generation 
individual and the average structural complexity of the 
population as a whole for the LISP S-expressions (i.e., not the 
equivalent rules written in the form of a Lindenmayer system). 
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Figure 19 Structural complexity curves 

The hits histogram is a useful monitoring tool for visualizing 
the progressive learning of the population as a whole during a 
run.  To compute the number of hits awarded to an individual, 
we subtract the fitness (as defined above) of the individual from 
17,808 (the worst possible fitness value) and express the result 
as a rounded percentage of the range 0 through 17,808.  Thus, a 
perfect individual is awarded 100 hits, and the worst possible 
individual is awarded 0 hits.  The horizontal axis of this 
histogram represents hits after they have been gathered into 
eleven bins.  The first ten bins represent ten consecutive hits 
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values each and the 11th bin represents 100 hits.  The vertical 
axis represents the number of individuals in the population (0 to 
4,000) scoring that number of hits.   

Figure 20 shows the hits histograms for generations 0, 10, and 
50 of this run.  Notice the left-to-right undulating movement of 
both the high point and the center of mass of these histograms.  
This “slinky” movement reflects the improvement of the 
population as a whole.  The number "1" on the third panel of this 
figure indicates that on generation 50 there was one individual 
that perfectly solved the problem (i.e., had fitness of zero and 
scored 100 hits). 
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Figure 20 Hits histograms for generations 0, 10, and 50  

Between generations 19 and 50, there is a different rewriting 
rule for each generation, each having almost perfect fitness.   

By generation 50, the best-of-generation individual has the 
perfect fitness value of zero and is shown below: 

(PROGN2 (PROGN2 (LM1-ADF0) (LM-)) (PROGN2 (PROGN2 (PROGN2 (PROGN2 (PROGN2 (PROGN2 (LM1-ADF0) 
(LM+)) (LM1-ADF0)) (PROGN2 (PROGN2 (LM-) (LM-)) (PROGN2 (LM+) (LM+)))) (PROGN2 (PROGN2 
(PROGN2 (LM+) (LM1-ADF0)) (PROGN2 (LM1-ADF0) (LM-))) (LM1-ADF0))) (HOMING-LM1 (PROGN2 (LM-) 
(LM1-ADF0)))) (PROGN2 (LM-) (PROGN2 (PROGN2 (LM1-ADF0) (LM+)) (LM1-ADF0))))). 

When written in the style of L-systems, this individual is  
F  ∅  F-F+F--+++FF-F[-F]-F+F. 

In this rewriting rule, the substring --++ changes, but 
immediately restores, the turtle’s orientation and thus can be 
deleted from the above string.  In addition, the bracketed 
sequence [-F] turns the turtle and draws a forward line; 
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however, because it is bracketed and followed immediately by 
an identical -F, there is an overwriting and this bracketed string 
can be deleted.  After these two deletions, the above string is 
seen to be a 100% correct string for the rewriting rule for the 
quadratic Koch island.   

6 The Inverse Problem for Cellular Automata 
In a cellular automaton, each cell in a cellular space is occupied 
by an automaton that is identical except for its initial state.  The 
next state of each automaton depends on its own current state 
and on the current states of the automata in a specified set of 
neighboring cells.  For example, for a one-dimensional cellular 
automaton, the next state of a given automaton might depend on 
the current state of that automaton and the current states of its 
two neighbors at distance 1.  We denote these three states as X 
(for the automaton at the center), W (west), and E (east).  
Similarly, for a two-dimensional cellular automaton, the next 
state of a given automaton might depend on the current state of 
that automaton and the current states of its four neighbors at 
distance 1 in the two-dimensional space, namely X, W, E, north 
(N), and south (S).  Cellular spaces typically have periodic 
boundary conditions (i.e., are toroidal) so that every cell has the 
same number of neighbors.    

Cellular automata are the discrete counterparts of continuous 
dynamical systems defined by partial differential equations and 
the physicist's concept of field [Gutowitz 1991, Toffoli and 
Margolus 1987].  If the automaton located in each cell happens 
to have only two states, the state-transition function of the 
automaton is merely a Boolean function.  For a one-dimensional 
cellular space with von Neumann neighbors, the Boolean 
function has three inputs and one output.  For a two-dimensional 
cellular space with von Neumann neighbors, the Boolean 
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function has five inputs and one output.  Cellular automata with 
Boolean state-transition functions are dynamical systems that are 
discrete in time, space (their cells), and site value (Boolean). 

Complex overall behavior is often produced by cellular 
automata as the result of the repetitive application (at each cell 
in the cellular space) of seemingly simple transition rules 
contained in each cell.   

The problem of designing a state-transition rule that, when it 
operates in each cell of the cellular space, produces a desired 
overall emergent behavior is called the “inverse” problem for 
cellular automata.   

The “inverse” problem for cellular automata involves finding 
the state-transition rule that, when it operates in each cell of the 
cellular space, produces a desired overall behavior.  In this 
paper, we consider a version of this inverse problem wherein the 
goal is to discover the state-transition rule, given the initial 
condition of the cellular space.  In other words, we will be 
seeking a composition of the primitive functions and terminals 
(i.e., a computer program) that solves the problem.  We will use 
genetic programming to discover the desired state-transition 
rule.  

6.1 One-Dimensional Cellular Automata 
In this section, we use genetic programming to evolve a state-
transition rule that enables a cellular automaton to produce 
certain desired emergent behavior.  In particular, we evolve a 
state-transition rule that produces temporal random behavior in a 
cellular automaton.   

Wolfram [1986] showed that a particular two-state automaton 
depending only on itself and its two immediate neighbors (W and 
E) in a one-dimensional cellular space was capable of producing 
a pseudo-random temporal stream of bits.  In particular, 
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Wolfram showed random temporal behavior (using several 
frequently used tests for randomness) from the state-transition 
rule 

(XOR W (OR X E)). 

This Boolean function with three inputs is rule 30 using the 
usual numbering scheme for Boolean functions.  It is, under 
reflection, equivalent to rule 86. 

We used a one-dimensional cellular space of width 32.  The 
initial state of cell 15 was 1 (True) and the initial state of all 
other cells was 0 (NIL).  The initial state of the cellular space 
used by Wolfram consisted of one cell in state 1 (True) and all 
the other 31 cells in state 0 (NIL).  In other words, the initial 
state contained a minimal amount of activity.  The temporal 
stream of random bits was taken from the single cell that started 
in state 1 (i.e., cell 15). 

In this section, we demonstrate how genetic programming can 
rediscover Wolfram's two-state automaton using only the overall 
goal (i.e., to produce a high-entropy stream of bits over time) to 
guide the discovery process. 

The terminal set for this problem consisted of the three inputs 
available to each automaton in the one-dimensional cellular 
space, namely 

T = {X, W, E}. 

Since we are considering functions of three Boolean 
arguments, the function set for this problem can consist of the 
following computationally complete and convenient set of three 
Boolean functions: 

F = {AND, OR, NOT} 

taking two, two, and one argument, respectively. 
Fitness is measured by means of entropy.  We examined the 

time series over 4,096 time steps at cell 15 and considered the 
entropy associated with the probability of occurrence of each of 
the 24 = 16 possible temporal subsequences of length 4.  That is, 
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there were 4,096 fitness cases.  If each of the 16 subsequences of 
length 4 occurred exactly 4,096

16   = 256 times in 4,096 time steps, 
entropy would attain the maximal value of 4.000 bits.    Fitness 
was measured via entropy using a lookback of 4.  Maximum raw 
fitness was 4.000 bits.  A hit for this problem was defined as 
1,000 times raw fitness and thus ranged from 0 to 4,000.   

The population is 500 for this cellular automata problem. 
The genetically produced S-expressions in the population are 

often large and complex.  Nonetheless, they involve only the 
three independent variables X, W, and E, and therefore they 
necessarily correspond to one of the 256 possible Boolean 
functions with three arguments and one output.   

In one run, the best-of-generation individual from generation 0 
had an entropy of 1.832 and 32 points: 

(AND (AND (NOT (AND (NOT E) (OR E X))) (NOT (AND (AND X E) (NOT X)))) (NOT (AND (OR (OR X X) 
(OR W W)) (AND (OR W W) (AND W W))))). 

In figure 21, the horizontal axis ranges over the 24 = 16 possible 
temporal subsequences of length 4 for generation 0 (i.e., from 
0000 to 1111).  The vertical axis of this histogram ranges over 
the number of occurrences of each of the 16 subsequences.  As 
can be seen, the most frequent two of the possible temporal 
subsequences of length 4 occur 1,792 and 1,664 times each (out 
of 4,096 times), and many of the possible subsequences are 
unrepresented for generation 0. 
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Figure 21 Subsequence histogram for the best-of-generation 
individual for generation 0 for the one-dimensional cellular 

automaton problem. 
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For generation 6, the best-of-generation individual had an 

entropy of 3.494 and 20 points: 
(AND (OR E X) (NOT (AND (AND (AND X X) (OR W X)) (AND (AND W W) (AND W E))))). 

Figure 22 is the histogram for the 16 possible temporal 
subsequences for generation 6.  Six of the possible temporal 
subsequences of length 4 occur between 502 and 504 times each 
for generation 6.  Generation 6 is the first generation of this 
particular run for which there was at least one occurrence of 
each of the 16 possible temporal subsequences (although the fact 
that the number of occurrences of the several of the rarer 
subsequences is non zero is not discernible on this histogram, 
because of its scale). 
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Figure 22  Subsequence histogram for the best-of-generation 
individual for generation 6 for the one-dimensional cellular 

automaton problem. 
For generation 7, the best-of-generation individual had an 

entropy of 3.645 and 28 points:  
(OR (NOT (OR (NOT W) (NOT (OR (NOT W) (OR E X))))) (NOT (OR (OR (NOT (NOT X)) (OR E W)) (OR 
(OR X W) (AND W X))))). 

Figure 23 is the histogram for the 16 possible temporal 
subsequences for the best-of-generation 7 individual.  As can be 
seen, there has been a substantial improvement in the uniformity 
of the distribution between generations 6 and 7.  Fifteen of the 
16 subsequences in generation 7 have between 214 and 289 
occurrences, and one of the subsequences has 425 occurrences. 
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Figure 23  Subsequence histogram for the best-of-generation 
individual for generation 7 for the one-dimensional cellular 

automaton problem. 
For generation 10, the best-of-generation individual had an 

entropy of 3.982 and 43 points:  
(OR (AND (AND (NOT (NOT (NOT X))) (OR (NOT (AND E W)) (OR (NOT (OR (NOT E) (AND X X))) (NOT 
E)))) (NOT (AND (OR (NOT E) (NOT W)) (OR (OR X W) (AND E E))))) (NOT (OR (NOT X) (AND X 
W)))). 

 Figure 24 is the histogram for the best-of-generation 10 
individual.  The numbers of occurrences of all 16 of the 
subsequences lie in the relatively narrow range of 232 to 275.  
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Figure 24  Subsequence histogram for the best-of-generation 
individual for generation 10 for the one-dimensional cellular 

automaton problem. 
The best-of-generation individual for generation 25 had 

entropy of 3.996.  Its histogram is similar to, but smoother than, 
the histogram in figure 24 for generation 10.  This best-of-run 
individual has 83 points and an entropy of 3.996:   

(AND (OR (OR (NOT (OR E E)) (NOT (OR (OR (AND W W) (OR E (NOT (NOT X)))) (NOT (AND (AND (AND 
X X) X) (AND (AND W W) (AND W E))))))) (OR (AND W W) (AND E E))) (OR (NOT (OR (NOT (OR (NOT 
W) (NOT (OR (NOT W) (OR E X))))) (NOT (OR (OR (NOT (NOT X)) (OR E W)) W)))) (NOT (OR E (OR 
(OR (NOT W) (AND (OR X X) (NOT E))) (AND (OR X X) (AND X E))))))). 
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Table 1 shows that this S-expression is rule 30 (00011110 in 

binary) and is therefore equivalent to Wolfram's cellular 
automaton randomizer. 
Table 1  Truth table of best-of-run 
individual from generation 25 for 
the one-dimensional cellular 
automaton problem. 
West X East Result 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

The question arises as to whether the above S-expression, 
which was genetically bred using 4,096 = 212 temporal sequence 
steps, is generalizable to other numbers of steps.  When we 
retested the genetically produced randomizer over 65,536 = 216 
steps, we got an even better value of entropy: 4.000 bits (as 
compared to the original 3.996).   

On an earlier generation of this same run, we also encountered 
Boolean rule 45 that Wolfram (1986) identified as the second-
best randomizer of this type (when inserted into a one-
dimensional cellular automaton).  The S-expression for rule 45 
(which is, upon reflection, equivalent to rule 75) is  

(XOR W (OR X (NOT E))). 

6.2 Two-Dimensional Cellular Automata  
We can genetically breed a randomizing computer program for a 
two-dimensional cellular automaton in a similar manner.  

The terminal set for this problem consisted of the five inputs 
from the von Neumann neighborhood available to each 
automaton in the two-dimensional cellular space, namely 

T = {X, W, N, E, S}. 
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The function set and fitness measure are the same as for the 

one-dimensional cellular automata problem previously 
described. 

We used a two-dimensional cellular space of size 8 ∞ 8.  The 
initial state of cell (3, 3) was 1 (True) and the initial state of all 
other 63 cells was 0 (NIL).  We examined the time series over 
16,384 time steps and considered the entropy associated with the 
probability of occurrence of each of the 27 = 128 possible 
subsequences of length 7.  Maximum entropy is now 7.000 bits. 

In one run, the best-of-generation individual from generation 0 
had an entropy of 3.202 (out of 7.000 bits) and has 4 points: 

(NOT (OR X E)). 

Figure 25 is a histogram showing the number of occurrences of 
each of the 27 = 128 possible subsequences of length 7 occurring 
temporally at cell (3,3) for the best-of-generation individual 
from generation 0.  The horizontal axis represents the possible 
temporal subsequences from 0000000 to 1111111 at cell (3,3).   
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Figure 25   Subsequence histogram for the best-of-generation 
individual for generation 0 for the two-dimensional cellular 

automaton problem. 
For generation 7, the best-of-generation individual had 51 

points and an entropy of 6.711: 
(OR (OR (AND (OR (NOT E) (NOT S)) (OR (OR E (AND X W)) S)) (AND (NOT (OR N X)) (OR (NOT W) 
(AND W (NOT (OR (AND X (NOT (NOT N))) (NOT S))))))) (OR (AND (NOT (NOT N)) (NOT (OR N X))) 
(AND (AND (NOT W) (NOT X)) (NOT E)))). 

Figure 26 is the histogram for the 128 possible temporal 
subsequences for generation 7, the first generation of this 
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particular run for which there was at least one occurrence of 
each of the 128 possible temporal subsequences. 
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Figure 26  Subsequence histogram for the best-of-generation 
individual for generation 7 for the two-dimensional cellular 

automaton problem. 
The best-of-generation individual for generation 10 had 67 

points and an entropy of 6.995: 
(OR (OR (AND (OR (NOT E) (NOT S)) (OR (AND (OR (NOT E) (NOT S)) (OR (AND W X) E)) (NOT (OR 
(AND (OR X N) (NOT E)) (OR X W))))) (AND (NOT (OR X S)) (OR (NOT W) (AND W (NOT (OR (AND X 
(NOT (NOT N))) (NOT S))))))) (OR (AND (NOT (NOT N)) (NOT (OR N X))) (AND (AND (NOT W) (NOT 
X)) (NOT E)))). 

Figure 27 is the histogram  for generation 10.   
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Figure 27  Subsequence histogram for the best-of-run 

individual from generation 10 for the two-dimensional cellular 
automaton problem. 

The question arises as to whether the above S-expression, 
which was genetically bred using 16,384 = 214 temporal 
sequence steps, is generalizable to other numbers of steps.  
When we retested the genetically produced randomizer over 
65,536 = 216 steps, we got an even better value of entropy: 
6.998 bits (as compared to the original 6.995).   
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Table 2 shows the rule number and entropy for six selected 

genetically discovered high-entropy rules for a two-dimensional 
cellular automaton.  For example, line A of this table shows the 
best-of-generation individual with entropy of 6.995 for 
generation 10 of the run described above.  The S-expression for 
this rule is equivalent to rule number 2,857,758,96010 in the 
numbering scheme for two-dimensional cellular automata used 
in Toffoli and Margolus [1987].  In this numbering scheme, the 
bits are presented in the order EWSNX and the inputs are taken 
starting with 00000 (i.e., the opposite to the order employed for 
one-dimensional cellular automata described in the previous 
section).  The decimal and hexadecimal identifications of each 
rule are shown in columns 2 and 3 of this table and the entropy 
is shown in column 4. 
Table 2   Selected high-entropy rules for the two-dimensional 
cellular automaton problem. 

 Rule number in 
decimal notation 

Rule number in 
hexadecimal 
notation 

Entropy 

A 2,857,758,960 AA55F0F0 6.995 
B 4,042,268,190 F0F01E1E 6.997 
C 3,435,935,286 CCCC3636 6.997 
D 4,027,577,610 F00FF50A 6.997 
E 3,435,947,622 CCCC6666 6.995 
F 3,140,699,340 BB3344CC 6.995 
Table 3 is the truth table for these same six genetically 

discovered high-entropy rules for a two-dimensional cellular 
automaton.  The first five columns of this table present the 
specific combination of inputs in the order E, W, S, N, and X.  
The next six columns show the value of the six rules for each of 
the 32 combinations of values of the inputs. 
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Table 3  Truth table for selected genetically 
produced high-entropy rules for the two-
dimensional cellular automaton problem. 
E W S N X A B C D E F 
0 0 0 0 0 1 1 1 1 1 1 
0 0 0 0 1 0 1 1 1 1 0 
0 0 0 1 0 1 1 0 1 1 1 
0 0 0 1 1 0 1 0 1 1 1 
0 0 1 0 0 1 0 1 0 0 1 
0 0 1 0 1 0 0 1 0 0 0 
0 0 1 1 0 1 0 0 0 0 1 
0 0 1 1 1 0 0 0 0 0 1 
0 1 0 0 0 0 1 1 0 0 0 
0 1 0 0 1 1 1 1 0 0 0 
0 1 0 1 0 0 1 0 0 0 1 
0 1 0 1 1 1 1 0 0 0 1 
0 1 1 0 0 0 0 1 1 1 0 
0 1 1 0 1 1 0 1 1 1 0 
0 1 1 1 0 0 0 0 1 1 1 
0 1 1 1 1 1 0 0 1 1 1 
1 0 0 0 0 1 0 0 1 1 0 
1 0 0 0 1 1 0 0 1 1 1 
1 0 0 1 0 1 0 1 1 1 0 
1 0 0 1 1 1 1 1 1 1 0 
1 0 1 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 1 1 1 
1 0 1 1 0 0 1 1 0 0 0 
1 0 1 1 1 0 0 0 1 1 0 
1 1 0 0 0 1 0 0 0 0 1 
1 1 0 0 1 1 0 0 0 0 1 
1 1 0 1 0 1 0 1 0 0 0 
1 1 0 1 1 1 1 1 0 0 0 
1 1 1 0 0 0 1 0 1 1 1 
1 1 1 0 1 0 1 1 0 0 1 
1 1 1 1 0 0 1 1 1 1 0 
1 1 1 1 1 0 0 0 0 0 0 

Interestingly, rule E in this table (i.e., rule 3,435,947,622) was 
produced on two different runs (out of 11 runs that produced 
rules with entropy of 6.995 or better).  The S-expression 
obtained on one of those two runs was 

(NOT (AND (OR (AND (OR (OR (AND (OR (OR (OR S (OR (OR W (NOT E)) N)) N) N) (AND (OR (OR (OR 
(OR (AND (OR W N) (NOT E)) (NOT (NOT X))) (AND S X)) (NOT (NOT X))) (AND S X)) (NOT (NOT (AND 
(OR W N) (NOT E)))))) (NOT (NOT X))) (AND S X)) (NOT (NOT N))) (NOT (OR (OR X N) (NOT E)))) 
(OR (AND (NOT (OR (OR W (NOT (NOT X))) N)) (OR (OR (AND (OR (OR W (NOT (NOT X))) N) (AND S 
X)) (AND (AND S S) (OR (OR (AND (OR W N) (NOT E)) (NOT (NOT X))) (AND S X)))) (NOT (OR (AND 
(AND (OR (AND S X) N) (AND S X)) (NOT E)) (AND (AND S S) (OR (OR W (OR W W)) N)))))) (OR (OR 
W (OR W W)) N)))). 
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7 Conclusions 
We used genetic programming to find a rewriting rule for a 
Lindenmayer system for the quadratic Koch island and to find a 
high entropy state transition rule for both a one-dimensional and 
two-dimensional cellular automata.  
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