
1

Presented February 13, 1993 at the Symposium on Pattern
Formation (SPF-93) at Claremont, California

Discovery of Rewrite Rules in Lindenmayer Systems and State Transition

Rules in Cellular Automata via Genetic Programming

John R. Koza
Computer Science Department

Margaret Jacks Hall
Stanford University

Stanford, California 94305
 Koza@Cs.Stanford.Edu

415-941-0336

Abstract: It is difficult to write programs for both

Lindenmayer systems and cellular automata. This paper
demonstrates the possibility of discovering the rewrite rule for
Lindenmayer systems and the state transition rules for cellular
automata by means of genetic programming. Genetic
programming is an extension of the genetic algorithm in which
computer programs are genetically bred to solve problems. We
demonstrate the use of genetic programming to discover the
rewrite rules for a Lindenmayer system for the quadratic Koch
island using a pattern matching measure as the driving force for
the evolutionary process. We also demonstrate the use of
genetic programming to discover the state transition rules for a
one-dimensional and two-dimensional cellular automata using
entropy as the driving force for the evolutionary process.

1 Introduction and Overview
Interesting behavior often emerges from the repetitive
application of seemingly simple rules. Both Lindenmayer
systems and cellular automata often produce interesting

2
emergent behavior. Lindenmayer systems are grammatical
systems controlled by an initial condition and one or more
rewriting rules. Cellular automata are dynamical systems
controlled by an initial condition and a locally applied state
transition rule. However, it is difficult to discover the rules that
produce desired behavior in both Lindenmayer systems and
cellular automata. This problem is called the “inverse” problem
for Lindenmayer systems and cellular automata. This paper
demonstrates the possibility of discovering the rewrite rule for
Lindenmayer systems and the state transition rules for cellular
automata by means of genetic programming. Genetic
programming provides a way to search the space of all possible
programs composed of certain terminals and primitive functions
to find a function which solves, or approximately solves, a
problem.

Section 2 of this paper provides background on genetic
algorithms and genetic programming. Section 3 describes
genetic programming. Section 4 describes Lindenmayer
systems. Section 5 demonstrates the use of genetic programming
to discover the rewrite rules for a Lindenmayer system for the
quadratic Koch island using a pattern matching measure as the
driving force for the evolutionary process. Section 6
demonstrates the use of genetic programming to discover the
state transition rules for a one-dimensional and two-dimensional
cellular automata using entropy as the driving force for the
evolutionary process.

2 Background on Genetic Algorithms and Genetic
Programming
John Holland's pioneering 1975 Adaptation in Natural and
Artificial Systems described how the evolutionary process in
nature can be applied to artificial systems using the genetic

3
algorithm operating on fixed length character strings [Holland
1975]. Holland demonstrated that a population of fixed length
character strings (each representing a proposed solution to a
problem) can be genetically bred using the Darwinian operation
of fitness proportionate reproduction and the genetic operation
of recombination. The recombination operation combines parts
of two chromosome-like fixed length character strings, each
selected on the basis of their fitness, to produce new offspring
strings. Holland established, among other things, that the
genetic algorithm is a near optimal approach to adaptation in
that it maximizes expected overall average payoff when the
adaptive process is viewed as a multi-armed slot machine
problem requiring an optimal allocation of future trials given
currently available information. The genetic algorithm has
proven successful at searching nonlinear multidimensional
spaces in order to solve, or approximately solve, a wide variety
of problems [Goldberg 1989, Davis 1987, Davis 1991, Davidor
1991, Forrest 1991, Michalewicz 1992]. Recent conference
proceedings provide an overview of current work in the field
[Schaffer 1989, Forrest 1990, Belew and Booker 1991, Rawlins
1991, Meyer and Wilson 1991, Schwefel et al. 1991, Langton et
al. 1992, Whitley 1993].

It is difficult, unnatural, and overly restrictive to attempt to
represent hierarchies of dynamically varying size and shape with
fixed length character strings. For many problems, the most
natural representation for a solution is a hierarchical
composition of primitive functions and terminals (i.e., a
computer program) of indeterminate size and shape, as opposed
to character strings whose size has been determined in advance.

Genetic programming provides a way to find a computer
program of unspecified size and shape to solve, or
approximately solve, a problem. The book Genetic

4
Programming: On the Programming of Computers by Means of
Natural Selection [Koza 1992] describes genetic programming
in detail. A videotape visualization of applications of genetic
programming can be found in the Genetic Programming: The
Movie [Koza and Rice 1992]. Specifically, genetic
programming has been successfully applied to problems such as
• classification and pattern recognition (e.g., distinguishing two

intertwined spirals),
• evolution of a subsumption architecture for robotic control,
• discovering control strategies for backing up a tractor-trailer

truck, centering a cart, and balancing a broom on a moving
cart,

• generation of maximal entropy sequences of random numbers,
• empirical discovery (e.g., rediscovering the well-known non-

linear econometric "exchange equation" MV = PQ from actual,
noisy time series data for the money supply, the velocity of
money, the price level, and the gross national product of an
economy),

• symbolic "data to function" regression, symbolic integration,
symbolic differentiation, symbolic solution to general
functional equations (including differential equations with
initial conditions, and integral equations) and sequence in-
duction,

• Boolean function learning (e.g., learning the Boolean 11-multi-
plexer function and 11-parity functions),

• planning (e.g., navigating an artificial ant along a trail),
• discovering inverse kinematic equations to control the

movement of a robot arm to a designated target point,
• induction of decision trees for classification,
• optimization problems (e.g., finding an optimal food foraging

strategy for a lizard),

5
• emergent behavior (e.g., discovering a computer program

which, when executed by all the ants in an ant colony, enables
the ants to locate food, pick it up, carry it to the nest, and drop
pheromones along the way so as to produce cooperative
emergent behavior),

• finding minimax strategies for games (e.g., differential pursuer-
evader games, discrete games in extensive form) by both
evolution and co-evolution, and

• simultaneous architectural design and training of neural
networks.

3 Steps Required to Execute Genetic Programming
Genetic programming, like the conventional genetic algorithm,
is a domain independent method. Genetic programming
proceeds by genetically breeding populations of compositions of
the primitive functions and terminals (i.e., computer programs)
to solve problems by executing the following three steps:
(1) Generate an initial population of random computer

programs composed of the primitive functions and terminals
of the problem.

(2) Iteratively perform the following sub-steps until the
termination criterion has been satisfied:
(a) Execute each program in the population and assign it a

fitness value according to how well it solves the problem.
(b) Create a new population of programs by applying the

following two primary operations. The operations are
applied to program(s) in the population selected with a
probability based on fitness (i.e., the fitter the program, the
more likely it is to be selected).
(i) Reproduction: Copy existing programs to the new

population.

6
(ii) Crossover: Create two new offspring programs for the

new population by genetically recombining randomly
chosen parts of two existing programs. The genetic
crossover (sexual recombination) operation (described
below) operates on two parental computer programs and
produces two offspring programs using parts of each
parent.

(3) The single best computer program in the population
produced during the run is designated as the result of the run of
genetic programming. This result may be a solution (or
approximate solution) to the problem.

3.1 Crossover Operation
The crossover operation for the genetic programming paradigm
is a sexual operation that operates on two parental LISP S-
expressions and produces two offspring S-expressions using
parts of each parent. Typically the two parents are hierarchical
compositions of functions of different size and shape. In
particular, the crossover operation starts by selecting a random
crossover point in each parent and then creates two new off-
spring S-expressions by exchanging the sub-trees (i.e. sub-lists)
between the two parents. Because entire sub-trees are swapped,
this genetic crossover (recombination) operation produces
syntactically and semantically valid LISP S-expressions as
offspring regardless of which point is selected in either parent.

For example, consider the parental LISP S-expression:
(OR (NOT D1) (AND D0 D1))

And, consider the second parental S-expression below:
(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

These two LISP S-expressions can be depicted graphically as
rooted, point-labeled trees with ordered branches. Assume that
the points of both trees are numbered in a depth-first way
starting at the left. Suppose that the second point (out of 6 points

7
of the first parent) is randomly selected as the crossover point
for the first parent and that the sixth point (out of 10 points of
the second parent) is randomly selected as the crossover point of
the second parent. The crossover points are therefore the NOT in
the first parent and the AND in the second parent.

The two parental LISP S-expressions are shown are shown in
figure 1. The numbers on the points of the trees are for
reference only.

OR

NOT AND

D0 D1D1 D1

OR

ANDOR

NOT

D0

NOT NOT

D0 D1

2

3

4

5 6

1

2

3

1

4

5

6

7

8

9

10

Figure 1 Two parental computer programs.

The two crossover fragments are two sub-trees shown in figure
2 and are underlined in the two parents above.

NOT

D1

AND

NOT NOT

D0 D1

Figure 2 The crossover fragments resulting from selection of
point 2 of the first parent and point 6 of the second parent as

crossover points.
These two crossover fragments correspond to the bold,

underlined sub-expressions (sub-lists) in the two parental LISP
S-expressions shown above.

The first offspring S-expression is
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)),

and happens to be the even-2-parity function.

8
The second offspring is
(OR (OR D1 (NOT D0)) (NOT D1)).

The two offspring resulting from crossover are shown in figure
3. Details can be found in Koza [1992].

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Figure 3 The two offspring produced by crossover.

4 Lindenmayer Systems
Lindenmayer systems (L-Systems) were conceived as a
mathematical theory of plant development [Lindenmayer 1968].
L-systems are grammatical rewriting systems wherein a
complex object can be defined by successively replacing parts of
a simple initial object (the axiom) using one or more rewriting
rules (productions) [Prusinkiewicz and Hanan 1980,
Prusinkiewicz and Lindenmayer 1990].

In a deterministic context-free L-system, the predecessor string
(left side) of each rewriting rule consists of only a single symbol
of the alphabet and a particular symbol from the alphabet
appears on the left side of only one rule. When the current
string is rewritten, all occurrences of each symbol which can be
rewritten are simultaneously replaced by its successor string (the
right side of its rewriting rule). L-systems acquire their local
and distributed character because of this simultaneous and
parallel rewriting.

The complex objects generated by L-systems are often
visualized by means of a geometric interpretation of the strings.
In the turtle interpretation of strings, one symbol from the
alphabet (say F) might be interpreted as a straight line segment

9
and might be visualized by moving the turtle forward by one
unit. The operation + (called L+ later) might be interpreted by
rotating the turtle in a positive direction (counterclockwise) by a
specified angle φ whereas the operation - (called L- later)
would be interpreted as a clockwise rotation by angle φ.
Without loss of generality, we assume the original straight line
is of unit length and is initially oriented north throughout this
paper.

4.1 Example of an L-System – The von Koch Snowflake
For example, consider the L-system for the von Koch snowflake
[Prusinkiewicz and Lindenmayer 1990]. Three items need to
specified. The axiom consists of the string F++F++F. The set
of productions consists of the single rewriting rule

F ∅ F-F++F-F.

The angle φ is 60�.
Figure 4 shows the turtle interpretation of the axiom (iteration

0) F++F++F for the von Koch snowflake.

Figure 4. Iteration 0 (the axiom) F++F++F for the von Koch

snowflake
Creation of iteration 1 requires three applications of the

rewriting rule to the axiom (iteration 0) in order to produce the
string for iteration 1, namely

F-F++F-F++F-F++F-F++F-F++F-F.

10
 Figure 5 shows the turtle interpretation for iteration 1 of the

von Koch snowflake. The size of the objects at later iterations
generally grow, so we rescale all figures to the original size.

Figure 5 Iteration 1 of the von Koch snowflake

Figure 6 shows the turtle interpretation for the string produced
when this rewriting process for the von Koch snowflake is
continued to iteration 4.

Figure 6 Iteration 4 of the von Koch snowflake

4.2 Example of a Plant Defined Using a Bracketed L-
System

11
Bracketed L-system employ the additional feature of bracket.
Upon completion of execution of a substring in a rewriting rule
that is enclosed in a pair of brackets, the turtle is rubber-banded
back to its position and orientation at the start of the execution
of the bracketed substring.

For example, consider the L-system for a plant [Prusinkiewicz
and Lindenmayer 1990]. The axiom consists merely of F. The
angle φ is 26�. The single production is

F ∅ F[+F]F[-F]F.

Figure 7 shows the turtle interpretation for iteration 1 of a plant
using this bracketed L-system rule. The axiom (iteration 0)
consists merely on a single vertical line segment. Iteration 1 is
created by replacing the axiom with five line segments. The
first F in the rewriting rule is interpreted as a line segment going
forward in the current direction (i.e., north). The [+F] is
interpreted as a counterclockwise (i.e., left) turn of 26� and a
line segment in the new northwesterly direction. Because of the
brackets, the turtle is rubber-banded back to its position and
restored to its orientation prior to the left turn (i.e., north). The
third F is interpreted as a line segment going forward in the
now-restored northerly direction. The [-F] is interpreted as a
clockwise (i.e., right) turn of 26� and a line segment in the new
northeasterly direction. Similarly, because of the brackets, the
turtle is rubber-banded back, so that the fifth and final F is
interpreted as a line segment going forward in the now-restored
northerly direction.

12

Figure 7 Iteration 1 of a plant using a bracketed L-system

rule
Figure 8 shows the turtle interpretation for the string produced

when this rewriting process for a plant using this bracketed L-
system rule is continued to iteration 4.

Figure 8 Iteration 4 of a plant using a bracketed L-system

rule

5 The Inverse Problem for L-Systems
The “inverse” or “inference” problem for Lindenmayer systems
involves finding the rewriting rules for a given structure or

13
sequence of structures. In this paper, we consider a version of
this inverse problem wherein the goal is to discover the
rewriting rule, given the axiom and given the angle. Notice that
we can, in general, determine the angle by measurement of the
target object. In other words, we will be seeking a composition
of the primitive functions and terminals (i.e., a computer
program) that solves the problem. We will use genetic
programming to discover the desired rewriting rule.

5.1 The Quadratic Koch Island
We will use the quadratic Koch island as the illustrative
problem. The angle is 90� for the quadratic Koch island. The
axiom is F+F+F+F (a square). The rewriting rule is

F ∅ F-F+F+FF-F-F+F.

Figure 9 shows iteration 1 for the quadratic Koch island.

Figure 9 Iteration 1 for the Quadratic Koch island

Figure 10 shows iteration 2 for the quadratic Koch island.

14

Figure 10 Iteration 2 for the Quadratic Koch island

5.2 Preparatory Steps for Using Genetic Programming
There are five major steps in preparing to use genetic
programming, namely determining
(1) the set of terminals,
(2) the set of primitive functions,
(3) the fitness measure,
(4) the parameters for controlling the run, and
(5) the method for designating a result and the criterion for

terminating a run.
The terminal set T for this problem can be viewed as consisting

of three zero-argument functions of this problem.
T = {L+, L-, F}.

The function set F for this problem consists of
F = {BRACKET, PROGN},

taking one and two arguments, respectively.
The two-argument PROGN function is the ordinary LISP

connective that evaluates (executes) both of its arguments in
sequence.

The one-argument BRACKET function causes the turtle to
execute the single argument of BRACKET and then rubber-bands
the turtle to its position and orientation at the start of the
evaluation of the BRACKET function. The rewriting rule for the

15
quadratic Koch island does not necessarily require the use of
brackets; however, as it happens, brackets appear in the solution
discovered herein.

Each function-defining branch is a composition of primitive
functions from the function set F and terminals from the
terminal set T.

The third major step in preparing to use genetic programming
is the identification of the fitness measure for evaluating the
goodness of each individual in the population. For this problem,
fitness is measured according to how well a particular individual
in the population matches the target quadratic Koch island. A
minimal enclosing square is placed around the quadratic Koch
island after iteration 2 and the enclosing square is divided into a
100 by 100 grid. The fitness is the number of cells in this grid
(out of 10,000) for which the individual in the population
behaves differently than the quadratic Koch island. The smaller
this number, the better. A 100% correct individual would have a
fitness of zero. Specifically, the fitness is incremented for each
cell (1) entered by the quadratic Koch island on iteration 2 but
not entered by the object on iteration 2, and (2) entered by the
object on iteration 2 but not entered by quadratic Koch island on
iteration 2. The magnitude of these increments are selected to
be 9 and 1 respectively, so that an individual that draws no lines
scores the same as an individual that paints lines in all 10,000
cells. The worst possible value of fitness is 17,808. This worst
possible value is also assigned to any object that attempts to
draw more than 1,280 line segments.

Although the above fitness measure is based on the matching
of two patterns, genetic programming of Lindenmayer systems
lends itself to fitness measures computed by means of
biologically meaningful simulations involving scarce resources
(e.g., sunlight falling on a plant) or to implicit fitness measures

16
based on the competitive interactions of the growing objects in a
simulated environment.

The fourth major step in preparing to use genetic programming
is the selection of values for certain parameters. Our choice of
4,000 as the population size and our choice of 51 as the
maximum number of generations to be run reflect an estimate on
our part as to the likely difficulty of this problem and the
practical limitations on available computer time and memory.
Our choice of values for the various secondary parameters that
control a run of genetic programming are the same default
values as we have consistently used on numerous other
problems [Koza 1992], except that we continue our recently
adopted practice of using tournament selection (with a group
size of seven) as the selection method (as opposed to fitness
proportionate reproduction).

Finally, the fifth major step in preparing to use genetic
programming is the selection of the criterion for terminating a
run and the selection of the method for designating a result. We
will terminate a given run if we encounter a 100% correct
individual or after 51 generations. We designate the best
individual obtained during the run (the best-so-far individual) as
the result of the run.

5.3 Results for the Quadratic Koch island
A review of one particular successful run will serve to illustrate
how genetic programming operates to solve this problem.

Genetic programming starts by randomly generating 4,000
individual compositions of the terminals form the terminal set
and the functions from the function set for this problem. As one
would expect, none of the 4,000 randomly generated individuals
in the initial generation of the population (generation 0) are very
good. The worst 12% of the population for generation 0 score

17
the worst possible value, namely 17,808. They either do not
draw anything at all or they exceed the maximum allowable
number of line segments.

However, even in a randomly created population of programs,
some individuals are better than others. For example, the next
better individual from the 13% percentile of the population for
generation 0 scores 9,252 and is

F ∅ F+[-]-F-++--F-FF-.

Figure 11 shows this individual from the 13% percentile of the
population for generation 0 for the quadratic Koch island.

Figure 11 Individual from the 13th percentile of generation 0

for the quadratic Koch island
The second-best individual from generation 0 scores 7,776,

and, when written in the style of L-systems, is
F ∅ FFF+F-F-.

and is shown in figure 12.

18

Figure 12 Second-Best individual from generation 0 for the

quadratic Koch island.
The best-of-generation individual from generation 0 scores

6,522 and is
(PROGN (PROGN (PROGN (PROGN (F) (L+)) (PROGN (F) (F))) (PROGN (PROGN (L-) (L-)) (PROGN (L+)
(L+)))) (PROGN (PROGN (PROGN (L+) (F)) (PROGN (F) (L-))) (BRACKET (PROGN (F) (F))))).

When written in the style of L-systems, this best-of-generation
individual from generation 0 is

F ∅ F+FF--+++FF-[FF].

Figure 13 shows this best-of-generation individual from
generation 0 for the quadratic Koch island.

Figure 13 Best-of-generation individual from generation 0 for

the quadratic Koch island
After applying the Darwinian reproduction operation and the

genetic recombination (crossover) operations to the 4,000
individuals in the population, we find that the best-of-generation

19
individual in generation 1 has an improved fitness of 6,446.
When written in the style of L-systems, this individual is

F ∅ F+FF[F]+FF-[FF].

Figure 14 shows this best-of-generation individual from
generation 1 for the quadratic Koch island.

Figure 14 Best-of-generation individual from generation 1

As genetic programming proceeds from generation to
generation, the population tends to improve.

Figure 15 shows that the best-of-generation individual from
generation 3 has no lines in the central area of the object. The
emergence of the empty central area is one step in the progress
toward the eventual solution of this problem. This individual
has fitness of 6,254.

Figure 15 Best-of-generation individual from generation 3

with an empty central area

20
The best-of-generation individual from generation 5 has fitness
of 4,488 and, when written in the style of L-systems, is

F ∅ [-+F-F++---FF+-FFFF+++FF+]-F-FF-F+FF[+F].

Figure 16 shows this best-of-generation individual from
generation 5. While this object does not yet bear much
resemblance to the target quadratic Koch island, it is
nevertheless better than its predecessors.

Figure 16 Best-of-generation individual from generation 5

The best-of-generation individual from generation 19 has fitness
of 520 and, when written in the style of L-systems, is

F ∅ [F][F-F+F--+++FF-[F][[-F]F]+-F+--F]FFFF.

Figure 17 shows this best-of-generation individual from
generation 19. Notice the empty area in the central area now
resembles a St. Andrew's cross (as it does in the target quadratic
Koch island).

Figure 17 Best-of-generation individual from generation 19

21
Figure 18 shows, by generation, the fitness of the best-of-
generation individual and the average fitness of the population
as a whole. As can be seen, the fitness of the best-of-generation
individual and the average fitness of the population as a whole
tend to improve (i.e., drop) from generation to generation.

0 25 50
0

5,000

10,000

Average
Best of Generation

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

Figure 18 Fitness curves

Figure 19 shows, by generation, the structural complexity (i.e.,
number of functions and terminals) of the best-of-generation
individual and the average structural complexity of the
population as a whole for the LISP S-expressions (i.e., not the
equivalent rules written in the form of a Lindenmayer system).

0 25 50
0

50

100

Best of Generation
Average

Generation

St
ru

ct
ur

al
 C

om
pl

ex
ity

Figure 19 Structural complexity curves

The hits histogram is a useful monitoring tool for visualizing
the progressive learning of the population as a whole during a
run. To compute the number of hits awarded to an individual,
we subtract the fitness (as defined above) of the individual from
17,808 (the worst possible fitness value) and express the result
as a rounded percentage of the range 0 through 17,808. Thus, a
perfect individual is awarded 100 hits, and the worst possible
individual is awarded 0 hits. The horizontal axis of this
histogram represents hits after they have been gathered into
eleven bins. The first ten bins represent ten consecutive hits

22
values each and the 11th bin represents 100 hits. The vertical
axis represents the number of individuals in the population (0 to
4,000) scoring that number of hits.

Figure 20 shows the hits histograms for generations 0, 10, and
50 of this run. Notice the left-to-right undulating movement of
both the high point and the center of mass of these histograms.
This “slinky” movement reflects the improvement of the
population as a whole. The number "1" on the third panel of this
figure indicates that on generation 50 there was one individual
that perfectly solved the problem (i.e., had fitness of zero and
scored 100 hits).

00->09 10->19 20->29 30->39 40->49 50->59 60->69 70->79 80->89 90->99 100

Generation 0

Hits

0

1,500

3,000

Fr
eq

ue
nc

y

0

1,500

3,000

Fr
eq

ue
nc

y

Generation 10

Hits
00->09 10->19 20->29 30->39 40->49 50->59 60->69 70->79 80->89 90->99 100

00->09 10->19 20->29 30->39 40->49 50->59 60->69 70->79 80->89 90->99 100

Generation 50

Hits

0

1,500

3,000

Fr
eq

ue
nc

y

1

Figure 20 Hits histograms for generations 0, 10, and 50

Between generations 19 and 50, there is a different rewriting
rule for each generation, each having almost perfect fitness.

By generation 50, the best-of-generation individual has the
perfect fitness value of zero and is shown below:

(PROGN2 (PROGN2 (LM1-ADF0) (LM-)) (PROGN2 (PROGN2 (PROGN2 (PROGN2 (PROGN2 (PROGN2 (LM1-ADF0)
(LM+)) (LM1-ADF0)) (PROGN2 (PROGN2 (LM-) (LM-)) (PROGN2 (LM+) (LM+)))) (PROGN2 (PROGN2
(PROGN2 (LM+) (LM1-ADF0)) (PROGN2 (LM1-ADF0) (LM-))) (LM1-ADF0))) (HOMING-LM1 (PROGN2 (LM-)
(LM1-ADF0)))) (PROGN2 (LM-) (PROGN2 (PROGN2 (LM1-ADF0) (LM+)) (LM1-ADF0))))).

When written in the style of L-systems, this individual is
F ∅ F-F+F--+++FF-F[-F]-F+F.

In this rewriting rule, the substring --++ changes, but
immediately restores, the turtle’s orientation and thus can be
deleted from the above string. In addition, the bracketed
sequence [-F] turns the turtle and draws a forward line;

23
however, because it is bracketed and followed immediately by
an identical -F, there is an overwriting and this bracketed string
can be deleted. After these two deletions, the above string is
seen to be a 100% correct string for the rewriting rule for the
quadratic Koch island.

6 The Inverse Problem for Cellular Automata
In a cellular automaton, each cell in a cellular space is occupied
by an automaton that is identical except for its initial state. The
next state of each automaton depends on its own current state
and on the current states of the automata in a specified set of
neighboring cells. For example, for a one-dimensional cellular
automaton, the next state of a given automaton might depend on
the current state of that automaton and the current states of its
two neighbors at distance 1. We denote these three states as X
(for the automaton at the center), W (west), and E (east).
Similarly, for a two-dimensional cellular automaton, the next
state of a given automaton might depend on the current state of
that automaton and the current states of its four neighbors at
distance 1 in the two-dimensional space, namely X, W, E, north
(N), and south (S). Cellular spaces typically have periodic
boundary conditions (i.e., are toroidal) so that every cell has the
same number of neighbors.

Cellular automata are the discrete counterparts of continuous
dynamical systems defined by partial differential equations and
the physicist's concept of field [Gutowitz 1991, Toffoli and
Margolus 1987]. If the automaton located in each cell happens
to have only two states, the state-transition function of the
automaton is merely a Boolean function. For a one-dimensional
cellular space with von Neumann neighbors, the Boolean
function has three inputs and one output. For a two-dimensional
cellular space with von Neumann neighbors, the Boolean

24
function has five inputs and one output. Cellular automata with
Boolean state-transition functions are dynamical systems that are
discrete in time, space (their cells), and site value (Boolean).

Complex overall behavior is often produced by cellular
automata as the result of the repetitive application (at each cell
in the cellular space) of seemingly simple transition rules
contained in each cell.

The problem of designing a state-transition rule that, when it
operates in each cell of the cellular space, produces a desired
overall emergent behavior is called the “inverse” problem for
cellular automata.

The “inverse” problem for cellular automata involves finding
the state-transition rule that, when it operates in each cell of the
cellular space, produces a desired overall behavior. In this
paper, we consider a version of this inverse problem wherein the
goal is to discover the state-transition rule, given the initial
condition of the cellular space. In other words, we will be
seeking a composition of the primitive functions and terminals
(i.e., a computer program) that solves the problem. We will use
genetic programming to discover the desired state-transition
rule.

6.1 One-Dimensional Cellular Automata
In this section, we use genetic programming to evolve a state-
transition rule that enables a cellular automaton to produce
certain desired emergent behavior. In particular, we evolve a
state-transition rule that produces temporal random behavior in a
cellular automaton.

Wolfram [1986] showed that a particular two-state automaton
depending only on itself and its two immediate neighbors (W and
E) in a one-dimensional cellular space was capable of producing
a pseudo-random temporal stream of bits. In particular,

25
Wolfram showed random temporal behavior (using several
frequently used tests for randomness) from the state-transition
rule

(XOR W (OR X E)).

This Boolean function with three inputs is rule 30 using the
usual numbering scheme for Boolean functions. It is, under
reflection, equivalent to rule 86.

We used a one-dimensional cellular space of width 32. The
initial state of cell 15 was 1 (True) and the initial state of all
other cells was 0 (NIL). The initial state of the cellular space
used by Wolfram consisted of one cell in state 1 (True) and all
the other 31 cells in state 0 (NIL). In other words, the initial
state contained a minimal amount of activity. The temporal
stream of random bits was taken from the single cell that started
in state 1 (i.e., cell 15).

In this section, we demonstrate how genetic programming can
rediscover Wolfram's two-state automaton using only the overall
goal (i.e., to produce a high-entropy stream of bits over time) to
guide the discovery process.

The terminal set for this problem consisted of the three inputs
available to each automaton in the one-dimensional cellular
space, namely

T = {X, W, E}.

Since we are considering functions of three Boolean
arguments, the function set for this problem can consist of the
following computationally complete and convenient set of three
Boolean functions:

F = {AND, OR, NOT}

taking two, two, and one argument, respectively.
Fitness is measured by means of entropy. We examined the

time series over 4,096 time steps at cell 15 and considered the
entropy associated with the probability of occurrence of each of
the 24 = 16 possible temporal subsequences of length 4. That is,

26
there were 4,096 fitness cases. If each of the 16 subsequences of
length 4 occurred exactly 4,096

16 = 256 times in 4,096 time steps,
entropy would attain the maximal value of 4.000 bits. Fitness
was measured via entropy using a lookback of 4. Maximum raw
fitness was 4.000 bits. A hit for this problem was defined as
1,000 times raw fitness and thus ranged from 0 to 4,000.

The population is 500 for this cellular automata problem.
The genetically produced S-expressions in the population are

often large and complex. Nonetheless, they involve only the
three independent variables X, W, and E, and therefore they
necessarily correspond to one of the 256 possible Boolean
functions with three arguments and one output.

In one run, the best-of-generation individual from generation 0
had an entropy of 1.832 and 32 points:

(AND (AND (NOT (AND (NOT E) (OR E X))) (NOT (AND (AND X E) (NOT X)))) (NOT (AND (OR (OR X X)
(OR W W)) (AND (OR W W) (AND W W))))).

In figure 21, the horizontal axis ranges over the 24 = 16 possible
temporal subsequences of length 4 for generation 0 (i.e., from
0000 to 1111). The vertical axis of this histogram ranges over
the number of occurrences of each of the 16 subsequences. As
can be seen, the most frequent two of the possible temporal
subsequences of length 4 occur 1,792 and 1,664 times each (out
of 4,096 times), and many of the possible subsequences are
unrepresented for generation 0.

0

500

1000

1500

2000

Generation 0

Figure 21 Subsequence histogram for the best-of-generation
individual for generation 0 for the one-dimensional cellular

automaton problem.

27
For generation 6, the best-of-generation individual had an

entropy of 3.494 and 20 points:
(AND (OR E X) (NOT (AND (AND (AND X X) (OR W X)) (AND (AND W W) (AND W E))))).

Figure 22 is the histogram for the 16 possible temporal
subsequences for generation 6. Six of the possible temporal
subsequences of length 4 occur between 502 and 504 times each
for generation 6. Generation 6 is the first generation of this
particular run for which there was at least one occurrence of
each of the 16 possible temporal subsequences (although the fact
that the number of occurrences of the several of the rarer
subsequences is non zero is not discernible on this histogram,
because of its scale).

0
100
200
300
400
500
600

Generation 6

Figure 22 Subsequence histogram for the best-of-generation
individual for generation 6 for the one-dimensional cellular

automaton problem.
For generation 7, the best-of-generation individual had an

entropy of 3.645 and 28 points:
(OR (NOT (OR (NOT W) (NOT (OR (NOT W) (OR E X))))) (NOT (OR (OR (NOT (NOT X)) (OR E W)) (OR
(OR X W) (AND W X))))).

Figure 23 is the histogram for the 16 possible temporal
subsequences for the best-of-generation 7 individual. As can be
seen, there has been a substantial improvement in the uniformity
of the distribution between generations 6 and 7. Fifteen of the
16 subsequences in generation 7 have between 214 and 289
occurrences, and one of the subsequences has 425 occurrences.

28

0
100
200
300
400
500

Generation 7

Figure 23 Subsequence histogram for the best-of-generation
individual for generation 7 for the one-dimensional cellular

automaton problem.
For generation 10, the best-of-generation individual had an

entropy of 3.982 and 43 points:
(OR (AND (AND (NOT (NOT (NOT X))) (OR (NOT (AND E W)) (OR (NOT (OR (NOT E) (AND X X))) (NOT
E)))) (NOT (AND (OR (NOT E) (NOT W)) (OR (OR X W) (AND E E))))) (NOT (OR (NOT X) (AND X
W)))).

 Figure 24 is the histogram for the best-of-generation 10
individual. The numbers of occurrences of all 16 of the
subsequences lie in the relatively narrow range of 232 to 275.

0
50

100
150
200
250
300

Generation 10

Figure 24 Subsequence histogram for the best-of-generation
individual for generation 10 for the one-dimensional cellular

automaton problem.
The best-of-generation individual for generation 25 had

entropy of 3.996. Its histogram is similar to, but smoother than,
the histogram in figure 24 for generation 10. This best-of-run
individual has 83 points and an entropy of 3.996:

(AND (OR (OR (NOT (OR E E)) (NOT (OR (OR (AND W W) (OR E (NOT (NOT X)))) (NOT (AND (AND (AND
X X) X) (AND (AND W W) (AND W E))))))) (OR (AND W W) (AND E E))) (OR (NOT (OR (NOT (OR (NOT
W) (NOT (OR (NOT W) (OR E X))))) (NOT (OR (OR (NOT (NOT X)) (OR E W)) W)))) (NOT (OR E (OR
(OR (NOT W) (AND (OR X X) (NOT E))) (AND (OR X X) (AND X E))))))).

29
Table 1 shows that this S-expression is rule 30 (00011110 in

binary) and is therefore equivalent to Wolfram's cellular
automaton randomizer.
Table 1 Truth table of best-of-run
individual from generation 25 for
the one-dimensional cellular
automaton problem.
West X East Result
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

The question arises as to whether the above S-expression,
which was genetically bred using 4,096 = 212 temporal sequence
steps, is generalizable to other numbers of steps. When we
retested the genetically produced randomizer over 65,536 = 216
steps, we got an even better value of entropy: 4.000 bits (as
compared to the original 3.996).

On an earlier generation of this same run, we also encountered
Boolean rule 45 that Wolfram (1986) identified as the second-
best randomizer of this type (when inserted into a one-
dimensional cellular automaton). The S-expression for rule 45
(which is, upon reflection, equivalent to rule 75) is

(XOR W (OR X (NOT E))).

6.2 Two-Dimensional Cellular Automata
We can genetically breed a randomizing computer program for a
two-dimensional cellular automaton in a similar manner.

The terminal set for this problem consisted of the five inputs
from the von Neumann neighborhood available to each
automaton in the two-dimensional cellular space, namely

T = {X, W, N, E, S}.

30
The function set and fitness measure are the same as for the

one-dimensional cellular automata problem previously
described.

We used a two-dimensional cellular space of size 8 ∞ 8. The
initial state of cell (3, 3) was 1 (True) and the initial state of all
other 63 cells was 0 (NIL). We examined the time series over
16,384 time steps and considered the entropy associated with the
probability of occurrence of each of the 27 = 128 possible
subsequences of length 7. Maximum entropy is now 7.000 bits.

In one run, the best-of-generation individual from generation 0
had an entropy of 3.202 (out of 7.000 bits) and has 4 points:

(NOT (OR X E)).

Figure 25 is a histogram showing the number of occurrences of
each of the 27 = 128 possible subsequences of length 7 occurring
temporally at cell (3,3) for the best-of-generation individual
from generation 0. The horizontal axis represents the possible
temporal subsequences from 0000000 to 1111111 at cell (3,3).

0
1000
2000
3000
4000
5000

Generation 0

Figure 25 Subsequence histogram for the best-of-generation
individual for generation 0 for the two-dimensional cellular

automaton problem.
For generation 7, the best-of-generation individual had 51

points and an entropy of 6.711:
(OR (OR (AND (OR (NOT E) (NOT S)) (OR (OR E (AND X W)) S)) (AND (NOT (OR N X)) (OR (NOT W)
(AND W (NOT (OR (AND X (NOT (NOT N))) (NOT S))))))) (OR (AND (NOT (NOT N)) (NOT (OR N X)))
(AND (AND (NOT W) (NOT X)) (NOT E)))).

Figure 26 is the histogram for the 128 possible temporal
subsequences for generation 7, the first generation of this

31
particular run for which there was at least one occurrence of
each of the 128 possible temporal subsequences.

0

100

200

300

400

Generation 7

Figure 26 Subsequence histogram for the best-of-generation
individual for generation 7 for the two-dimensional cellular

automaton problem.
The best-of-generation individual for generation 10 had 67

points and an entropy of 6.995:
(OR (OR (AND (OR (NOT E) (NOT S)) (OR (AND (OR (NOT E) (NOT S)) (OR (AND W X) E)) (NOT (OR
(AND (OR X N) (NOT E)) (OR X W))))) (AND (NOT (OR X S)) (OR (NOT W) (AND W (NOT (OR (AND X
(NOT (NOT N))) (NOT S))))))) (OR (AND (NOT (NOT N)) (NOT (OR N X))) (AND (AND (NOT W) (NOT
X)) (NOT E)))).

Figure 27 is the histogram for generation 10.

0
20
40
60
80

100
120
140
160

Generation 10

Figure 27 Subsequence histogram for the best-of-run

individual from generation 10 for the two-dimensional cellular
automaton problem.

The question arises as to whether the above S-expression,
which was genetically bred using 16,384 = 214 temporal
sequence steps, is generalizable to other numbers of steps.
When we retested the genetically produced randomizer over
65,536 = 216 steps, we got an even better value of entropy:
6.998 bits (as compared to the original 6.995).

32
Table 2 shows the rule number and entropy for six selected

genetically discovered high-entropy rules for a two-dimensional
cellular automaton. For example, line A of this table shows the
best-of-generation individual with entropy of 6.995 for
generation 10 of the run described above. The S-expression for
this rule is equivalent to rule number 2,857,758,96010 in the
numbering scheme for two-dimensional cellular automata used
in Toffoli and Margolus [1987]. In this numbering scheme, the
bits are presented in the order EWSNX and the inputs are taken
starting with 00000 (i.e., the opposite to the order employed for
one-dimensional cellular automata described in the previous
section). The decimal and hexadecimal identifications of each
rule are shown in columns 2 and 3 of this table and the entropy
is shown in column 4.
Table 2 Selected high-entropy rules for the two-dimensional
cellular automaton problem.

 Rule number in
decimal notation

Rule number in
hexadecimal
notation

Entropy

A 2,857,758,960 AA55F0F0 6.995
B 4,042,268,190 F0F01E1E 6.997
C 3,435,935,286 CCCC3636 6.997
D 4,027,577,610 F00FF50A 6.997
E 3,435,947,622 CCCC6666 6.995
F 3,140,699,340 BB3344CC 6.995
Table 3 is the truth table for these same six genetically

discovered high-entropy rules for a two-dimensional cellular
automaton. The first five columns of this table present the
specific combination of inputs in the order E, W, S, N, and X.
The next six columns show the value of the six rules for each of
the 32 combinations of values of the inputs.

33
Table 3 Truth table for selected genetically
produced high-entropy rules for the two-
dimensional cellular automaton problem.
E W S N X A B C D E F
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 0 1 1 1 1 0
0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 1 0 1 0 1 1 1
0 0 1 0 0 1 0 1 0 0 1
0 0 1 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 1
0 0 1 1 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 1 1 1 1 0 0 0
0 1 0 1 0 0 1 0 0 0 1
0 1 0 1 1 1 1 0 0 0 1
0 1 1 0 0 0 0 1 1 1 0
0 1 1 0 1 1 0 1 1 1 0
0 1 1 1 0 0 0 0 1 1 1
0 1 1 1 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 1 1 0
1 0 0 0 1 1 0 0 1 1 1
1 0 0 1 0 1 0 1 1 1 0
1 0 0 1 1 1 1 1 1 1 0
1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 1 0 1 1 1 1 1
1 0 1 1 0 0 1 1 0 0 0
1 0 1 1 1 0 0 0 1 1 0
1 1 0 0 0 1 0 0 0 0 1
1 1 0 0 1 1 0 0 0 0 1
1 1 0 1 0 1 0 1 0 0 0
1 1 0 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 1 0 1 1 0 0 1
1 1 1 1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 0

Interestingly, rule E in this table (i.e., rule 3,435,947,622) was
produced on two different runs (out of 11 runs that produced
rules with entropy of 6.995 or better). The S-expression
obtained on one of those two runs was

(NOT (AND (OR (AND (OR (OR (AND (OR (OR (OR S (OR (OR W (NOT E)) N)) N) N) (AND (OR (OR (OR
(OR (AND (OR W N) (NOT E)) (NOT (NOT X))) (AND S X)) (NOT (NOT X))) (AND S X)) (NOT (NOT (AND
(OR W N) (NOT E)))))) (NOT (NOT X))) (AND S X)) (NOT (NOT N))) (NOT (OR (OR X N) (NOT E))))
(OR (AND (NOT (OR (OR W (NOT (NOT X))) N)) (OR (OR (AND (OR (OR W (NOT (NOT X))) N) (AND S
X)) (AND (AND S S) (OR (OR (AND (OR W N) (NOT E)) (NOT (NOT X))) (AND S X)))) (NOT (OR (AND
(AND (OR (AND S X) N) (AND S X)) (NOT E)) (AND (AND S S) (OR (OR W (OR W W)) N)))))) (OR (OR
W (OR W W)) N)))).

34
7 Conclusions
We used genetic programming to find a rewriting rule for a
Lindenmayer system for the quadratic Koch island and to find a
high entropy state transition rule for both a one-dimensional and
two-dimensional cellular automata.

ACKNOWLEDGEMENTS
James P. Rice of the Knowledge Systems Laboratory at Stanford
University programmed the above on the Texas Instruments
Explorer II+ computer.

REFERENCES
Belew, Richard and Booker, Lashon (editors) Proceedings of the

Fourth International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann Publishers Inc. 1991.

Davidor, Yuval. Genetic Algorithms and Robotics. Singapore:
World Scientific 1991.

Davis, Lawrence (editor) Genetic Algorithms and Simulated
Annealing London: Pittman l987.

Davis, Lawrence. Handbook of Genetic Algorithms. New York:
Van Nostrand Reinhold 1991.

Forrest, Stephanie (editor). Emergent Computation: Self-
Organizing, Collective, and Cooperative Computing Networks.
Cambridge, MA: The MIT Press 1990.

Forrest, Stephanie. Parallelism and Programming in Classifier
Systems. London: Pittman 1991.

Goldberg, David E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley l989.

Gutowitz, Howard (editor). Cellular Automata: Theory and
Experiment. Cambridge, MA: The MIT Press 1991.

Holland, John H. Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press 1975. Revised
Second Edition 1992 from The MIT Press.

35
Koza, John R. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. Cambridge, MA:
The MIT Press 1992. 1992.

Koza, John R. and Rice, James P. Genetic Programming: The
Movie. Cambridge, MA: The MIT Press 1992.

Langton, Christopher, Taylor, Charles, Farmer, J. Doyne, and
Rasmussen, Steen (editors). Artificial Life II, SFI Studies in the
Sciences of Complexity. Volume X. Redwood City, CA:
Addison-Wesley 1992.

Lindenmayer, Aristid. Mathematical models for cellular
interactions in development, I & II. Journal of Theoretical
Biology. 18: 280–315. 1968.

Meyer, Jean-Arcady and Wilson, Stewart W. From Animals to
Animats: Proceedings of the First International Conference on
Simulation of Adaptive Behavior. Paris. September 24-28,
1990. Cambridge, MA: MIT Press 1991.

Michalewicz, Zbignlew. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag 1992.

Prusinkiewicz, Przemyslaw and Hanan, James. Lindenmayer
Systems, Fractals, and Plants. New York: Springer-Verlag
1980.

Prusinkiewicz, Przemyslaw, and Lindenmayer, Aristid. 1990.
The Algorithmic Beauty of Plants. New York: Springer-Verlag
1990.

Rawlins, Gregory (editor). Proceedings of Workshop on the
Foundations of Genetic Algorithms and Classifier Systems.
Bloomington, Indiana. July 15-18, 1990. San Mateo, CA:
Morgan Kaufmann 1991.

Schaffer, J. D. (editor). Proceedings of the Third International
Conference on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers Inc. 1989.

36
Schwefel, Hans-Paul and Maenner, Reinhard (editors). Parallel

Problem Solving from Nature. Berlin: Springer-Verlag. 1991.
Pages 124-128. 1991b.

Toffoli, T. and Margolus, N. Cellular Automata Machines.
Cambridge, MA: The MIT Press, 1987.

Wolfram, Stephen. Random sequence generation by cellular
automata. In Wolfram (editor). Theory and Applications of
Cellular Automata. Singapore: World Scientific 1986.

