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ABSTRACT 
Genetic programming is a systematic method for getting computers to 

automatically solve a problem. Genetic programming starts from a high-level 
statement of what needs to be done and automatically creates a computer program 
to solve the problem. The paper demonstrates that genetic programming (1) now 
routinely delivers high-return human-competitive machine intelligence; (2) is an 
automated invention machine; (3) can automatically create a general solution to a 
problem in the form of a parameterized topology; and (4) has delivered a 
progression of qualitatively more substantial results in synchrony with five 
approximately order-of-magnitude increases in the expenditure of computer time. 
Recent results involving the automatic synthesis of the topology and sizing of 
analog electrical circuits and controllers demonstrate these points. 
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1 INTRODUCTION 
One of the central challenges of computer science is to get a computer to solve a 
problem without explicitly programming it to do so. Paraphrasing Arthur 
Samuel—founder of the field of machine learning—this challenge (1959) is  

How can computers be made to do what needs to be done, without 
being told exactly how to do it? 

Samuel described the criterion for success for the above challenge in his 1983 
talk entitled “AI: Where It Has Been and Where It Is Going”: 

“[T]he aim [is] … to get machines to exhibit behavior, which if done 
by humans, would be assumed to involve the use of intelligence.”  

Genetic programming starts from a high-level statement of what needs to be 
done and automatically creates a computer program to solve the problem. Genetic 
programming uses the Darwinian principle of natural selection along with analogs 
of recombination (crossover), mutation, gene duplication, gene deletion, and 
mechanisms of developmental biology to breed an ever-improving population of 
programs.  

This paper makes four points: 
(1) Genetic programming now routinely delivers high-return human-
competitive machine intelligence (section 3).  
(2) Genetic programming is an automated invention machine (section 4).  
(3) Genetic programming can automatically create a general solution to a 
problem in the form of a parameterized topology (section 5).  
(4) Genetic programming has delivered a progression of qualitatively more 
substantial results in synchrony with five approximately order-of-magnitude 
increases in the expenditure of computer time (section 6). 
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2 BACKGROUND ON GENETIC PROGRAMMING  
Genetic programming breeds computer programs to solve problems by executing 
the following three steps:  

(1) Generate an initial set (called the population) of compositions (typically 
random) of functions and terminals appropriate to the problem. 
(2) Iteratively perform the following substeps (a generation) on the population 
of programs until the termination criterion has been satisfied: 

(A) Execute each program in the population and assign it a fitness value 
using the problem’s fitness measure. 
(B) Create a new population (the next generation) of programs by applying 
the following operations to program(s) selected from the population with a 
probability based on fitness (with reselection allowed). 

(i) Reproduction: Copy the selected program to the new population. 
(ii) Crossover: Create a new offspring program for the new population 
by recombining randomly chosen parts of two selected programs. 
(iii) Mutation: Create one new offspring program for the new 
population by randomly mutating a randomly chosen part of the selected 
program. 
(iv) Architecture-altering operations: Create one new offspring 
program for the new population by applying a selected architecture-
altering operation to the selected program.  

(3) Designate the individual program that is identified by the result designation 
method (e.g., the individual with the best fitness) as the run’s result. This result 
may be a solution (or approximate solution) to the problem.  

Genetic programming has been successfully applied to a wide variety of 
problems from numerous different fields (Koza 1992; Koza and Rice 1992; Koza 
1994a, 1994b; Koza, Bennett, Andre, and Keane 1999; Koza, Bennett, Andre, 
Keane, and Brave 1999; Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003; 
Koza, Keane, Streeter, Mydlowec, Yu, Lanza, and Fletcher 2003).  

3 GENETIC PROGRAMMING NOW ROUTINELY DELIVERS 
HIGH-RETURN HUMAN-COMPETITIVE MACHINE 

INTELLIGENCE 
3.1 Definition of “Human-Competitive” 
In attempting to evaluate an automated problem-solving method, the question 
arises as to whether there is any real substance to the demonstrative problems that 
are published in connection with the method. Demonstrative problems in the fields 
of artificial intelligence and machine learning are often contrived toy problems that 
circulate exclusively inside academic groups that study a particular methodology 
and that have little relevance to any issues pursued by other scientists or engineers.  
Table 1 Eight criteria for human-competitiveness  
 Criterion 
A The result was patented as an invention in the past, is an improvement over a patented invention, 

or would qualify today as a patentable new invention. 
B The result is equal to or better than a result that was accepted as a new scientific result at the time 

when it was published in a peer-reviewed scientific journal. 
C The result is equal to or better than a result that was placed into a database or archive of results 

maintained by an internationally recognized panel of scientific experts. 
D The result is publishable in its own right as a new scientific resultindependent of the fact that 

the result was mechanically created. 
E The result is equal to or better than the most recent human-created solution to a long-standing 

problem for which there has been a succession of increasingly better human-created solutions. 
F The result is equal to or better than a result that was considered an achievement in its field at the 

time it was first discovered. 
G The result solves a problem of indisputable difficulty in its field. 
H The result holds its own or wins a regulated competition involving human contestants (in the form 

of either live human players or human-written computer programs). 



Table 2 Thirty-six human-competitive results produced by genetic 
programming  
 Claimed instance Basis  
1 Creation of a better-than-classical quantum algorithm for the Deutsch-Jozsa 

“early promise” problem 
B, F 

2 Creation of a better-than-classical quantum algorithm for Grover’s database 
search problem 

B, F 

3 Creation of a quantum algorithm for depth-two AND/OR query problem that 
is better than previously published results 

D 

4 Creation of a quantum algorithm for the depth-one OR query problem that is 
better than any previously published result 

D 

5 Creation of a protocol for communicating information through a quantum 
gate previously thought not to permit it 

D 

6 Creation of a novel variant of quantum dense coding D 
7 Creation of a soccer-playing program that won its first two games in the 

Robo Cup 1997 competition 
H 

8 Creation of a soccer-player ranked in middle of field of 34 human-written 
programs in Robo Cup 1998 competition 

H 

9 Creation of four different algorithms for the transmembrane segment 
identification problem for proteins 

B, E 

10 Creation of a sorting network for seven items using only 16 steps A, D 
11 Rediscovery of the Campbell ladder topology for lowpass and highpass 

filters 
A, F 

12 Rediscovery of the Zobel “M-derived half section” and “constant K” filter 
sections 

A, F 

13 Rediscovery of the Cauer (elliptic) topology for filters A, F 
14 Automatic decomposition of the problem of synthesizing a crossover filter A, F 
15 Rediscovery of a recognizable voltage gain stage and a Darlington emitter-

follower section of amplifier and other circuits 
A, F 

16 Synthesis of 60 and 96 decibel amplifiers A, F 
17 Synthesis of analog computational circuits for squaring, cubing, square root, 

cube root, and Gaussian functions 
A, D, G 

18 Synthesis of a real-time analog circuit for time-optimal control of a robot G 
19 Synthesis of an electronic thermometer A, G 
20 Synthesis of a voltage reference circuit A, G 
21 Creation of a cellular automata rule for the majority classification problem 

that is better than the Gacs-Kurdyumov-Levin (GKL) rule and all other 
known rules written by humans 

D, E 

22 Creation of motifs that detect the D–E–A–D box family of proteins and the 
manganese superoxide dismutase family 

C 

23 Synthesis of topology for a PID-D2 (proportional, integrative, derivative, and 
second derivative) controller  

A, F 

24 Synthesis of an analog circuit equivalent to Philbrick circuit A, F 
25 Synthesis of a NAND circuit A, F 
26 Simultaneous synthesis of topology, sizing, placement, and routing of analog 

electrical circuits 
A. F, G 

27 Synthesis of topology for a PID (proportional, integrative, and derivative) 
controller  

A, F 

28 Rediscovery of negative feedback A, E, F, G 
29 Synthesis of a low-voltage balun circuit A 
30 Synthesis of a mixed analog-digital variable capacitor circuit A 
31 Synthesis of a high-current load circuit A 
32 Synthesis of a voltage-current conversion circuit A 
33 Synthesis of a Cubic function generator A 
34 Synthesis of a tunable integrated active filter A 
35 Creation of PID tuning rules that outperform the Ziegler-Nichols and 

Åström-Hägglund tuning rules 
A, B, D, E, F, G 

36 Creation of non-PID controllers that outperform the Ziegler-Nichols or 
Åström-Hägglund tuning rules 

A, B, D, E, F, G 

To make the idea of human-competitiveness concrete, we say that a result is 
“human-competitive” if it satisfies one or more of the eight criteria in table 1. 
These eight criteria have the desirable attribute of being at arms-length from the 
fields of artificial intelligence, machine learning, and genetic programming. That 
is, a result cannot acquire the rating of “human-competitive” merely because it is 
considered interesting by researchers inside the specialized fields that are 



attempting to create machine intelligence. Instead, a result produced by an 
automated method must earn the rating of “human-competitive” independent of the 
fact that it was generated by an automated method.  

Based on this definition, there are now 36 instances where genetic 
programming has produced a human-competitive result (table 2).  
3.2 Definition of “High-Return”  
What is delivered by the actual automated operation of an artificial method in 
comparison to the amount of knowledge, information, analysis, and intelligence 
that is pre-supplied by the human employing the method?  

We define the AI ratio (the “artificial-to-intelligence” ratio) of a problem-
solving method as the ratio of that which is delivered by the automated operation 
of the artificial method to the amount of intelligence that is supplied by the human 
applying the method to a particular problem.  

The AI ratio is especially pertinent to methods for getting computers to 
automatically solve problems because it measures the value added by the artificial 
problem-solving method. Manifestly, the aim of the fields of artificial intelligence 
and machine learning is to generate human-competitive results with a high AI 
ratio.  

Ascertaining the return of a problem-solving method requires measuring the 
amount of “A” that is delivered by the method in relation to the amount of “I” that 
is supplied by the human user.  

Each of the 36 results in table 2 is a human-competitive result. Therefore, it is 
reasonable to say that genetic programming delivered a high amount of “A” for 
each of them.  

The question thus arises as to how much “I” was supplied by the human user 
in order to produce these 36 results. Answering this question requires the 
discipline of carefully identifying the amount of analysis, intelligence, information, 
and knowledge that was supplied by the intelligent human user prior to launching a 
run of genetic programming.  

To do this, we make a clear distinction between the problem-specific 
preparatory steps and the problem-independent executional steps of a run of 
genetic programming.  

The preparatory steps are the problem-specific and domain-specific steps 
that are performed by the human user prior to launching a run of the problem-
solving method. The preparatory steps establish the “I” component of the AI ratio 
(i.e., the denominator). 

The executional steps are the problem-independent and domain-independent 
steps that are automatically executed during a run of the problem-solving method. 
The results produced by the executional steps provide the “A” component of the 
AI ratio (i.e., the numerator).  

The five major preparatory steps for genetic programming require the human 
user to specify  

(1) the set of terminals (e.g., the independent variables of the problem, zero-
argument functions, and random constants) available to each branch of the to-
be-evolved computer program, 
(2) the set of primitive functions available to each branch of the to-be-evolved 
computer program,  
(3) the fitness measure (for explicitly or implicitly measuring the fitness of 
individuals in the population), 
(4) certain parameters for controlling the run, and 
(5) a termination criterion and method for designating the result of the run.  

For the human-competitive results in table 2, only a de minimus amount of 
“I” is contained in the human-supplied primitive ingredients available to the to-be-
evolved computer program (the first and second preparatory steps), the human-



supplied fitness measure (the third preparatory step containing the high-level 
statement of what needs to be done), and the human-supplied control parameters 
and termination procedures (the fourth and fifth preparatory steps). In any event, 
the amount of “I” required by genetic programming is certainly not greater than 
that required by any other method of artificial intelligence and machine learning of 
which we are aware. Indeed, we know of no other problem-solving method 
(automated or human) that does not start with primitive elements of some kind, 
that does not employ some method for specifying what needs to be done to guide 
or evaluate the method’s operation, that does not employ some kind of 
administrative parameters, and that does not employ some kind of termination 
criterion.  

In view of the high amount of “A” in the numerator and the small amount of 
“I” in the denominator, we can see that the AI ratio is high for the results in table 2 
produced by genetic programming.. 
3.3 Definition of “Routine”  
Generality is a precondition to what we mean when we say that an automated 
problem-solving method is “routine.” Once the generality of a method is 
established, “routineness” means that relatively little human effort is required to 
get the method to successfully handle new problems within a particular domain 
and to successfully handle new problems from a different domain. The ease of 
making the transition to new problems lies at the heart of what we mean by 
“routine.”  

For example, virtually all controllers are built from the same primitive 
ingredients (e.g., integrators, differentiators, gains, adders, subtractors, and signals 
representing the plant output and the reference signal). Once these primitive 
ingredients are identified, new problems of controller synthesis can be handled 
merely by changing the statement of what needs to be done. Thus, after solving 
one problem of automatically synthesizing both the topology and tuning of a 
controller (say, item 27 in table 2), the transition to each new problem of controller 
synthesis (say, item 23) merely involves providing genetic programming with a 
different specification of what needs to be donethat is, a different fitness 
measure.  

In making the transition from problems of automatic synthesis of controllers 
to problems of automatic synthesis of circuits, the primitive ingredients change 
from integrators, differentiators, gains, and the like to transistors, resistors, 
capacitors, and the like. The fitness measure changes from one that minimizes a 
controller’s integral of time-weighted absolute error, minimizes overshoot, and 
maximizes disturbance rejection to one that is based on the circuit’s amplification, 
suppression or passage of a signal, elimination of distortion, and the like. That is, 
the transition from problem to problem is routine when using genetic 
programming. 

4 GENETIC PROGRAMMING IS AN AUTOMATED 
INVENTION MACHINE  

There are now 23 instances where genetic programming has duplicated the 
functionality of a previously patented invention, infringed a previously issued 
patent, or created a patentable new invention. Specifically, there are 15 instances 
where genetic programming has created an entity that either infringes or duplicates 
the functionality of a previously patented 20th-century invention, six instances 
where genetic programming has done the same with respect to a previously 
patented 21st-century invention, and two instances where genetic programming has 
created a patentable new invention.  

To make the foregoing points concrete, this section presents six instances 
where genetic programming automatically created both the topology (graphical 
structure) and sizing (numerical component values) for patented analog electrical 



circuits composed of transistors, capacitors, resistors, and other components. In 
each instance, genetic programming started from a high-level statement of a 
circuit’s desired behavior and characteristics (e.g., its desired output given its 
input). In producing results, genetic programming used only de minimus 
knowledge about analog circuits. Specifically, genetic programming employed a 
circuit simulator (e.g., SPICE) for the analysis of candidate circuits, but did not use 
any deep knowledge or expertise about the synthesis of circuits. The six inventions 
are show in table 3.  

When genetic programming is used to automatically create computer 
programs, the programs are ordinarily represented as trees (i.e., rooted, point-
labeled trees with ordered branches). In contrast, electrical circuits are usually 
represented as labeled graphical structures in which each component is included in 
a cycle. Thus, there is a representational obstacle that must be overcome before 
genetic programming can be applied to the problem of automatically synthesizing 
circuits. This obstacle can be overcome by establishing a mapping between 
program trees and labeled cyclic graphs. The mapping from trees into circuits is 
accomplished by means of a developmental process. This process begins with a 
simple embryo. The embryo herein consists of a single isolated modifiable wire 
that is not initially connected to external inputs or outputs. An analog electrical 
circuit is developed by progressively applying the functions in a circuit-
constructing program tree to the embryo’s initial modifiable wire (and to 
succeeding modifiable wires and modifiable components).  
Table 3 Six post-2000 patented analog circuits 
Invention Inventor(s) and date Institution 
Low-voltage balun circuit Sang Gug Lee (2001) Information and 

Communications University 
Mixed analog-digital variable 
capacitance 

Turgut Sefket Aytur (2002) Lucent Technologies Inc. 

Voltage-current converter Akira Ikeuchi and Naoshi 
Tokuda (2000) 

Mitsumi Electric Co., Ltd. 

High-current load circuit for 
testing a voltage source 

Timothy Daun-Lindberg and 
Michael Miller (2001) 

International Business Machines 
Corporation 

Low-Voltage cubic function 
generator 

Stefano Cipriani and Anthony 
A. Takeshian (2000) 

Conexant Systems, Inc. 

Tunable integrated active filter Robert Irvine and Bernd Kolb 
(2001) 

Infineon Technologies AG 

The available functions in a circuit-constructing program tree include  
(1) topology-modifying functions that alter the topology of a developing circuit 
(e.g., series division, parallel division, via between nodes, via to ground, via to 
a power supply, via to input, via to output),  
(2) component-creating functions that insert components (i.e., resistors, 
capacitors, and transistors) into a developing circuit, and 
(3) development-controlling functions that control the developmental process 
(e.g., cut, end).  

The function and terminal sets for all six problems permit the construction of 
any circuit composed of transistors, resistors, and capacitors.  

The main difference among the runs of genetic programming for the six 
problems (described below) is that we supplied a different fitness measure for each 
problem. Construction of a fitness measure requires translating the problem’s high-
level requirements into a precise computation. We read the patent document to find 
the performance that the invention was supposed to achieve. We then created a 
fitness measure reflecting the invention’s performance and characteristics. The 
fitness measure specifies the time-domain output value(s) that is desired given 
various time-domain input value(s). For each problem, a test fixture consisting of 
certain fixed components (such as a source resistor, a load resistor) is connected to 
the desired input port(s) and the desired output port(s). Circuits are simulated using 
SPICE.  



We supplied models for transistors appropriate to the problem. We used the 
commercially common 2N3904 (npn) and 2N3906 (pnp) transistor models unless 
the patent document called for a different model. We used 5-Volt power supplies 
unless the patent specified otherwise.  

The control parameters and termination criterion were the same for all six 
problems, except that we used different population sizes to approximately equalize 
each run’s elapsed time per generation.  

We now describe the six fitness measures. For additional details, see Koza, 
Keane, Streeter, Mydlowec, Yu, and Lanza 2003. 
4.1 Fitness Measures for the Six Problems 
4.1.1 Low-Voltage Balun Circuit 
The purpose of a balun (balance/unbalance) circuit is to produce two outputs from 
a single input, each output having half the amplitude of the input, one output being 
in phase with the input while the other is 180 degrees out of phase with the input, 
with both outputs having the same DC offset. The patented balun circuit uses a 
power supply of only 1 Volt. The fitness measure consisted of (1) a frequency 
sweep analysis designed to ensure the correct magnitude and phase at the two 
outputs of the circuit and (2) a Fourier analysis designed to penalize harmonic 
distortion.  
4.1.2 Mixed Analog-Digital Register-Controlled Variable Capacitor 
This mixed analog-digital circuit has a capacitance that is controlled by the value 
stored in a digital register. The fitness measure employed 16 time-domain fitness 
cases. The 16 fitness cases ranged over all eight possible values of a 3-bit digital 
register for two different analog input signals.  
4.1.3 Voltage-Current Conversion Circuit 
The purpose of the voltage-current conversion circuit is to take two voltages as 
input and to produce a stable current whose magnitude is proportional to the 
difference of the voltages. We employed four time-domain input signals (fitness 
cases) in the fitness measure. We included a time-varying voltage source beneath 
the output probe point to ensure that the output current produced by the circuit was 
stable with respect to any subsequent circuitry to which the output of the circuit 
might be attached.  
4.1.4 High-Current Load Circuit 
The patent covers a circuit designed to sink a time-varying amount of current in 
response to a control signal. The patented circuit employs a number of FET 
transistors arranged in parallel, each of which sinks a small amount of the desired 
current. The fitness measure consisted of two time-domain simulations, each 
representing a different control signal.  
4.1.5 Low-Voltage Cubic Signal Generator 
The patent covers an analog computational circuit that produces the cube of an 
input signal as its output. The circuit is “compact” in that it contains a voltage drop 
across no more than two transistors. 

The fitness measure for this problem consisted of four time-domain fitness 
cases using various input signals and time scales. The compactness constraint was 
enforced by providing only a 2-Volt power supply. 
4.1.6 Tunable Integrated Active Filter 
The patent covers a tunable integrated active filter that performs the function of a 
lowpass filter whose passband boundary is dynamically specified by a control 
signal. The circuit has two inputs: a to-be-filtered incoming signal and a control 
signal.  

The fitness measure for this problem consisted of a performance penalty and 
a parsimony penalty. The passband boundary, f, ranges over nine values between 
441 and 4,414 Hz. The performance penalty is a weighted sum, over 61 



frequencies for each of the nine values of f, of the absolute weighted deviation 
between the output of the individual candidate circuit at its probe point and the 
target output. The parsimony penalty is equal to the number of components in the 
circuit. For additional details, see Koza, Keane, Streeter, Mydlowec, Yu, and 
Lanza 2003. 
4.2 Results for the Six Problems 
4.2.1 Low-Voltage Balun Circuit 
Genetic programming automatically created the circuit shown in figure 1. This 
best-of-run evolved circuit was produced in generation 97 and has a fitness of 
0.429. The patented circuit has a fitness of 1.72. That is, the evolved circuit is 
roughly a fourfold improvement (less being better) over the patented circuit in 
terms of our fitness measure. In addition, the evolved circuit is superior to the 
patented circuit both in terms of its frequency response and its harmonic distortion.  

 
Figure 1 Best-of-run balun circuit   

In the patent documents, Lee (2001) shows a previously known conventional 
(prior art) balun circuit. This previously known circuit is shown as figure 2 herein.  

 
Figure 2 A prior art balun circuit shown in U.S. patent 6,265,908   

Lee’s patented low-voltage balun circuit is shown in figure 3 of this paper. 
Lee (2001) states that the essential difference between the prior art and his 
invention is a coupling capacitor C2 located between the base and the collector of 
the transistor Q2. Lee explains the essence of his invention as follows:  

“The structure of the inventive balun circuit shown in [Figure 3] is 
identical to that of [Figure 2] except that a capacitor C2 are further 
provided thereto. The capacitor C2 is a coupling capacitor disposed 
between the base and the collector of the transistor Q2 and serves to 
block DC components which may be fed to the base of the transistor 
Q2 from the collector of the transistor Q2.”  



As can be seen, the best-of-run genetically evolved circuit (figure 1) 
possesses the very feature that Lee identifies as the essence of his invention, 
namely the coupling capacitor called “C302” in figure 1 and called “C2” in figure 3.  

The genetically evolved circuit also reads on three additional elements of 
claim 1 of Lee’s 2001 patent. However, as it happens, the genetically evolved 
circuit does not infringe Lee’s patent because it does not read on other elements 
enumerated in claim 1.  

 
Figure 3 Lee’s low voltage balun circuit shown in patent 6,265,908   

4.2.2 Mixed Analog-Digital Register-Controlled Variable Capacitor 
Over our 16 fitness cases, the patented circuit has an average error of 0.803 
millivolts. In generation 95, a circuit emerged with average error of 0.808 
millivolts, or approximately 100.6% of the average error of the patented circuit. 
During the course of this run, we harvested the smallest individuals produced on 
each processing node with a certain maximum level of error. Examination of these 
harvested individuals revealed a circuit from generation 98 (figure 4) that 
approximately matches the topology of the patented circuit (without infringing). 
The genetically evolved circuit reads on all but one of the elements of claim 1 of 
the patented circuit (and hence does not infringe the patent).  

 
Figure 4 Evolved compliant register-controlled capacitor circuit   

4.2.3 Voltage-Current Conversion Circuit 
A circuit emerged on generation 109 of our run of this problem with a fitness of 
0.619. That is, the evolved circuit has roughly 62% of the average (weighted) error 
of the patented circuit. The evolved circuit was subsequently tested on unseen 
fitness cases that were not part of the fitness measure and outperformed the 
patented circuit on these new fitness cases. The best-of-run circuit solves the 
problem in a different manner than the patented circuit.  



4.2.4 High-Current Load Circuit 
On generation 114, a circuit emerged that duplicated Daun-Lindberg and Miller’s 
parallel FET transistor structure. This circuit has a fitness (weighted error) of 1.82, 
or 182% of the weighted error for the patented circuit.  

The genetically evolved circuit shares the following features found in claim 1 
of U.S. patent 6,211,726:  

“A variable, high-current, low-voltage, load circuit for testing a 
voltage source, comprising: …  
“a plurality of high-current transistors having source-to-drain paths 
connected in parallel between a pair of terminals and a test load.”  

However, the remaining elements of claim 1 in U.S. patent 6,211,726 are 
very specific and the genetically evolved circuit does not read on these remaining 
elements. In fact, the remaining elements of the genetically evolved circuit bear 
hardly any resemblance to the patented circuit. In this instance, genetic 
programming produced a circuit that duplicates the functionality of the patented 
circuit using a different structure.  
4.2.5 Low-Voltage Cubic Signal Generator 
The best-of-run evolved circuit (figure 5) was produced in generation 182 and has 
an average error of 4.02 millivolts. The patented circuit had an average error of 
6.76 millivolts. That is, the evolved circuit has approximately 59% of the error of 
the patented circuit over our four fitness cases.  

The claims in U.S. patent 6,160,427 amount to a very specific description of 
the patented circuit. The genetically evolved circuit does not read on these claims 
and, in fact, bears hardly any resemblance to the patented circuit. In this instance, 
genetic programming produced a circuit that duplicates the functionality of the 
patented circuit and does so using a very different structure.  

 
Figure 5 Best-of-run cubic signal generation circuit   

4.2.6 Tunable Integrated Active Filter 
Averaged over the nine values of frequency, the best-of-run circuit from 
generation 50 (figure 6) has 72.7 millivolts average absolute error for frequencies 
in the passband and 0.39 dB average absolute error for other frequencies.  

The best-of-run genetically evolved circuit reads on every element of claim 1 
of U.S. patent 6,225,859 and therefore infringes the patent.  



 
Figure 6 Best-of-run circuit for the tunable integrated active filter.   

5 GENETIC PROGRAMMING CAN AUTOMATICALLY 
CREATE PARAMETERIZED TOPOLOGIES  

Genetic programming can automatically create, in a single run, a general 
(parameterized) solution to a problem in the form of a graphical structure whose 
nodes or edges represent components and where the parameter values of the 
components are specified by mathematical expressions containing free variables. 
We call such a solution a parameterized topology.  

In a parameterized topology, the genetically evolved graphical structure 
represents a complex structure (e.g., electrical circuit, controller, network of 
chemical reactions, antenna, genetic network). In the automated process, genetic 
programming determines the graph’s size (its number of nodes) as well as the 
graph’s connectivity (specifying which nodes are connected). Genetic 
programming also assigns, in the automated process, component types to the 
graph’s nodes or edges. In the automated process, genetic programming also 
creates mathematical expressions that establish the parameter values of the 
components (e.g., the capacitance of a capacitor in a circuit). Some of these 
genetically created mathematical expressions contain free variables. The free 
variables confer generality on the genetically evolved solution by enabling a single 
genetically evolved graphical structure to represent a general (parameterized) 
solution to an entire category of problems. Genetic programming can do all the 
above in an automated way in a single run.  

The capability of genetic programming to create parameterized topologies for 
design problems is illustrated by the automatic creation of a general-purpose non-
PID controller (figure 7) whose blocks are parameterized by mathematical 
expressions containing the problem’s four free variables, namely the plant’s time 
constant, Tr, ultimate period, Tu, ultimate gain, Ku, and dead time, L. This 
genetically evolved controller (figure 7) outperforms PID controllers tuned using 
the widely used Ziegler-Nichols tuning rules (1942) and the recently developed 
Åström and Hägglund tuning rules (1995) on an industrially representative set of 
plants. The authors have applied for a patent on this new controller. For details, see 
Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003.  

This controller’s overall topology consists of three adders, three subtractors, 
four gain blocks parameterized by a constant, two gain blocks parameterized by 
non-constant mathematical expressions containing free variables, and two lead 
blocks parameterized by non-constant mathematical expressions containing free 
variables. Gain block 730 of figure 7 has a gain that is parameterized by the 
following non-constant mathematical expression (equation 31):  

( )log
log - + log

+1

L

r u
u

L
T T

T
          [31] 

and gain block 760 of figure 7 has a gain that is parameterized by 



log +1rT           [34]. 
Lead block 740 of figure 7 is parameterized by the following non-constant 

mathematical expression:  

( ) ( )( )2 3log - abs( ) +1 - 2L L L
u u r uNLM L L T T T e T e       [32]. 

In equation 32 (and 33 below), NLM is the nonlinear mapping  
 010  if x < –100 

 
100 1

- -
19 1910

x
 if –100 ≤ x < –5 

NLM(x) = 10x  if –5 ≤ x ≤ 5 

 
100 1

-
19 1910

x
 if 5 < x ≤ 100 

 010  if x > 100. 
Lead block 750 in figure 7 is parameterized by equation 33:  

( )( )( )log - 2 2 log - log +L L L
u u u u uNLM L T e K K e L T K e       [33]. 

If the genetically evolved program contains conditional developmental 
operators as well as free variables, a different graphical structure will, in general, 
be produced for different instantiations of the free variables. That is, the 
genetically evolved program operates as a genetic switch. Each program is 
provided with the problem’s free variables as input. These values trigger the 
development of different graphical structures as the program is executed.  
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Figure 7 Parameterized topology for a general-purpose controller.   

6 PROGRESSION OF QUALITATIVELY MORE SUBSTANTIAL 
RESULTS PRODUCED IN SYNCHRONY WITH INCREASING 

COMPUTER POWER 
Table 4 lists the five computer systems used to produce our group’s reported work 
on genetic programming in the 15-year period between 1987 and 2002. Column 7 
shows the number of human-competitive results (as itemized in table 2) generated 
by each computer system.  



The first entry in table 4 is a serial computer. The four subsequent entries are 
parallel computer systems. The presence of four increasingly powerful parallel 
computer systems in table 4 reflects the fact that genetic programming has 
successfully taken advantage of the increased computational power available by 
means of parallel processing (thereby avoiding a pitfall that often constrains other 
proposed approaches to machine intelligence).  

Table 4 shows the following:  
• There is an order-of-magnitude speed-up (column 4) between each successive 
computer system in the table. Note that, according to Moore’s law, exponential 
increases in computer power correspond approximately to constant periods of 
time.  
• There is a 13,900-to-1 speed-up (column 5) between the fastest and most 
recent machine (the 1,000-node parallel computer system) and the slowest and 
earliest computer system in table 4 (the serial LISP machine).  
• The slower early machines generated few or no human-competitive results, 
whereas the faster more recent machines have generated numerous human-
competitive results.  

Four successive order-of-magnitude increases in computer power are 
explicitly shown in table 4. An additional order-of-magnitude increase was 
achieved by making extraordinarily long runs on the largest machine in table 4 (the 
1,000-node Pentium® II parallel machine). The length of the run that produced the 
genetically evolved controller (figure 7) was 28.8 days—almost an order-of-
magnitude increase (9.3 times) over the 3.4-day average for runs that our group 
has made in recent years. A patent application was filed for the controller produced 
by this four-week run. If this final 9.3-to-1 increase is counted as an additional 
speed-up, the overall speed-up is 130,660-to-1. 
Table 4 Human-competitive results produced by genetic programming with 
five computer systems  
System Period Petacycles 

(1015) per 
day for 
system 

Speed-
up over 

previous 
row 

Speed-
up over 

first 
system 
in this 

table 

Used for work 
in book 

Human-
competitive 

results 

Serial Texas 
Instruments 
LISP machine 

1987–
1994 

0.00216 1 (base) 1 (base) Genetic 
Programming I 

and Genetic 
Programming 

II 

0 

64-node 
Transtech 
transputer 
parallel machine 

1994–
1997  

0.02 9 9 A few 
problems in 

Genetic 
Programming 

III 

2 

64-node Parsytec 
parallel machine 

1995–
2000  

0.44 22 204 Most problems 
in Genetic 

Programming 
III 

12 

70-node Alpha 
parallel machine 

1999–
2001  

3.2 7.3 1,481 A minority (8) 
of problems in 

Genetic 
Programming 

IV 

2 

1,000-node 
Pentium II 
parallel machine 

2000–
2002  

30.0 9.4 13,900 A majority 
(28) of the 

problems in 
Genetic 

Programming 
IV 

12 



Table 5 is organized around the five just-explained order-of-magnitude 
increases in the expenditure of computing power. Column 4 of table 5 
characterizes the qualitative nature of the results produced by genetic 
programming. Table 5 shows the progression of qualitatively more substantial 
results produced by genetic programming in terms of five order-of-magnitude 
increases in the expenditure of computational resources.  

The order-of-magnitude increases in computing power shown in table 5 
correspond closely (albeit not perfectly) with the following progression of 
qualitatively more substantial results produced by genetic programming:  

• toy problems,  
• human-competitive results not related to patented inventions,  
• 20th-century patented inventions, 
• 21st-century patented inventions, and 
• patentable new inventions.  

This progression demonstrates that genetic programming is able to take 
advantage of the exponentially increasing computational power made available by 
iterations of Moore’s law. The progression of results shown in table 5 suggests that 
genetic programming may deliver increasingly more significant results in the 
future. 

7 CONCLUSIONS 
This paper demonstrated that genetic programming (1) now routinely delivers 
high-return human-competitive machine intelligence; (2) is an automated invention 
machine; (3) can automatically create a general solution to a problem in the form 
of a parameterized topology; and (4) has delivered a progression of qualitatively 
more substantial results in synchrony with five approximately order-of-magnitude 
increases in the expenditure of computer time. These points were illustrated by a 
group of recent results involving the automatic synthesis of the topology and sizing 
of analog electrical circuits and involving the automatic synthesis of controllers.  
Table 5 Progression of qualitatively more substantial results produced by 
genetic programming in relation to five order-of-magnitude increases in 
computational power  
System Period Speed-up 

over 
previous 

row 

Qualitative nature of the results produced by 
genetic programming 

Serial Texas 
Instruments LISP 
machine 

1987–1994 1 (base) • Toy problems of the 1980s and early 1990s 
from the fields of artificial intelligence and 
machine learning  

64-node Transtech 
transputer parallel 
machine 

1994–1997 9 •Two human-competitive results involving one-
dimensional discrete data (not patent-related) 

64-node Parsytec 
parallel machine 

1995–2000 22 • One human-competitive result involving two-
dimensional discrete data  
• Numerous human-competitive results 
involving continuous signals analyzed in the 
frequency domain 
• Numerous human-competitive results 
involving 20th-century patented inventions 

70-node Alpha 
parallel machine 

1999–2001 7.3 • One human-competitive result involving 
continuous signals analyzed in the time domain 
• Circuit synthesis extended from topology and 
sizing to include routing and placement (layout) 

1,000-node 
Pentium II parallel 
machine 

2000–2002 9.4 • Numerous human-competitive results 
involving continuous signals analyzed in the 
time domain 
• Numerous general solutions to problems in the 
form of parameterized topologies 
• Six human-competitive results duplicating the 



functionality of 21st-century patented inventions 
Long (4-week) 
runs of 1,000-node 
Pentium II parallel 
machine 

2002 9.3 • Generation of two patentable new inventions 
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