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1.  Introduction
In nature, crossover ordinarily recombines a part of the chromosome of one parent
with a corresponding (homologous) part of the second parent's chromosome.
However, in certain very rare and unpredictable instances, this recombination does
not occur in the usual way.  A gene duplication is an illegitimate recombination
event that results in the duplication of a lengthy subsequence of a chromosome.
Susumu Ohno's seminal 1970 book Evolution by Gene Duplication proposed the
provocative thesis that the creation of new proteins (and hence new structures and
behaviors in living things) begins with a gene duplication and that gene duplication
is "the major force of evolution."

This report describes six new architecture-altering genetic operations for genetic
programming that are suggested by the mechanism of gene duplication (and the
complementary mechanism of gene deletion) in chromosome strings.  This report
proposes that these new operations be added to the toolkit of genetic programming
when the user desires to evolve the architecture of a multi-part program containing
automatically defined functions (ADFs) during the run of genetic programming.

The six new architecture-altering operations can be viewed from five
pe r spec t ives .

First, the new architecture-altering operations provide a new way to solve the
problem of determining the architecture of the overall program in the context of
genetic programming with automatically defined functions.

Second,  the new archi tecture-al ter ing operat ions provide an automatic
implementation of the ability to specialize and generalize in the context of automated
p r o b l e m - s o l v i n g .

Third, the new architecture-altering operations automatically and dynamically
change the representation of the problem while simultaneously and automatically
solving the problem.

Fourth, the new architecture-altering operations automatically and dynamically
decompose problems into subproblems and then automatically solve the overall
problem by assembling the solutions of the subproblems into a solution of the overall
p r o b l e m .

Fifth, the new architecture-altering operations automatically and dynamically
discover useful subspaces (usually of lower dimensionality than that of the overall
problem) and then automatically assemble a solution of the overall problem from
solutions applicable to the individual subspaces.

Section 2 of this report describes the naturally occurring processes of gene
duplication and gene deletion.  Section 3 describes analogs of gene duplication and
gene deletion that have appeared in previous work with character strings in the
field of genetic algorithms and other evolutionary algorithms.  Section 4.1 provides
basic background information on genetic programming and automatically defined
functions.  Section 4.2 lists the steps for executing genetic programming.  Section 4.3
describes the five existing methods for determining the architecture of multi-part
programs in the context of genetic programming with automatically defined
functions.  Section 4.4 describes different methods of creating the initial random
population when these new operations are being used.  Section 4.5 describes
structure-preserving crossover with point typing in an architecturally diverse
population.  Section 5 describes the six new architecture-altering operations.  Section
6 illustrates the architecture-altering operations using a g e d a n k e n  experiment
involving the problem of rotating the tires on an automobile.  Section 7 contains
some examples of actual runs of genetic programming with the new architecture-
altering operations.  Section 8 is the conclusion and section 9 outlines future work.
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2 . Gene Duplication and Deletion in Nature
In nature, deoxyribonucleic acid (DNA) is a long thread-like biological molecule that
has the ability to carry hereditary information.  DNA also has the ability to serve as a
model for the production of replicas of itself.  All known life forms on this planet
(including bacteria, fungi, plants, animals, and humans) are based on the DNA
molecule.  The DNA molecule (called the chromosome) consists of a backbone that
encases a long sequence of four nucleiotide bases: adenine (A ), guanine (G ), cytosine
(C ), and thymine (T ) .

Proteins are responsible for such a wide variety of biological structures and
functions that it can be said that the structure and functions of living organisms are
primarily determined by proteins (Stryer 1988).  For example, some proteins
transport particles such as electrons, atoms, or large macromolecules within living
organisms (e.g., hemoglobin transports oxygen in blood).  Some proteins store
particular particles for later use (e.g., myoglobin stores oxygen in muscles). Some
proteins generate nerve impulses (e.g., rhodopsin is the photoreceptor protein in
retinal rod cells) while other proteins enable signals to be communicated in the
nervous system.  Some proteins provide physical structure (e.g., collagen gives skin
and bone their high tensile strength).  Other proteins create physical contractile
motion (e.g., actin and myosin).  Proteins are the basis of the immune system (e.g.,
antibodies recognize and combine in highly specific ways with foreign entities such
as bacteria).  Hormonal proteins transmit chemical instructions throughout the
living organism.  Other proteins control the expression of the genetic information
contained in the nucleic acids that are responsible for the reproduction of the
organism.  Growth-factor proteins control growth and differentiation.

Protein molecules are polypeptides that are composed of sequences of between
about 50 and several thousand amino acids.  The sequence of amino acids appearing
in a protein are specified by the sequence of nucleiotide bases appearing in the DNA.
Sub-sequences consisting of three nucleiotide bases of DNA (called a codon) are
translated, using the genetic code, into one of 20 amino acids.

Then, organisms consisting of proteins created in this manner spend their lives
attempting to grapple with their environment.  Some organisms in a given
population do better than others in this pursuit.  In particular, some organisms
survive to the age of reproduction, reproduce a certain number of offspring, and
thereby pass on all or part of their genetic make-up (their DNA) to the next
generation of the population.  Over a period of time and many generations, the
population as a whole evolves so as to give increasing representation to traits that
contribute to survival of the organism in its environment, that facilitate the survival
of individual organisms to the age of reproduction, and that facilitate larger numbers
of offspring.

As Charles Darwin stated in On the Origin of Species by Means of Natural Selection
(1859),

"I think it would be a most extraordinary fact if no variation ever had
occurred useful to each being's own welfare ... . But if variations useful to
any organic being do occur, assuredly individuals thus characterised will
have the best chance of being preserved in the struggle for life; and from
the strong principle of inheritance they will tend to produce offspring
similarly characterised.  This principle of preservation, I have called, for the
sake of brevity, Natural Selection."
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Biological populations display the ability to adapt, survive, and reproduce in their
natural environments, to rapidly and robustly adapt in response to changes in the
environment.  Nature's methods for adapting biological populations to their
environment and nature's method of adapting these populations to successive
changes in their environments  provides a potentially useful model for creating
automated problem-solving techniques to problems that are generally thought to
require “intelligence” to solve.

In nature, the naturally occurring genetic operations of mutation and crossover
(sexual recombination) provide one way to alter the linear string of nucleiotide
bases .

Mutation, for example, alters the chromosomal string by changing one nucleiotide
base of the string.  When the changed DNA is then translated into work-performing
proteins in the living cell, the mutation may lead either to the manufacture of a
variant of the original protein or, as is often the case, to no viable protein being
manufactured from the altered portion of the DNA.  The variant of the protein (or
absence of the protein) may then affect the structure and behavior of the living
thing in some advantageous or disadvantageous way.  If the change is advantageous,
natural selection will tend to perpetuate the change.  In the more common situation
where the random mutant is disadvantageous, natural selection will tend to cause the
extinction of the mutant.

When crossover is performed, the linear string of nucleiotide bases of an
offspring is created by recombining portions of the DNA of one parent with portions
of the DNA of the second parent.  The offspring produced by crossover usually differ
from each parent by a substantial number of nucleiotide bases whereas the offspring
produced by mutation differ from the single parent by only one base.

In addition to frequent changes introduced by mutation and crossover,
chromosomes are occasionally also modified by other naturally occurring genetic
operations, such as gene duplication and gene deletion.

Gene duplications are rare and unpredictable events in the evolution of genomic
sequences.  In gene duplication, there is a duplication  of a portion of the linear
string of nucleiotide bases of the DNA in the living cell.  When a gene duplication
occurs, there is no immediate change in the proteins that are manufactured by the
living cell.  The effect of a gene duplication is merely to create two identical ways of
manufacturing the same protein.  In the terminology of computer science, gene
duplication is a semantics-preserving operation.

Then, over a period of time, some other genetic operation, such as mutation or
crossover, may change one or the other of the two identical genes.  Over short
periods of time, the changes accumulating in the changing gene may be of no
practical effect or value.  In fact, the changed part of the linear string of nucleiotide
bases of the DNA will often not even produce a viable protein.  However, as long as
one of the two genes remains unchanged, the original protein manufactured from
the unchanged gene continues to be manufactured and the structure and behavior of
the organism involved continues as before.  The changed gene is simply carried
along in the DNA from generation to generation.

Natural selection exerts considerable force in favor of maintaining a gene that
manufactures a protein that is important for the successful performance and
survival of a living organism.  However, after a gene duplication has occurred, there
is no disadvantage associated with the loss of the s e c o n d  way of manufacturing the
original protein.  Consequently, natural selection usually exerts little or no pressure
to maintain a second way of manufacturing the same protein.  Over a period of time,
the second gene may accumulate additional changes and diverge more and more from
the original gene.  Eventually the changed gene may lead to the manufacture of a
distinctly new and different protein that actually does affect the structure and
behavior of the living thing in some advantageous or disadvantageous way.  When a



4

changed gene leads to the manufacture of a viable and advantageous new protein,
natural selection again starts to work to preserve that new gene.

Ohno's Evolution by Gene Duplication (1970) corrects the mistaken notion that
natural selection is a mechanism for promoting change.  Instead, Ohno emphasizes
the essentially conservative role of natural selection in the evolutionary process:

"...the true character of natural selection ... is not so much an advocator or
mediator of heritable changes, but rather it is an extremely efficient
policeman which conserves the vital base sequence of each gene contained
in the genome.  As long as one vital function is assigned to a single gene
locus within the genome, natural  selection effectively forbids the
perpetuation of mutation affecting the act ive  sites of a molecule."  (Emphasis
in original).

Ohno further points out that simple point mutation and crossover are insufficient
to explain major evolutionary changes.

"...while allelic changes at already existing gene loci suffice for racial
differentiation within species as well as for adaptive radiation from an
immediate ancestor, they cannot account for large changes in evolution,
because large changes are made possible by the acquisition of new gene loci
with previously non-existent functions."

Ohno continues,

"Only by the accumulation of f o rb idden  mutations at the ac t ive  sites can the
gene locus change its basic character and become a new gene locus.  An
escape from the ruthless pressure of natural selection is provided by the
mechanism of gene duplication.  By duplication, a redundant copy of a locus
is created.  Natural selection often ignores such a redundant copy, and, while
being ignored, it accumulates formerly forbidden mutations and is reborn as
a new gene locus with a hitherto non-existent function."   (Emphasis in
o r i g i n a l ) .

Ohno concludes,

"Thus, gene duplication emerges as the major force of evolution."

Ohno's provocative thesis is supported by the discovery of pairs of proteins with
similar sequences of DNA and similar sequences of amino acids, but different
functions.  Examples include trypsin and chymotrypsin; the protein of microtubules
and actin of the skeletal muscle;  myoglobin and the monomeric hemoglobin of
hagfish and lamprey;  myoglobin used for storing oxygen in muscle cells and the
subunits of hemoglobin in red blood cells of vertebrates;  and the light and heavy
immunoglobin chains (Nei 1987, Maeda and Smithies 1986, Dyson and Sherratt 1985,
Brooks Low 1988, Patthy  1991, Go 1991, Hood and Hunkapiller  1991).

The moth Chironomus tentans  provides an additional example of gene duplication
in nature (Galli and Wislander 1993).  In particular, we focus our attention on the
particular contiguous sequence containing 3,959 nucleiotide bases of the DNA of this
moth that is archived under accession number X70063 in the European Molecular
Biology Laboratory (EMBL) database and the Gen Bank database.  The 732 nucleiotide
bases located at positions 918–1,649 of the 3,959 bases of the DNA sequence involved
become expressed as a protein containing 244 (i.e., one third of 732) amino acid
residues.  The 759 nucleiotide bases at positions 2,513–3,271 become expressed as a
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protein containing 253 residues.  The 732-base subsequence is called the "C. tentans
Sp38–40.A" gene and the 759-base subsequence is called "C. tentans Sp38–40.B."  The
bases of DNA before position 918, the bases between positions 1,650 and 2,612, and the
bases after position 3,371 of this sequence of length 3,959 do not become expressed as
any protein.

Both the "A" and the "B" proteins are secreted from the moth's salivary gland to
form two similar, but different, kinds of water-insoluble fibers.  The two kinds of
fibers are, in turn, spun into one of two similar, but different, kinds of tubes.  One
tube is for larval protection and feeding while the other tube is for pupation.

 Table 1 shows the bases of DNA in positions 900 through 3,399 of the 3,959
nucleiotide bases of X70063.  In the DNA sequence, A  represents the nucleiotide base
adenine, C  represents cytosine, G  represents guanine, and T  represents thymine.
Each group of three consecutive bases (a codon) of DNA becomes expressed as one of
the 20 amino acid residues of the protein.  The letters A , T , and G  appearing at
positions 918, 919, and 920, respectively in this reading frame, of the DNA sequence
are translated into the amino acid residue methionine (denoted by the single letter M
using the 20-letter coding for amino acid residues in proteins).  Thus, methionine is
the first amino acid residue (i.e., N -terminal) of protein "A."  Positions 921, 922, and
923 of the DNA contain the bases A , G , and A , respectively, and these three bases, in
this reading frame, are translated into arginine (an amino acid residue denoted by
the letter R ).  Thus, arginine is the second amino acid residue of protein "A" and the
protein sequence begins with the residues M  and R .  The DNA up to position 1,649
encodes the first protein.  Positions 1,647, 1648, and 1,649 code for the amino acid
resident lysine (denoted by the letter K ).  Thus, lysine is the last (244th) residue (i.e.,
C -terminal) of protein "A."
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Table 1  Portion of a DNA sequence containing the two expressed
p r o t e i n s .

TGAAGTAATA TTAAGCTATG AGAATTAAGT TCCTAGTAGT ATTAGCAGTT 950
       M R  I  K  F   L  V  V  L  A  V

ATCTGCTTGT TTGCACATTA TGCCTCAGCT AGTGGTATGG GGGGTGATAA 1000
I  C  L  F   A  H  Y  A  S  A S  G  M  G   G  D  K

AAAACCCAAA GATGCCCCAA AACCCAAAGA TGCCCCAAAA CCCAAAGAAG 1050
 K  P  K D  A  P  K   P  K  D  A  P  K P  K  E  V

TGAAGCCTGT CAAAGCTGAG TCATCAGAGT ATGAGATAGA AGTCATTAAA 1100
  K  P  V  K  A  E S  S  E  Y   E  I  E  V  I  K

CACCAGAAAG AAAAGACCGA GAAGAAGGAG AAGGAGAAGA AGACTCACGT 1150
H  Q  K  E   K  T  E  K  K  E K  E  K  K   T  H  V

TGAAACCAAG AAAGAAGTTA AAAAGAAGGA GAAGAAGCAA ATCCCTTGTT 1200
 E  T  K K  E  V  K   K  K  E  K  K  Q I  P  C  S

CTGAAAAACT CAAGGATGAA AAACTTGATT GTGAGACCAA GGGCGTCCCT 1250
  E  K  L  K  D  E K  L  D  C   E  T  K   G  V  P

GCAGGCTACA AAGCAATCTT CAAATTCACA GAAAACGAGG AGTGCGATTG 1300
A  G  Y  K   A  I  F  K  F  T E  N  E  E   C  D  W

GACGTGCGAT TATGAAGCAC TTCCACCACC TCCAGGAGCA AAGAAAGACG 1350
 T  C  D Y  E  A  L   P  P  P  P  G  A K  K  D  D

ACAAGAAAGA AAAGAAGACA GTTAAAGTCG TTAAGCCACC AAAGGAGAAA 1400
  K  K  E  K  K  T V  K  V  V   K  P  P  K  E  K

CCACCAAAGA AGCTTAGAAA GGAATGCTCT GGCGAAAAAG TGATCAAATT 1450
P  P  K  K   L  R  K  E  C  S G  E  K  V   I  K  F

CCAAAACTGT CTCGTTAAGA TTAGAGGACT TATTGCCTTT GGTGATAAGA 1500
 Q  N  C L  V  K  I   R  G  L  I  A  F G  D  K  T

CAAAGAACTT TGATAAGAAG TTCGCAAAGC TTGTCCAAGG AAAGCAGAAG 1550
  K  N  F  D  K  K F  A  K  L   V  Q  G  K  Q  K

AAGGGCGCAA AAAAAGCTAA AGGCGGTAAG AAGGCAGCAC CAAAACCAGG 1600
K  G  A  K   K  A  K  G  G  K K  A  A  P   K  P  G

ACCAAAACCA GGGCCAAAAC AAGCTGATAA ACCAAAAGAT GCAAAAAAAT 1650
 P  K  P G  P  K  Q   A  D  K  P  K  D A  K  K

AAACTGACAT AGTAAGAATA ATAAAATAAA CATTATTTGA GCAACATCAC 1700
AACACAAGAA AAAAATCATA TCAACATAAT TAAGACCTAA AAATTCTCGC 1750
TATTCACTTT TTTTCAAATG AATATCCAAA ACAACATCAT TAAGGGATCT 1800
TACACAATTT TATCCCAAAT TAGTTTTAAG TCTATTTTTT AGTTTTAAGT 1850
AAAACATTAG TTAGAGAAAT TTCAAATGCG AAAAAAAGAC AAAATCAAAA 1900
TTAACTCCAA CTAATTGTCT AGATCTAATC ACCACTGAAA AACAATATTT 1950
TTTTCAATAA TATCTGAGAT GAAAATTTTG TAAGATACGA TTCAAAAAAA 2000
AAAAAACAAA AACTTAAATA TTTTCTTTAT AAGAAAGTAA AAAACTTACA 2050
TGAACAACAA GTAGACTAAG GGCTTAAAAA TACTAAGGAA TTTAAAGAAA 2100
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CTGAACCAAT AACATCCAAT AAATATAAGC GTGTATTTAA CATCCATTCA 2150
TGCAAAATTT GACTTGTTTT ATTCTAAACT TTTGAATTGT GAATATTTTT 2200
GATGATTATT GAATATTTTA CAGCATTTTT CGACAAAATC CAAGGAAACT 2250
GTTTTGTTTA ATATATACTA CAGCTCAGTA TCTATGCACA CGAAAAACTG 2300
TAACAGACCA GACCATAAAA CCTACACATC ACCAAGATAC GTATTTTAAA 2350
TTCATGTGAC TGACAAAAGC TGGAAACACT TGTGTCACGT CATGAAAACC 2400
TCGTTGAAAT AAAACTTCTA GAAAGGTTAT CATGAAAGAG TATAAAAGAG 2450
ATCTCAAACG AGGCTCAGTC AGTTCAGTTT AGCTTGGACT TCATATGAAG 2500
TAATATTTAG CTATGAGAAT TAAGTTCCTA GTAGTATTAG CAGTTATCTG 2550

  M  R  I  K  F  L V  V  L  A   V  I  C

CTTGCTTGCA CATTATGCCT CAGCTAGTGG TATGGGGGGT GATAAAAAAC 2600
 L  L  A H  Y  A  S   A  S  G  M  G  G D  K  K  P

CCAAAGATGC CCCAAAACCC AAAGATGCCC CAAAACCCAA AGAAGTGAAG 2650
  K  D  A  P  K  P K  D  A  P   K  P  K  E  V  K

CCTGTCAAAG CTGACTCATC AGAGTATGAG ATAGAAGTCA TTAAACACCA 2700
P  V  K  A   D  S  S  E  Y  E I  E  V  I   K  H  Q

GAAAGAAAAG ACCGAGAAGA AGGAGAAGGA GAAGAAAGCT CACGTCGAAA 2750
 K  E  K T  E  K  K   E  K  E  K  K  A H  V  E  I

TCAAGAAAAA GATTAAAAAT AAGGAGAAGA AGTTTGTCCC ATGTTCTGAA 2800
  K  K  K  I  K  N K  E  K  K   F  V  P  C  S  E

ATTCTCAAGG ATGAAAAACT TGAATGTGAG AAAAATGCTA CTCCAGGCTA 2850
I  L  K  D   E  K  L  E  C  E K  N  A  T   P  G  Y

TAAAGCACTC TTCGAATTCA AAGAAAGCGA AAGTTTTTGC GAATGGGAGT 2900
 K  A  L F  E  F  K   E  S  E  S  F  C E  W  E  C

GCGATTATGA AGCAATTCCA GGAGCAAAGA AAGACGAAAA AAAGGAGAAG 2950
  D  Y  E  A  I  P G  A  K  K   D  E  K  K  E  K

AAGGTAGTTA AAGTCATTAA GCCACCAAAG GAAAAACCAC CAAAGAAGCC 3000
K  V  V  K   V  I  K  P  P  K E  K  P  P   K  K  P

TAGAAAGGAA TGCTCTGGCG AAAAAGTGAT CAAATTCCAA AACTGTCTCG 3050
 R  K  E C  S  G  E   K  V  I  K  F  Q N  C  L  V

TTAAGATTAG AGGACTTATT GCCTTTGGTG ATAAGACAAA GAACTTTGAT 3100
  K  I  R  G  L  I A  F  G  D   K  T  K  N  F  D

AAGAAGTTTG CAAAGCTTGT CCAAGGAAAG CAAAAGAAGG GCGCAAAAAA 3150
K  K  F  A   K  L  V  Q  G  K Q  K  K  G   A  K  K

AGCTAAAGGC GGTAAGAAGG CAGAACCAAA ACCAGGACCA AAACCAGCAC 3200
 A  K  G G  K  K  A   E  P  K  P  G  P K  P  A  P

CAAAACCAGG ACCAAAACCA GCACCAAAAC CAGTACCAAA ACCAGCTGAT 3250
  K  P  G  P  K  P A  P  K  P   V  P  K  P  A  D

AAACCAAAAG ATGCAAAAAA ATAAACTGAC ATAGTGAGAA TAATAAAATA 3300
K  P  K  D   A  K  K
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Table 2 shows the 244 amino acid residues of the C. tentans Sp38–40.A protein.

Table 2  Protein sequence of "A" protein.

MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
EKLDCETKGV PAGYKAIFKF TENEECDWTC DYEALPPPPG AKKDDKKEKK 150
TVKVVKPPKE KPPKKLRKEC SGEKVIKFQN CLVKIRGLIA FGDKTKNFDK 200
KFAKLVQGKQ KKGAKKAKGG KKAAPKPGPK PGPKQADKPK DAKK 244

Table 3 shows the 253 amino acid residues of the C. tentans Sp38–40.A protein.

Table 3  Protein sequence of "B" protein.

MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100
EKLECEKNAT PGYKALFEFK ESESFCEWEC DYEAIPGAKK DEKKEKKVVK 150
VIKPPKEKPP KKPRKECSGE KVIKFQNCLV KIRGLIAFGD KTKNFDKKFA 200
KLVQGKQKKG AKKAKGGKKA EPKPGPKPAP KPGPKPAPKP VPKPADKPKD 250
AKK 253

The two proteins are similar, but different.  For example, the first 14 amino acid
residues are identical.  Residue 15 of the "A" protein is phenylalanine (F ), while the
residue 15 of the "B" protein is leucine (L ), a chemically similar amino acid.  Residues
16–50 are identical.  Residue 51 of the "A" protein is glutamic acid (E ), while residue 51
of the "B" protein is Aspartic acid (D ).  Both D  and E  are similar in that both are
electrically negatively charged residues at normal pH values.  However, for some
positions, such as 76, the amino acid residues (T  and A ) are not chemically or
electrically similar.

If we now read from the end of each protein, we see that the last five residues of
each protein are identical.  That is, positions 240–244 of protein "A" are identical to
positions 249–253 of protein "B."  Since the proteins are of different length,
identification of this particular similarity between the two proteins requires
aligning the two proteins in some way.  Protein alignment algorithms, such as the
Smith-Waterman algorithm (Smith and Waterman 1981), provide a way to align two
proteins and to measure the degree of similarity or dissimilarity between two
proteins.  The Smith-Waterman algorithm is a progressive alignment method
employing dynamic programming based on a scoring algorithm.  Since the proteins
being aligned are typically of different lengths, gaps may be introduced (and then
lengthened) in an attempt to best align the residues making up the proteins.  A
penalty is assessed to open a gap (5 here) and another penalty is assessed to lengthen
a gap (25 here).  An additional penalty is assessed when one residue disagrees with
another.  This penalty is smaller for substitutions involving similar amino acid
residues.  The PAM-250 ("Percentage of Accepted point Mutations") matrix is used to
reflect the likelihood of one amino acid residue being mutated into another.  The
overall scoring algorithm performs a tradeoff employing dynamic programming
between the penalties assessed by the PAM-250 matrix, the gap-opening penalty, and
the gap-lengthening penal ty .   The Smith-Waterman algori thm has been
implemented in GeneWorks, a software package available from Intelligenetics Inc. of
Mountain View, California.

Table 4 shows the alignment of the C. tentans Sp38–40.A protein and the C. tentans
Sp38–40.B protein.  Identical residues are boxed.  The alignment shows that there is
8l% identity between the two protein sequences.  As can be seen, the first
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disagreement between the two aligned sequences occurs at position 15 and the second
occurs at residue 51.  The first gap is introduced at residue 112 where the "A" protein
has an alanine (A ) residue.  A gap of length 3 is introduced at positions 147, 148, and
149 where the "A" protein has three proline (P ) residues.  Note that this alignment
recognizes the identity between the last five residues of the two proteins. This
alignment has a total cost of 265.

Galli and Wislander (1993) point out that these two similar proteins arise as a
consequence of a gene duplication.  Immediately after the gene duplication occurred
at some time in the distant past, there were two identical copies of the duplicated
sequence of DNA.  Over a period of millions of years since the initial gene
duplication, additional mutations accumulated so that the two proteins are now only
81% identical (after alignment).  More importantly, the two proteins now perform
different (but similar) functions in the moth.

Table 4  Protein alignment of the "A" and "B" proteins.

First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK 149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK 146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------ 239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD 246

First.protein --KDAKK 244
Second.protein KPKDAKK 253

Gene deletion also occurs in nature.  In gene deletion, there is a deletion of a
portion of the linear string of nucleiotide bases that would otherwise be translated
and manufactured into work-performing proteins in the living cell.  After a gene
deletion occurs, some particular protein that was formerly manufactured will no
longer be manufactured and there may be some change in the structure or behavior
of the biological entity.  The absence of the protein may then affect the structure and
behavior of the living thing in some advantageous or disadvantageous way.  If the
deletion is advantageous, natural selection will tend to perpetuate the change, but if
the deletion is disadvantageous, natural selection will tend to lead to the extinction of
the change.
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3 . Gene Duplication and Deletion in Evolutionary
Algorithms

Analogs of the naturally occurring operation of gene duplication have been used in
connection with the genetic algorithm and other evolutionary algorithms for some
t ime .

Cavicchio (1970) used intrachromosomal gene duplication in early work on
pattern recognition using the genetic algorithm (Goldberg 1989).

Holland (1975) suggested that intrachromosomal gene duplication might provide a
mean of adaptively modifying the effective mutation rate by making two or more
copies of a substring of adjacent alleles.  If there are k  copies of an allele, the
probability of a mutation of a particular allele is k  times greater than if there were
but one occurrence of the allele.

Gene duplication is implicitly used in the messy genetic algorithm (Goldberg,
Korb, and Deb 1989).

Lindgren (1991) analyzed the prisoner's dilemma game using an evolutionary
algorithm that employed an operation analogous to naturally occurring gene
dupl ica t ion .

The prisoner's dilemma is a problem in game theory with numerous psychological,
sociological, and geopolitical interpretations. In this game, two players can either
cooperate or not cooperate.  The players make their moves simultaneously and
without communication.  Each player then receives a payoff that depends on his
move and the simultaneous move of the other player.  The payoffs in the prisoner's
dilemma game are arranged so that a non-cooperative choice by one player always
yields a greater payoff to that player than a cooperative choice (regardless of what
the other player does).  However, if both players are selfishly non-cooperative, they
are both worse off than if they had both cooperated.  The game is not a zero-sum
game because, among other things, both players are better off if they both cooperate.

For a single encounter, the best strategy for each player is to be non-cooperative
even though both are worse off than if they had both cooperated.  However, the
situation becomes considerably more interesting and complex if the two players
engage in this game over a series of plays.  In this so-called iterated version of the
prisoner's dilemma, it becomes advantageous for cooperation to evolve (Axelrod 1984,
1987).

In Lindgren's work, strategies for playing the game over a series of plays are
expressed as fixed-length binary character strings of length 2, 4, 8, 16, or 32.  Strings
of length 2 represent game-playing strategies that take account of only the one
previous action by the opponent.  For example, the string 01 instructs the player to
make a non-cooperative move (indicated by a 0) if the opponent made an
uncooperative move on his previous move and to make a cooperative move (indicated
by 1) if the opponent just made a cooperative move.  This particular strategy is called
"tit-for-tat" since the player mimics his opponent's previous move.  The string 10 is
called "anti-tit-for-tat" because it instructs the player to do the opposite of what the
opponent did on the previous move.  String  11 is "Mr. Nice Guy" and 00 is "Darth
Vader."

The 16 strategies represented by strings of length 4 take account of the player's
own previous action as well as the opponent's previous action.  Strings of length 8
look back even farther and take account of the opponent's action two moves ago in
addition to both players' actions one move ago.  Similarly, strings of length 16 and 32
take account of additional previous moves of the opponent and/or the player.

Lindgren used an evolutionary algorithm to evolve a population of game-playing
strategies with varying degrees of look-back.  Lindgren started with a population of
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1,000 consisting of 250 copies of each of the 4 possible strings of length 2.  The fitness
of a string is measured according to the average score achieved by the strategy when
that strategy is played interactively against all other strategies in the population.  At
each generational step of the process, a string is copied (reproduced) in proportion
to its fitness.

The strings in the population are occasionally modified by Lindgren's
evolutionary algorithm using three operations.

First, a mutation operation randomly alters a single bit in a single string.
Second, a gene duplication operation doubles a given character string.  For

example, the gene duplication operation transforms the string 01 into 0101.  This
operation has no immediate effect on the play because this lengthened string takes
the previous move of the player himself into account, but then causes the very same
action to be taken.

Third, a gene deletion operation (that Lindgren calls "split mutation") cuts the
length of a string in half by randomly deleting either the first or second half of the
string.  For example, when this operation is applied to the string 1100, the result is
either the string 11 or 00 (with equal probability).  In general, this operation does
have an immediate effect on the play.

Lindgren's evolutionary algorithm did not contain the crossover (recombination)
o p e r a t i o n .

Over a period of many generations, Lindgren (1991) found that the dynamics of
this population of game-playing strategies exhibited many interesting evolutionary
phenomena.  Strategies with varying degrees of look-back spontaneously emerged,
prospered, and became extinct.  The  phenomena of mass extinction and punctuated
equilibrium were seen in the population as a whole while the evolutionary process
p rog res sed .
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4 . Background on Genetic Programming
John Holland's pioneering 1975 Adaptation in Natural and Artificial Systems
described how the evolutionary process in nature can be applied to artificial systems
using the genetic algorithm operating on fixed length character strings (Holland
1975). Additional information on current work in genetic algorithms can be found in
Goldberg (1989), Forrest (1993), Davis (1987, 1991), and Michalewicz (1992).

Genetic programming is an extension of the genetic algorithm in which the
genetic population consists of computer programs (that is, compositions of primitive
functions, terminals, and possibly automatically defined functions).

Genetic programming starts with a primordial ooze of randomly generated
computer programs composed of available programmatic ingredients and then
genetically breeds the population of programs using the Darwinian principle of
survival of the fittest and an analog of the naturally occurring genetic operation of
crossover (sexual recombination).  Genetic programming is described in the book
Genetic Programming: On the Programming of Computers by Means of Natural
Select ion  (Koza 1992).  A videotape description of genetic programming can be found
in Koza and Rice 1992.  Genetic programming is capable of evolving computer
programs that solve, or approximately solve, various problems from various fields.
Many examples of recent work in genetic programming can be found in Kinnear
(1994).

4 .1 . Background on Automatically Defined Functions
Many problem environments  have regular i t ies ,  symmetr ies ,  homogenei t ies ,
similarities, patterns, and modularities that can be exploited in solving the problem.

An automatically defined function  is a function (i.e., subroutine, procedure,
module, DEFUN ) that is dynamically evolved during a run of genetic programming in
association with a particular individual program in the population and which may be
invoked by a calling program (e.g., a main program) that is simultaneously being
evolved.

Automatically defined functions can be implemented within the context of genetic
programming by establishing a constrained syntactic structure for the overall
programs in the population.  ADFs are described briefly in Koza 1992 and more
extensively in the book Genetic Programming II: Automatic Discovery of Reusable
P r o g r a m s  (Koza 1994a).  A videotape description of automatically defined functions
can be found in Koza 1994b.

When automatically defined functions are being used, each program in the
population contains one or more function-defining branches (each defining one
automatically defined function) and one main result-producing branch.  The
automatically defined functions can perform arithmetic, conditional, and other types
of operations, define constants, define subsets, and so forth.  In addition, for certain
problems, there may be other problem-specific types of branches (such as iteration-
performing branches and iteration-terminating branches).

Figure 1 shows an overall program consisting of one two-argument automatically
defined function and one result-producing branch.
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Figure 1:  A program with one two-argument automatically defined
function (A D F 0 ) and one result-producing branch with an argument map
of {2}.

The argument map describes the architecture of a multi-part program in terms of
the number of its function-defining branches and the number of arguments that
they each possess.  The argument map  of the set of automatically defined functions
belonging to an overall program is the list containing the number of arguments
possessed by each automatically defined function in the program.  The argument map
for the overall program in figure 1 is {2} because there is one function-defining
branch that takes two arguments.

The program in figure 1 contains architecture-defining points (also sometimes
called "invariant points" because they are not altered by crossover or mutation) of
the following types:

(1) the PROGN  (labeled 400) appearing as the top-most point of the overall program,
(2) a DEFUN  (labeled 410) as the top-most point of the function-defining branch,
(3) a name (i.e. ADF0  labeled 411) appearing as the first argument below the DEFUN ,
(4) the function LIST  (labeled 412) appearing as the second argument of the DEFUN ,
(5) dummy arguments (such as ARG0  and ARG1  labeled as 413 and 414, respectively)

appearing below LIST ,
(6) the V A L U E S  (labeled 419) of the function-defining branch appearing as the

third argument of the DEFUN , and
(7) the VALUES  (labeled 470) of the result-producing branch appearing as the final

argument of PROGN .
If the program in figure 1 were to have more than one automatically defined

functions, there would be additional occurrences of items (2), (3), (4), (5), and (6) for
each additional function-defining branch.

The program in figure 1 also contains work-performing points (also sometimes
called "noninvariant points" because these points are almost always different from
branch to branch within a program and from program to program within the
population).  These work-performing points are the bodies of the result-producing
branch and the function-defining branch(es).

The work-performing points of figure 1 include
(1) the five points labeled 420, 421, 422, 423, and 424 that are found below the

VALUES  (labeled 419) in the function-defining branch, and
(2) the 11 points starting with the A N D  (labeled 480) that are found below the

VALUES (labeled 470).
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The result-producing branch may invoke all, some, or none of the automatically
defined functions that are present within the overall program.  The result-producing
branch does not contain dummy arguments (formal parameters).  The result-
producing branch typically contains the actual variables of the problem (e.g., D0 , D1 ,
D2 , etc. here).

The value returned by the overall program consists of the value returned by the
result-producing branch.

The automatically defined functions of a particular overall program are usually
named sequentially as ADF0 , ADF1 , etc.

The automatically defined functions typically each possess a certain number of
dummy arguments (formal parameters).  Here, ADF0  possesses two dummy arguments,
ARG0  and ARG1 .  Typically, the actual variables do not appear in the function-defining
b r a n c h e s .

If the overall program has more than one automatically defined function, there
may (or may not) be hierarchical references between function-defining branches.
For example, the function-defining of an overall program may be allowed to refer
(non-recursively) to all other previously-defined (i.e., lower numbered) function-
defining branches.

References within a particular program to an automatically defined function are
to the automatically defined function belonging to that particular program.

Actions (with side effects) may be performed within the function-defining
branches, the result-producing branches, or both.

When automatically defined functions are being used, the initial random
generation of the population must be created so that each individual overall program
in the population has the intended constrained syntactic structure.  In figure 1, the
constrained syntactic structure calls for one result-producing branch and one
function-defining branch.  The function-defining branch for A D F 0  is a random
composition of functions from the function set, F a d f , and terminals from the terminal
set, T adf .  Here the function set, F ad f , consists of the two-argument Boolean functions
AND, OR, NAND, and NOR.  The terminal set, T r p b , of the function-defining branch consists
of the two dummy arguments (formal parameters), A R G 0  and A R G 1 .  The result-
producing branch is a random composition of functions from the function set, F rpb,
and terminals from the terminal set, T r p b .  In figure 1, the function set, F r p b , of the
result-producing branch consists of the two-argument Boolean functions A N D , O R ,
NAND , and NOR  as well as the now-defined automatically defined function, ADF0 . The
terminal set, T r p b , of the result-producing branch consists of the five actual variables
of the problem (i.e., D0, D1, D2, etc.).

4 .2 . Steps for Executing Genetic Programming
Genetic programming is a domain-independent method that genetically breeds
populations of computer programs to solve problems.

Execution of genetic programming consists of the following steps.  The six
operations appearing as i tems (2)(c)(i i i )  through (2)(c)(ix)  are the new
architecture-altering operations described in detail in a later section below.

The steps for executing genetic programming are as follows:
(1) Generate an initial random population of computer programs.
(2) Iteratively perform the following sub-steps until the termination criterion

has been satisfied:
(a) Execute each program in the population and assign it (explicitly or

implicitly) a fitness value according to how well it solves the problem.
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(b) Select program(s) from the population to participate in the genetic
operations in (c) below.

(c) Create new program(s) for the population by applying the following
genetic operations.
(i)Reproduc t ion : Copy an existing program to the new population.
(ii)Crossover : Create new offspring program(s) for the new population by

recombining randomly chosen parts of two existing programs.
(iii) M u t a t i o n .  Create one new offspring program for the new population

by randomly mutating a randomly chosen part of one existing
p r o g r a m .

(iv) Branch duplication:  Create one new offspring program for the new
population by duplicating one function-defining branch of one
existing program and making additional appropriate changes to
reflect this change.

(v) Argument  dupl icat ion :  Create one new offspring program for the
new population by duplicating one argument of one function-
defining branch of one existing program and making additional
appropriate changes to reflect this change.

(vi) Branch deletion :  Create one new offspring program for the new
population by deleting one function-defining branch of one
existing program and making additional appropriate changes to
reflect this change.

(vii) Argument deletion:  Create one new offspring program for the new
population by deleting one argument of one function-defining
branch of one existing program and making additional appropriate
changes to reflect this change.

(viii) Branch Creation :  Create one new offspring program for the new
population by adding one new function-defining branch containing
a portion of an existing branch and creating a reference to that new
b r a n c h .

(ix) Argument  crea t ion :  Create one new offspring program for the
population by adding one new argument to the argument list of an
existing function-defining branch and appropriately modifying
references to that branch.

(3) After satisfaction of the termination criterion (which usually includes a
maximum number of generations to be run as well as a problem-specific
success predicate), the single best computer program in the population
produced during the run (the best-so-far individual) is designated as the
result of the run.  This result may (or may not) be a solution (or approximate
solution) to the problem.

4 .3 . Methods of Determining the Architecture of a Multi-Part
Program

Before applying genetic programming to a problem, it is first necessary to perform
at least five major preparatory steps.  These steps involve determining

(1) the set of terminals for each branch,
(2) the set of functions for each branch,
(3) the fitness measure,
(4) the parameters for controlling the run, and
(5) the result designation method and termination criterion.
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In addition, when automatically defined functions are used, it is first necessary to
perform a sixth major preparatory step.  The sixth major step concerns the
architecture of the yet-to-be-evolved overall programs in the population and
involves determining

(a) the number of function-defining branches,
(b) the number of arguments possessed by each function-defining branch, and
(c) if there is more than one function-defining branch, the nature of the

hierarchical references (if any) allowed between the function-defining
b r a n c h e s .

Sometimes these architectural choices flow so directly from the nature of the
problem that they are obvious and virtually mandated.  However, in general, there is
no way of knowing a priori the optimal (or minimum) number of automatically
defined functions that will prove to be useful for a given problem, or the optimal (or
minimum) number of arguments for each automatically defined function, or the
optimal  (or sufficient) arrangement of hierarchical references among the
automatically defined functions.

The five existing methods (Koza 1994a) for making these architectural choices
include methods based on

(1) prospective analysis of the nature of the problem,
(2) seemingly sufficient capacity (overspecification),
(3) affordable capacity,
(4) retrospective analysis of the results of actual runs, and
(5) evolutionary selection of the architecture.

4 . 3 . 1 . Method of Prospective Analysis

Some problems can be analyzed and decomposed into subproblems of known
dimensionality.  This insight or information can then be used to establish a common
architecture for all programs in the population.

For example, some problems involve finding a computer program (i.e., a
mathematical expression, a composition of primitive functions and terminals) that
produces the observed value of a dependent variable as its output when given the
values of a certain number of independent variables as input.  Problems of this type
are called problems of symbolic regression, system identification, or simply  "black
box" problems.  In many instances, it may be known that a certain number of the
independent variables represent a certain relevant subspace or subsystem.  In that
event, the problem may be decomposed into subproblems based on the known
(usually lower) dimensionality of the subspace or subsystem.  When applying genetic
programming with automatically defined functions to a problem where one discerns
a subproblem of a certain dimensionality, one can use this insight to make the
number of arguments of at least one of the function-defining branches equal to this
dimensionality.  Also, if it is known that there are a certain number of subspaces or
subsystems, one could use this insight to choose that number as the number of
function-defining branches.  In practice, exact knowledge of these numbers is
unnecessary; upper bounds on these numbers can be used to make the choice of the
number of function-defining branches and the number of arguments possessed by
each function-defining branch.

4 . 3 . 2 . Method of Seemingly Sufficient Capacity

For many problems, the choice of the common architecture for the programs in the
population can be made on the basis of providing seemingly sufficient capacity.  That
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is, one over-specifies the number of function-defining branches and the number of
arguments possessed by each function-defining branch.  Over-specification often
works because genetic programming with automatically defined functions exhibits
considerable ability to ignore extraneous dummy arguments of an automatically
defined function, to ignore extraneous automatically defined functions, and to ignore
unproductive hierarchical references among already-defined automatically defined
f u n c t i o n s .

4 . 3 . 3 . Method of Using Affordable Capacity

Resources are required by each additional function-defining branch and each
additional argument, especially if the function-defining branches are permitted to
invoke one another hierarchically.  Thus, the practical reality is the amount of
resources that one can afford to devote to a particular problem will strongly
influence or dictate the choice of the common architecture for the programs in the
population.  Often the architectural choice is necessarily made on the basis of hoping
that the resources that one can afford to devote to the problem will prove to be
sufficient to solve the problem.

4 . 3 . 4 . Method of Retrospective Analysis

A retrospective analysis of the results of sets of actual runs made with various
architectural choices can determine the optimal architectural choice for a given
problem.  The idea is to make a number of runs of the problem with different
combinations of the number of function-defining branches and the number of
arguments that they each possess, to retrospectively compute the effort required to
solve the problem with each such architecture, and to identify the optimal
architecture.  If one is dealing with a series of related problems, a thorough
retrospective analysis of one problem may provide guidance for making the required
architectural choice for a similar problem.

4 . 3 . 5 . Evolutionary Selection of the Architecture

The fifth technique for establishing the architecture of the overall program for
solving a problem is to evolutionarily select the architecture dynamically during the
run of genetic programming (described in Koza 1994a, chapters 21 – 25).

The technique of evolutionary selection starts with an architecturally diverse
initial random population.  As the evolutionary process proceeds, certain individuals
with certain architectures in the population will prove to be more fit than others in
solving the problem.  The more fit architectures prosper, while the less fit
architectures tend to wither away.  Eventually a program with a particular
architecture may emerge that solves the problem.

In this technique, various different architectures are created at the initial random
generation (generation 0); however, no new architectures are ever created during
the run and no architectures are altered during the run.  There is a competition
among the existing architectures during the course of the run.

The architecturally diverse populations used with the technique of evolutionary
selection require a modification of both the method of creating the initial random
population (described in the next section below) and the crossover operation
(described in the succeeding section below).  Modifications are also required when
the six new architecture-altering operations are used.
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4 .4 . Creation of the Initial Random Population in an
Architecturally Diverse Population

The initial random population of programs may be created in any one of several
possible ways when the six new architecture-altering operations described below are
being used.

One possibility (called the "minimalist approach") is that each multi-part program
in the initial random population at generation 0 has a uniform architecture with
exactly one automatically defined function possessing the minimal number of
arguments appropriate to the problem.  For example, for a problem involving
floating-point variables, the argument map of every individual in generation 0
would usually be {1} under the "minimalist approach".

A second possibility is that each program in the initial population has a uniform
architecture with no automatically defined functions (i.e., only a result-producing
branch).  That is, the argument map of every individual in generation 0 is {}.  In this
event, the operation of branch creation must used to create function-defining
branches.  This operation may then be used with an unusually high frequency on
generation 0 (where it is called the "big bang") to rapidly introduce multi-part
programs into the population.

A third possibility is that the population at generation 0 is architecturally diverse.
This is the approach used when the technique of evolutionary selection of the
architecture is being used.  In this approach, the creation of an individual program
in the initial random population begins with a random choice of the number of
automatically defined functions, if any, that will belong to the program.  Then a
series of independent random choices is made for the number of arguments possessed
by e a c h  automatically defined function, if any, in the program.  All of these random
choices are made within a wide range that includes every number that might
reasonably be thought to be useful for the problem at hand.  Zero is included in the
range of choices for the number of automatically defined functions, so the initial
random population also includes some programs without any automatically defined
functions.  Once the number of automatically defined functions is chosen for a
particular overall program, the automatically defined functions, if any, are
systematically named in the usual sequential manner from left to right.

The range of possibly useful numbers of arguments for the automatically defined
functions cannot, in general, be predicted with certainty for an arbitrary problem.
There are some problems involving only a few actual variables where it is useful to
have an automatically defined function that takes a large number of arguments.
However, most problem-solving efforts focus primarily on solving problems by
decomposing them into problems of lower dimensionality.  Accordingly, it may be
reasonable to cap the range of the number of probably-useful arguments for each
automatically defined function by the number of actual variables of the problem.
There is no guarantee that this cap (motivated by the desire to decompose problems)
or any other cap is necessarily optimal, desirable, or sufficient to solve a given
problem.  In any event, practical considerations concerning resources often play a
controlling role in setting the upper bound on the number of arguments to be
pe rmi t t ed .

The range of potentially useful numbers of automatically defined functions
cannot, in general, be predicted with certainty for an arbitrary problem.  The
number of potentially useful automatically defined functions does not necessarily
bear any relation to the dimensionality of the problem.  However, once again,
considerations of resources play a controlling role in setting the upper bound on the
number of automatically defined functions to be permitted.  In practice, we often cap
the number of automatically defined functions at the number of actual variables of
the problem.
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In practice, a zero-argument automatically defined function may or may not be a
meaningful option.  In the floating-point, integer, and certain other domains, it may
be useful to include random constants because a zero-argument automatically defined
function can be used to create an evolvable constant that can then be repeatedly
called from elsewhere in the overall program.  However, in the special case of the
Boolean domain, the two possible Boolean constants (T  or NIL ) have limited usefulness
because all compositions of these two constants merely evaluate to one of these two
values.  If an automatically defined function has no access to the actual variables of
the problem, has no dummy variables, does not contain any side-effecting primitive
functions, and does not contain any random constants, nothing is available to serve
as terminals (leaves) of the program tree in the body of such a zero-argument
automatically defined function.

Random choices occurring during the creation of the initial random population
determine whether the body of any particular function-defining branch of any
particular program in the population actually hierarchically calls all, none, or some
of the automatically defined functions that it is theoretically permitted to call.
Subsequent crossovers may, of course, change the body of a particular function-
defining branch during the run and thereby change the automatically defined
functions that a branch actually calls hierarchically.  Thus, the function-defining
branches have the ability to organize themselves into arbitrary disjoint hierarchies
of dependencies among the available automatically defined functions.  For example,
within an overall program with five automatically defined functions at generation 0,
ADF4  might actually refer only to ADF2  and ADF3 , with ADF2  and ADF3  not referring at
all to either A D F 0  or A D F 1 .  Meanwhile, A D F 1  might refer only to A D F 0 .  In this
situation, there would be two disjoint hierarchies of dependencies.  A subsequent
crossover might change this organization.  For example, after such a crossover, A D F 3
might refer to ADF0 , but still not to ADF1 , thereby establishing a different hierarchy
of dependencies.  Any allowable (i.e., noncircular) hierarchy of dependencies may
thus be created in generation 0 or created by crossover during the evolutionary
process .

4 .5 . Structure-Preserving Crossover in an Architecturally Diverse
Population

In the crossover operation in genetic programming, a crossover point is randomly
and independently chosen in each of two parents and genetic material from one
parent is then inserted into a part of the other parent to create an offspring.

A population may be architecturally diverse either because it was initially created
with architectural diversity (as described above) or because the six new
architecture-altering genetic operations (described below) create a diversity of new
architectures during the run.

If the population is architecturally diverse, the parents selected to participate in
the crossover operation will often possess different numbers of automatically defined
functions.  Moreover, an automatically defined function with a certain name (e.g.,
A D F 2 ) belonging to one parent will often possess a different number of arguments
than the same-named automatically defined function belonging to the other parent
(if indeed A D F 2  is present at all).  After a crossover is performed, each call to an
automatically defined function actually appearing in the crossover fragment from
the contributing parent will no longer refer to the automatically defined function of
the contributing parent, but instead will refer to the same-named automatically
defined function of the receiving parent.

Thus, we must redefine the crossover operation when it is employed in an
architecturally diverse population.
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In the simplest practical implementation of genetic programming (as exemplified
throughout most of Koza 1992), no syntactic constraints are involved in constructing
individual programs in the population (except for a syntactic constraint as to the
overall size of the program).  Program size is typically measured in terms of depth
(or, alternately, in terms of the total number of points in the program).  All points in
all programs are of a single common type.  Subject only to the size limit established
for generation 0, any function from the function set of the problem and any
terminal from the terminal set may appear at any point in a program during the
initial random creation of programs in generation 0.  Similarly, subject only to the
size limit established for offspring, the crossover operation produces valid offspring
regardless of what points are chosen as crossover points from the two parents.

When automatically defined functions are involved, each program in the
population conforms to a more complex constrained syntactic structure (such as
shown above in figure 1).  The initial random population is created in accordance
with this constrained syntactic structure.  Crossover must be performed in a
structure-preserving way so as to preserve the syntactic validity of all offspring.  In
structure-preserving crossover, the architecture-defining (invariant) points of an
overall program are never eligible to be chosen as crossover points and are never
altered by crossover.  Instead, structure-preserving crossover is restricted to the
work-performing (noninvariant) points.  In structure-preserving crossover, the
work-performing points in the overall program are partitioned into a certain
number of types.

The basic idea of structure-preserving crossover is that any work-performing
point anywhere in the overall program is randomly chosen, without restriction, as
the crossover point of the first parent.  That point has a type assigned to it.  Then,
once the crossover point of the first parent has been chosen, the crossover point of
the second parent is randomly chosen from among points of the same type.

The typing of the work-performing points of an overall program constrains the
set of subtrees that can potentially replace the chosen crossover point and the
subtree below it.  This typing is done so that the structure-preserving crossover
operation will always produce valid offspring.

There are several ways of assigning types to the work-performing points of an
overall program.

(1) Branch typing  assigns the same type to all the work-performing points of
each separate branch of an overall program (but a different type to each
different branch).  There are as many types of work-performing points as
there are branches in the overall program.

(2) Like-Branch Typing  assigns the same type to all the work-performing points
of each separate branch of an overall program and assigns a different type to
each different branch, except that if the function sets and terminal sets of
two branches are identical, all the points of both such branches are assigned
the same type.

( 3 ) Point typing assigns a type to each individual work-performing point in the
overall program reflective of both the branch where the point is located and
the contents of the subtree starting at the point.  The characteristics of the
branch where the point is located is relevant in determining whether a
subtree from another program may be inserted at the point.  The  contents of
the subtree starting at the point are relevant in determining if the subtree
may be inserted at a particular point of another program.

If a program is subject to any additional problem-specific constrained syntactic
structure, that additional structure, if any, must also be considered in typing.

When all the programs in the population have a common architecture, any of the
three methods of typing may be used.  In practice, branch typing is most commonly
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used.  The crossover operation starts with two parents and produces two offspring
when either branch typing or like-branch typing is being used.

Point typing is used for architecturally diverse populations.  If, for sake of
argument,  branch typing or l ike-branch typing were to be used on an
architecturally diverse population, the crossover operation would be virtually
hamstrung; hardly any crossovers could occur.  The types produced by branch
typing or like-branch typing are insufficiently descriptive and overly constraining
in an architecturally diverse population.

When point typing is used, the crossover operation acquires a directionality that
did not exist with branch typing or like-branch typing.  A distinction must be made
between the contributing (first) parent and the receiving (second) parent.
Consequently, the crossover operation starts with two parents, but produces only one
o f f s p r i n g .

The crossover point (called the point of insertion) of the receiving (second)
parent must be chosen from the set of points for which the crossover fragment from
the contributing (first) parent "has meaning" if the crossover fragment were to be
inserted at the point.

When genetic material is inserted into the receiving parent during structure-
preserving crossover with point typing, the offspring inherits its architecture from
the receiving parent (the maternal line) and is guaranteed to be syntactically and
semantically valid.

Point typing is governed by three general principles.
First, every terminal and function actually appearing in the crossover fragment

from the contributing parent must be in the terminal set or function set of the
branch of the receiving parent containing the point of insertion.  This first general
principle applies to actual variables of the problem, dummy variables, random
constants, primitive functions, and automatically defined functions.

Second, the number of arguments of every function actually appearing in the
crossover fragment from the contributing parent must equal the number of
arguments specified for the same-named function in the argument map of the
branch of the receiving parent containing the insertion point.  This second general
principle governing point typing applies to all functions.  However, the emphasis is
on the automatically defined functions because the same function name is used to
represent entirely different functions with differing number of arguments for
different individuals in the population.

Third, all additional problem-specific syntactic rules of construction, if any, must
be satisfied.

Structure-preserving crossover with point typing is described in detail in Koza
1994a.

Structure-preserving crossover with point typing permits robust recombination
while simultaneously guaranteeing that any pair of architecturally different
parents will produce syntactically and semantically valid offspring.  In addition,
s t ructure-preserving crossover  with point  typing enables  the archi tecture
appropriate for solving the problem to be evolutionarily selected  during a run while
the problem is being solved.  In addition, when the six new architecture-altering
operations (described below) are being used, structure-preserving crossover with
point typing enables the architecture appropriate for solving the problem to be
e v o l v e d  during a run while the problem is being solved in the sense of actually
changing the architecture of programs dynamically during the run.



2 2

5 . The Six New Architecture-Altering Genetic
Operations

The six new architecture-altering genetic operations are as follows:
(1) Branch duplication  creates one new offspring program for the new population

by duplicating a function-defining branch of an existing program (and making
additional appropriate changes in the program to reflect the duplication).

(2) Argument duplication  creates one new offspring program for the new population
by duplicating one argument of one function-defining branch of one existing
program  (and making additional appropriate changes in the program to reflect
the duplication).

(3) Branch deletion  creates one new offspring program for the new population by
deleting one function-defining branch of one existing program  (and making
additional appropriate changes in the program to reflect the deletion).

(4) Argument deletion  creates one new offspring program for the new population by
deleting one argument of one function-defining branch of one existing program
(and making additional appropriate changes in the program to reflect the
dele t ion) .

(5) Branch creation  creates one new offspring program for the new population by
adding one new function-defining branch containing a portion of an existing
branch and creating a reference to that new branch.

(6) Argument  creat ion  creates one new offspring program for the population by
adding one new argument to the argument list of an existing function-defining
branch and appropriately modifying references to that branch.
The six new architecture-altering operations differ from the operations of

reproduction crossover, and mutation in that the argument maps of the participating
individuals change as a consequence of performing the operations.

During each generation of the evolutionary process, a certain percentage of the
individuals in the population participate in the architecture-altering operations.
Meanwhile, Darwinian selection causes differential selection in favor of more fit
individuals.  And, during each generation, individuals in the population are modified
by the operations of crossover and mutation.  The result is that the evolutionary
process will select against individuals in the population with architectures that are
less suitable for solving the problem.  Individuals with unsuitable architectures will
tend to become extinct over a period of generations. Similarly, individuals with
architectures that facilitate solving the problem will tend to prosper.

The six new operations are described in detail below.

5 .1 . Branch Duplication
The operation of branch duplication  duplicates one of the branches of a program in
the following way:

(1) Select a program from the population to participate in this operation.
(2) Pick one of the function-defining branches of the selected program as the

branch-to-be-duplicated.  If the selected program has only one function-defining
branch, that branch is automatically picked.  If the selected program has no
function-defining branches (or already has the maximum number of branches
established for the problem at hand), this operation is aborted and no action is
performed on this occasion.

(3) Add a uniquely-named new function-defining branch to the selected program,
thus increasing, by one, the number of function-defining branches in the selected
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program.  The new function-defining branch has the same argument list and the
same body as the branch-to-be-duplicated.

(4) For each occurrence of an invocation of the branch-to-be-duplicated
anywhere in the selected program (e.g., the result-producing branch or any other
branch that invokes the branch-to-be-duplicated), randomly choose either to leave
that invocation unchanged or to replace that invocation with an invocation of the
new branch.  If the choice is to make the replacement, the arguments in the
invocation of the new branch remain identical to the arguments of the existing
invoca t i on .

The step of selecting a program is performed on the basis of fitness for branch
duplication (and the other operations subsequently described herein), so that a
program that is more fit has a greater probability of being selected to participate in
the operation than a less fit program.  A copy is first made of the selected program
and the operation is then performed on the copy, so the unchanged original program
remains in the population and is therefore available to be selected again on the basis
of its fitness.

The problem of symbolic regression of the Boolean even-parity function will be
used for purposes of illustration throughout this report.  The Boolean even-k - p a r i t y
function takes k  Boolean arguments, D 0 , D 1 , D 2 , and so forth (up to a total of k
arguments).  Each argument can take on the value T  (true or 1) or N I L  (false or 0).
The even-k -parity function returns T  if an even number of its Boolean arguments
are T , but otherwise returns NIL .  Parity functions are used to check the accuracy of
stored or transmitted binary data in computers because a change in the value of any
one of its arguments always changes (toggles) the value of the function.  Because of
this toggling, parity functions are often used as benchmarks in the study of machine
learning and neural networks.  The problem is to discover a program that mimics the
behavior of the Boolean even-k -parity problem for every one of the 2k  combinations
of its k  Boolean inputs.

Suppose that the program in figure 1 has been selected, in step (1), as the program
to participate in the operation of branch duplication.  Since this program happens to
have only one function-defining branch, the sole function-defining branch
(defining ADF0 ) is picked, in step (2), as the branch-to-be-duplicated.

In step (3), a new function-defining branch is added to the selected program, thus
increasing, by one, the number of function-defining branches in the selected
program.  The new branch is given the new name of ADF1 .  This new name is unique
within this program.

Figure 2 shows the program resulting after applying the operation of branch
duplication to the program in figure 1.  The original program in figure 1 has an
argument map of {2}.  The program in figure 2 has an argument map of {2, 2} because
the operation of branch duplication duplicated the two-argument function-defining
b r a n c h .
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Figure 2:   Program with argument map of {2, 2} created using the
operation of branch duplication.

Specifically, the function-defining branch starting at the D E F U N  labeled 410 of
figure 1 defining ADF0  (also shown as 510 of figure 2) is duplicated.  The duplicated
branch is added at D E F U N  540 of figure 2, thereby giving the new overall program
three branches: a first function-defining branch starting at DEFUN  510, a new second
function-defining branch starting at D E F U N  540, and a result-producing branch
starting at VALUES  570.  The new function-defining branch is given the unique new
name, A D F 1 , at 541.  The argument list of the new function-defining branch is the
same as the argument list of the branch-to-be-duplicated and consists of ARG0  543 and
ARG1  544.  The body of the new function-defining branch starting with VALUES  549 is
the same as the body of the first function-defining branch starting at VALUES  419 of
figure 1 (also shown as 519 in figure 2).

There are two occurrences of invocations of the branch-to-be-duplicated, ADF0 , in
the result-producing branch of the selected program, namely ADF0  481 and ADF0  487
of figure 1.  For each of these two occurrences, a random choice is made to either
leave the occurrence of ADF0  unchanged or to replace it with the newly created ADF1 .
For the first invocation of ADF0  at 481 of figure 1, the choice is made to replace A D F 0
with ADF1 .  Thus, ADF1  appears at 581 in figure 2.  The arguments for the invocation of
ADF1  581 are D1  582 and D2  583 in figure 2 (i.e., they are identical to the arguments D 1
482 and D 2  483 for the invocation of A D F 0  at 481 in figure 1).  For the second
invocation of A D F 0  at 487 of figure 1, the choice is randomly made to leave A D F 0
unchanged.  Thus, ADF0  appears at 587 of figure 2.

Because the duplicated new function-defining branch is identical to the
previously existing function-defining branch (except for its name) and because the
new function-defining branch ADF1  is invoked with the same arguments as ADF0  had
been invoked, the value returned by the overall program is unchanged by the
operation of branch duplication.  The programs are semantically equivalent but, of
course, structurally (syntactically) different.

The operation of branch duplication can be interpreted as a "case splitting."  After
the branch duplication, the result-producing branch invokes ADF0  at 587 and ADF1  at
581.  ADF0  and ADF1  can be viewed as separate newly-created procedures for handling
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the two separate subproblems (cases).  Immediately after the branch duplication
operation, the two subproblems (cases) are handled in precisely the same way.

Subsequent genetic operations may alter one or both of these two presently-
identical function-defining branches.  These subsequent changes can lead to a
divergence in structure and behavior.  This divergence may be interpreted as a
specialization or refinement.  That is, once ADF0  and ADF1  diverge, ADF0  can be viewed
as a specialization for handling for subproblem (case) associated with its invocation
by the result-producing branch.  Similarly, ADF1  can be viewed as a specialization for
handling its subproblem (case).

The operation of branch duplication (and the other operations subsequently
described herein) always produce a syntactically valid program.

The operation of branch duplication (and the operations of argument duplication,
branch creation, and argument creation described below) are recombinative in the
sense that the offspring produced by each operation consists entirely of genetic
material that comes from an existing member of the population.

5 .2 . Argument Duplication
The operation of argument duplication  duplicates one of the arguments in one of the
automatically defined functions of a program in the following way:

(1) Select a program from the population to participate in this operation.
(2) Pick one of the function-defining branches of the selected program.  If the

selected program has only one function-defining branch,  that  branch is
automatically chosen.  If the selected program has no function-defining branches,
this operation is aborted and no action is performed on this occasion.

(3) Choose one of the arguments of the picked function-defining branch of the
selected program as the argument-to-be-duplicated.  If the picked function-defining
branch has no arguments (or already has the maximum number established for the
problem at hand), this operation is aborted and no action is performed on this
occas ion.

(4) Add a uniquely-named new argument to the argument list of the picked
function-defining branch of the selected program, thus increasing, by one, the
number of arguments in its argument list.

(5) For each occurrence of the argument-to-be-duplicated anywhere in the body
of the picked function-defining branch of the selected program, randomly choose
either to leave that occurrence unchanged or to replace that occurrence with the
new argument.

(6) For each occurrence of an invocation of the picked function-defining branch
anywhere in the selected program (e.g., the result-producing branch or other
branch that invokes the picked function-defining branch), identify the argument
subtree in that invocation corresponding to the argument-to-be-duplicated and
duplicate that argument subtree in that invocation, thereby increasing, by one, the
number of arguments in the invocation.

Because the function-defining branch containing the duplicated argument is
invoked with an identical copy of the previously existing argument, the value
returned by the overall program is unchanged by the operation of argument
dupl ica t ion .

Figures 3 and 1 together illustrate the operation of argument duplication.  The
original program in figure 1 has an argument map of {2}. The new program in
figure 3 has an argument map of {3} because the operation of argument duplication
added an argument to the one function-defining branch.
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Figure 3:  Program with argument map of {3) created using the
operation of argument duplication.

ADF0  in figure 1 takes two dummy arguments, namely ARG0 (labeled 413) and ARG1
(labeled 414).  Now suppose that the second argument, ARG1  414 in figure 1 is chosen
as the argument-to-be-duplicated.

In figure 3, the argument list of A D F 0  has been changed by adding a uniquely-
named new argument, ARG2  at 615, thereby increasing the size of this argument list
from two to three.  There are two occurrences of the argument-to-be-duplicated in
the body of the picked function-defining branch of the selected program, namely at
421 and 423 in figure 1.  For each of these two occurrences, a random choice is made
to either leave the occurrence of A R G 1  unchanged or to replace it with the newly
created argument, ARG2 .  Figure 3 shows that the choice was in favor of a replacement
for the first occurrence of ARG1  at 421.  Consequently, the new name, ARG2 , appears at
621 of figure 3.  The choice was against replacement for the second occurrence of
ARG1  at 423 of figure 1, so ARG1  appears at 623 of figure 3.

There are two occurrences of an invocation of A D F 0  in the result-producing
branch at 481 and 487 of figure 1.  The second argument, ARG1 , is the argument-to-be-
duplicated in this example.  In the first invocation of A D F 0  at 481, the variable D 2
(labeled 483) corresponds to the argument-to-be-duplicated because it is the second
argument of ADF0  (labeled 481).  In the second invocation of ADF0  at 487, the entire
argument subtree consisting of (NOR  D4  D0 ) at 489, 490, and 491 corresponds to the
a rgument - to -be -dup l i ca t ed .

Because of the argument duplication, ADF0  681 and ADF0  687 in figure 3 now each
take three arguments, instead of only two.  For the first invocation of ADF0  at 681, D 2
683 has been duplicated so that D2  now appears at both 683 and 684 of figure 3.  For
the second invocation of ADF0  at 687, the entire argument subtree (NOR  D4  D0 ) has
been duplicated so that it appears at both 689, 690, and 691 as well as 695, 696, and 697
of figure 3.

Just as the operation of branch duplication was interpreted as a "case splitting,"
the operation of argument duplication can be interpreted  as a "case splitting."
Immediately after the argument duplication operation, the two subproblems (cases)
are handled in precisely the same way.  The particular instantiations of the second
and third arguments in each invocation of A D F 0  provide the opportunity for the
subsequent evolution of different ways of handling the two separate subproblems
(cases) .
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Subsequent genetic operations may alter one or both of these two presently-
identical arguments and these subsequent changes can lead to a divergence in
structure and behavior.  Once the second and third arguments diverge, this
divergence may be interpreted as a specialization or refinement.

5 .3 . Branch Deletion
The operation of branch deletion deletes one of the automatically defined functions
of a program in the following way:

(1) Select a program from the population to participate in this operation.
(2) Pick one of the function-defining branches of the selected program as the

branch-to-be-deleted.  If the selected program has no function-defining branches,
this operation is aborted and no action is performed on this occasion.

(3) Delete the branch-to-be-deleted from the selected program, thus decreasing, by
one, the number of branches in the selected program.

(4) For each occurrence of an invocation of the branch-to-be-deleted anywhere in
the selected program (e.g., the result-producing branch or other branch that
invokes the branch-to-be-deleted), replace the invocation of the branch-to-be-
deleted with an invocation of a surviving branch (described below).

When a function-defining branch is deleted, the question arises as to how to
modify invocations of the branch-to-be-deleted by the other branches of the overall
program.  We consider three alternatives.

One alternative (called branch deletion by consolidation) involves identifying a
suitable second function-defining branch of the overall program as the surviving
branch and replacing (consolidating) the branch-to-be-deleted with the surviving
branch in each invocation of the branch-to-be-deleted.  Branch deletion by
consolidation almost never preserves the semantics of the overall program.  Branch
deletion by consolidation can be interpreted as a way to achieve generalization in a
problem-solving procedure.

A second alternative (called branch deletion with random regeneration) is to
randomly generate new subtrees composed of the available functions and terminals
in lieu of an invocation of the branch-to-be-deleted.  Branch deletion with random
regeneration almost never preserves the semantics of the overall program.

A third alternative (called branch deletion by macro expansion)  involves
inserting the entire body of the branch-to-be-deleted for each instance of an
invocation of that branch.  Branch deletion by macro expansion preserves the
semantics of the overall program at the expense of a massive increase in the size of
the overall program.

5 . 3 . 1 . Branch Deletion by Consolidation

The first alternative (branch deletion by consolidation) begins by finding a suitable
choice for the surviving branch within the overall program.  Since branch deletion
by consolidation involves two branches (i.e., the branch-to-be-deleted and the
surviving branch), it is necessary that the selected program have at least two
function-defining branches.  Thus, when branch deletion by consolidation is being
used and the selected program has less than two function-defining branches, this
operation is aborted and no action is performed on this occasion.

When branch deletion by consolidation is performed, the number of arguments
possessed by the proposed surviving branch may equal to, less than, or greater than
the number of arguments possessed by the branch-to-be-deleted.
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Figure 2 illustrates the first of these three possibilities for branch deletion by
consolidation (where the number of arguments possessed by the proposed surviving
branch is equal to the number of arguments possessed by the branch-to-be-deleted).
Suppose that the first function-defining branch (defining A D F 0 ) of the program in
figure 2 is picked as the branch-to-be-deleted and that the second function-defining
branch (defining A D F 1 ) is to be the surviving branch.  In that event, the first
function-defining branch is deleted; the invocation of ADF0  at 587 in figure 2 is to be
replaced by an invocation of A D F 1 ; and the two argument subtrees below the
invocation of ADF0  at 587 are retained as the argument subtrees for the invocation at
587 of A D F 1 .  That is, the branch-to-be-deleted is merged into A D F 1 .  The original
program in figure 2 has an argument map of {2, 2} and the resulting program has an
argument map of {2}.

For this  first possibility, the branch deletion may be viewed as a generalization of
a procedure.  Before the branch deletion, the two function-defining branches
constitute different procedures for handling different subproblems (cases).  The two
branches do different things and they are invoked in different situations by the
result-producing branch.  After the branch deletion by consolidation, both
subproblems (cases) are handled in the same way.  That is, the procedure is
generalized so that the surviving branch (A D F 1  here) handles both subproblems
(cases) .

In the second possibility, the number of arguments required by the proposed
surviving branch is less then the number of arguments possessed by the branch-to-
be-deleted.  Any superfluous argument subtrees below the invocation of the branch-
to-be-deleted are simply deleted.  The branch deletion may also be viewed as a
generalization of a procedure with an accompanying generalization of i ts
a r g u m e n t s .

In the third possibility, the number of arguments required by the a proposed
surviving branch is greater than the number of arguments possessed by the
branch-to-be-deleted.  The required additional argument subtrees may be randomly
generated (or duplicated).  In the later case, the random creation is done using the
same method of generation originally used to create the invoking branch (i.e., the
branch containing the invocation of the branch-to-be-deleted) at the time of
creation of the initial random population in generation 0 (with the branch-to-be-
deleted being unavailable during this random regeneration).  This approach may not
be desirable because it introduces a significant mutational aspect to the operation.  In
that event, the operation may simply be aborted for this third possibility.

5 . 3 . 2 . Branch Deletion with Random Regeneration

When the second alternative (branch deletion with random regeneration) is being
used, all of the argument subtrees required by the invocation of the branch-to-be-
deleted are randomly generated.

Except when random regeneration is used, the operation of branch deletion (and
the operation of argument deletion described below) are recombinative in the sense
that the offspring produced by each operation consists entirely of genetic material
that comes from an existing member of the population.  When random regeneration
is used, branch deletion (and argument deletion) are partially recombinative and
partially mutational.

5 . 3 . 3 . Branch Deletion by Macro Expansion

The third alternative (branch deletion by macro expansion) has the characteristic of
preserving the semantics of the overall program; however, it has the disadvantage of
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usually creating very large programs.  Moreover, branch deletion by macro
expansion would not work if recursion were being used,  Each of the argument
subtrees in each invocation of the branch-to-be-deleted is substituted into a copy of
the body of the branch-to-be-deleted and the now-expanded body then replaces the
invocation of the branch-to-be-deleted.  Of course, if the objective of a deletion is
change the semantics of the overall program (i.e., to achieve generalization), this
alternative is undesirable.

5 .4 . Argument Deletion
The operation of argument  delet ion   deletes one of the arguments to one of the
automatically defined functions of a program in the following way:

(1) Select a program from the population to participate in this operation.
(2) Pick one of the function-defining branches of the selected program.  If the

selected program has only one function-defining branch,  that  branch is
automatically picked.  If the selected program has no function-defining branches,
this operation is aborted and no action is performed on this occasion.

(3) Choose one of the arguments of the picked function-defining branch of the
selected program as the argument-to-be-deleted.  If the picked function-defining
branch has no arguments (or already has only the minimum number of arguments
established for the problem at hand), this operation is aborted and no action is
performed on this occasion.

(4) Delete the argument-to-be-deleted from the argument list of the picked
function-defining branch of the selected program, thus decreasing, by one, the
number of arguments in the argument list.

(5) For each occurrence of an invocation of the picked function-defining branch
anywhere in the selected program (e.g., the result-producing branch or other
branch that invokes the picked function-defining branch), delete the argument
subtree in that invocation corresponding to the argument-to-be-deleted, thereby
decreasing, by one, the number of arguments in the invocation.

(6) For each occurrence of the argument-to-be-deleted  anywhere in the body of
the picked function-defining branch of the selected program, replace the argument-
to-be-deleted with a surviving argument (described below).

When an argument is deleted, the question arises as to how to modify references to
the argument-to-be-deleted within the picked branch.  Again, we consider three
a l t e rna t i ve s .

One alternative (called argument deletion by consolidation) involves identifying
another argument of the picked branch as the surviving argument and replacing
(consolidating) the argument-to-be-deleted with the surviving argument in the
picked branch.  When this alternative is employed, the operation of argument
deletion may be viewed as a generalization in the sense that some information that
was formerly considered in executing a procedure is now no longer considered.

A second alternative (called argument deletion with random regeneration) is to
generate a new subtree in lieu of an invocation of the argument-to-be-deleted using
the same method of generation originally used to create the picked branch at the
time of creation of the initial random population (with the argument-to-be-deleted
being unavailable during this random regeneration).

A third alternative (called argument deletion by macro expansion) may also be
used.  This alternative has the advantage of preserving the semantics of the overall
program; however, it has the disadvantage of usually creating large programs.
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5 . 4 . 1 . Argument Deletion by Consolidation

Suppose, in employing the first alternative (argument deletion by consolidation),
that A R G 2  labeled 615 in figure 3 is chosen as the argument-to-be-deleted and that
A R G 1  is chosen (from among the remaining two arguments) as the surviving
argument.  The one occurrence of ARG2  at 621 in figure 3 is replaced by ARG1 .  The two
invocations of ADF0  by the result-producing branch (at 681 and 687) are modified by
deleting the third argument subtree in each invocation.  Specifically, the argument
subtree D0  684 is deleted from the invocation of ADF0  at 681 and the argument subtree
(NOR  D4  D0) at 695, 696, and 697 is deleted from the invocation of ADF0  at 687.  The result
is the program shown in figure 1.  The original program in figure 3 has an argument
map of {3} and the resulting program in figure 1 has an argument map of {2}.

Since argument deletion by consolidation involves two arguments (i.e., the
argument-to-be-deleted and the surviving argument), it is necessary that the picked
branch have at least two arguments.  Thus, when argument deletion by consolidation
is being used and the picked function-defining branch has less than two arguments,
this operation is aborted and no action is performed on this occasion.

It is often advisable to set a minimum permissible number of arguments for any
function.  For example, in a problem involving Boolean functions and no side-effects,
there are only four possible Boolean functions of one argument, so it may be more
efficient to exclude such one-argument functions for a Boolean problem.  If this
approach is adopted, whenever the picked function-defining branch has less than
three arguments, the operation of argument deletion is aborted and no action is
performed on this occasion.

5 . 4 . 2 . Argument Deletion with Random Regeneration

When the second alternative (argument deletion with random regeneration) is being
used, a new subtree is randomly generated in lieu of an invocation of the argument-
to-be-deleted using the same method of generation originally used to create the
picked branch at the time of creation of the initial random population (with the
argument-to-be-deleted being unavailable during this random regeneration).  The
subtree may consist of either a single available argument or an entire generated
argument subtree composed of the available functions and terminals.

5 . 4 . 3 . Argument Deletion by Macro Expansion

When argument deletion by macro expansion (i.e., the third alternative) is used, the
first step is to delete the argument-to-be-deleted from the argument list of the picked
branch.  The second step is then to create as many copies of the now-modified picked
branch as there are invocations of the picked branch in the overall program (e.g., in
the result-producing branch or other branches) and to give each such copy of the
picked branch a unique name.  The third step is to replace each invocation of the
picked branch in the overall program with an invocation to a particular one of the
uniquely-named copies of the now-modified picked branch.  The fourth step is, for
each uniquely-named copy of the now-modified picked branch, to insert the
argument  subtree  corresponding to  the  argument- to-be-deleted for  every
occurrence of the argument-to-be-deleted in that particular copy.

The alternative of argument deletion by macro expansion has the characteristic of
preserving the semantics of the overall program; however, it has the disadvantage of
usually creating a vast number of additional branches and large overall programs.
Of course, if the objective of a deletion is change the semantics of the overall
program (i.e., to achieve generalization), this alternative is undesirable.
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Both the argument duplication and the branch duplication operations create
larger programs.  Larger programs consume more resources and a population of
such growing programs may become unmanageable as a practical matter.  The
argument deletion operation and the branch deletion operation can create smaller
programs and provide a mechanism for balancing the continual growth that would
otherwise occur (provided the alternative of argument deletion by macro expansion
is not used).

5 .5 . Branch Creation
The operation of branch creation creates a new automatically defined function
within an overall program in a more general (but less biologically motivated) way
than the previously described operation of branch duplication.

The steps in the operation of branch creation are as follows:
(1) Select a program from the population to participate in this operation.
(2) Pick a point in the body of one of the function-defining branches or result-

producing branches of the selected program.  This picked point will become the top-
most point of the body of the branch-to-be-created.

(3) Starting at the picked point, begin traversing the subtree below the picked
point (e.g., in a depth-first manner).

(4) As each point below the picked point in the picked branch is encountered
during the traversal, make a determination as to whether to designate that point as
being the top-most point of an argument subtree for the branch-to-be-created.  If
such a designation is made, no traversal is made of the subtree below that designated
point.  The traversal continues and this step (4) is repeatedly applied to each point
encountered during the traversal so that when the traversal of the subtree below the
picked point is completed, zero points, one point, or more than one point are so
designated during the traversal.

(5) Add a uniquely-named new function-defining branch to the selected program.
The argument list of the new branch consists of as many consecutively-numbered
dummy variables (formal parameters) as the number of points that were designated
during the traversal.  The body of the new branch consists of a modified copy of the
subtree starting at the picked point.  The modifications to the copy are made in the
following way:  For each point in the copy corresponding to a point designated
during the traversal of the original subtree, replace the designated point in the copy
(and the subtree in the copy below that designated point in the copy) by a unique
dummy variable.  The result is a body for the new function-defining branch that
contains as many uniquely named dummy variables as there are dummy variables in
the argument list of the new function-defining branch.

(6) Replace the picked point in the picked branch by the name of the new
function-defining branch.  If no points below the picked point were designated
during the traversal, the operation of branch creation is now completed.

(7) If one or more points below the picked point were designated during the
traversal, the subtree below the just-inserted name of the new function-defining
branch will be given as many argument subtrees as there are dummy arguments in
the new function-defining branch in the following way:  For each point in the
subtree below the picked point designated during the traversal, attach the designated
point and the subtree below it as an argument to the function defined by the new
funct ion-defining branch.

The operation of branch creation is more general than the operation of branch
duplication in the sense that the picked point may be in the result-producing branch
and also in the sense that the picked point need not be the top-most point of the body
of an existing branch.
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The operation of branch creation described herein is similar to, but different
from, the compression (module acquisition) operation described by Angeline and
Pollack in at least three ways (Angeline and Pollack 1993, 1994; Angeline 1994a,
1994b).

First, Angeline and Pollack place each new function (called a module) created by
the compression operation into a Genetic Library.  The new function is not
exclusively associated with the selected program that gave rise to it.  Instead, new
functions placed in the Genetic Library may be invoked by any program in the
population.  In practice, this occurs as soon as crossover or some other operation
introduces references to the new function.  In contrast, in the branch creation
operation described herein, each new function is made a part of the selected program
as a new branch of that particular program.  The new function may be invoked only
by the selected program in which it was originally created and of which it is a part.

A second difference between the compression operation described by Angeline
and Pollack and operation of branch creation described herein is that the body of the
new branch created by the branch creation operation continues to be subject to the
effects of other operations (notably crossover) in successive generations of the
process.  Thus, instead of being insulated from future change by residing in the
Genetic Library, it is susceptible to continued change.  Among the possible changes
that may occur by means of crossover are the insertion of additional hierarchical
references to other automatically-defined functions.

A third difference between the compression operation described by Angeline and
Pollack and operation of branch creation described herein is that the branch
creation operation may be applied to any branch (and, in particular, to function-
defining branches).  Angeline and Pollack’s operation was limited to one a single
b r a n c h .

Several different methods may be used to determine how to designate a point below
the picked point during the depth-first traversal described above.  In d e p t h
c o m p r e s s i o n   described by Angeline and Pollack, the points at a certain distance
(depth) below the picked point are designated.  In leaf compression  described by
Angeline and Pollack, all of the external points (leaves) below the picked point are
designated.  Other methods of designation may be used.  Here internal points below
the picked point are designated independently at random with a certain probability.
Regardless of the method of designation, zero points, one point, or several points are
des ignated .

Figures 4 and 1 illustrate the operation of branch creation.
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Figure 4:  Program with argument map of {2, 3}.

Suppose the point N A N D  485 is picked from the result-producing branch of the
program starting at PROGN  400 in figure 1.  Starting at the picked point, NAND  485, a
depth-first traversal of the subtree below this point will visit 486, 487, 488, 489, 490
and 491 of figure 1 in that order.  Suppose, while making this depth-first traversal,
points 486, 488, and 489 of figure 1 are designated.  The fact that three points were
designated means that the branch-to-be-created will be a three-argument function-
defining branch.  The three argument subtrees starting at these three designated
points will become arguments for the branch-to-be-created.  Because point 489 was
designated, no traversal of D4  490 and D0  491 is made.

The branch creation operation causes a new branch to be added to the overall
selected program.  The new branch starts at DEFUN  (labeled 2540) in figure 4.  The new
branch is given a new name, A D F 1  (labeled 2541), that is unique within the new
overall program.  The argument list of this new branch in figure 4 contains three
consecutively-numbered dummy variables (formal parameters),  namely A R G 0
(labeled 2543), ARG1  (labeled 2544), and ARG2  (labeled 2545) appearing below L I S T
(labeled 2542).

The body of this new branch starts at VALUES  (labeled 2549).  The body of the new
branch in figure 4 consists of a modified copy of the seven-point subtree starting at
the picked point, N A N D  485 of figure 1.  In modifying the copy, each of the three
designated points from figure 1 (486, 488, and 489) is replaced by a different
consecutively-numbered dummy variable,  A R G 0 , A R G 1 , and A R G 2  in figure 4.
Specifically, the first designated point, D0  486, from figure 1 is replaced by ARG0  and
appears as ARG0  2556 in figure 4.  The second designated point, D3  488, from figure 1 is
replaced by ARG1  and appears as ARG1  2558 in figure 4.  The third designated point,
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AND 489 and the entire subtree below this designated point (i.e., D4  490 and D0  491)
from figure 1 are replaced by ARG2  and appears as ARG2  2559 in figure 4.

The picked point, NAND  485, from figure 1 is now replaced by the name, ADF1 , of the
new function-defining branch.  Thus, ADF1  appears at 2585 in figure 4.  Since three
points below NAND  485 from figure 1 were designated during the traversal, ADF1  2585
will be given three argument subtrees.  The first designated point, D 0  486, from
figure 1 appears below ADF1  2585 as D0  2586 in figure 4 as the first argument to A D F 1
2585.  Because D 0  is a terminal, D 0  2586 appears alone in figure 4.  The second
designated point, D3  488, from figure 1 appears below ADF1  2585 as D3  2588 in figure 4
as the second argument to ADF1  2585.  The third designated point, AND  489, from figure
1 appears below ADF1  2585 as AND  2589 in figure 4 as the third argument to ADF1  2585.
Unlike the previous two designated points, AND  489 has a subtree below it in figure 1.
The entire subtree is (AND  D4  D0 ) at 489, 490, and 491 in figure 1.  Thus, the entire
subtree (AND  D4  D0) appears as (AND  D4  D0) at 2589, 2590, and 2591 of figure 4.

The argument map of the original overall program in figure 1 is {2} and the
argument map of the new overall program in figure 4 is {2, 3} because the new
branch takes three arguments.

Figures 5 and 1 illustrate an interesting special case of the operation of branch
c r e a t i o n .
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Figure 5:  Program with argument map of {2, 0}.

Suppose the point NAND  485 is again picked from the result-producing branch of
the program starting at P R O G N  400 in figure 1.  However, now suppose that, while
making the depth-first traversal, no points were designated.  As before, the branch
creation operation causes a new branch to be added to the overall selected program.
The new branch starts at DEFUN  2640 of figure 5.  The new branch is given the unique
new name, A D F 1  (at 2641) in figure 5.  However, since no points were designated
during the traversal, the argument list of this new branch contains no dummy
variables and no dummy arguments appear below LIST  2642 in figure 5.  The body of
this new branch starts at V A L U E S  2649 in figure 5.  However, since no points were
designated during the traversal, the body of the new branch consists of an exact copy
of the seven-point subtree starting at the picked point, N A N D  485, of figure 1.  In
particular, several of the actual variables of the problem (D0  2656, D3  2658, D4  2650,
and D0  2651) are imported into the body of the function definition for ADF1  in figure
5.  As before, the picked point, N A N D  485, of figure 1 is replaced in figure 5 by the
name, ADF1  2685, of the new function-defining branch.  Since no points below N A N D
485 were designated during the traversal of figure 1, A D F 1  2685 in figure 5 has no
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argument subtrees.  Thus, in this special case, the entire subtree containing the
picked point, NAND  485, and the subtree below it is encapsulated in the zero-argument
automatically defined function ADF1  in figure 5.  In this example, the argument map
of the original overall program in figure 1 is {2} and the argument map of the new
overall program in figure 5 is {2, 0}.

The operation of branch creation does not have any immediate effect on the
value(s) returned and the action(s) performed by the selected program.  However,
subsequent operations may alter the branch that is created by this operation and
may therefore lead to some later divergence in structure and behavior.

5 .6 . Argument Creation
The operation of argument creation creates a new argument within a function-
defining branch of an overall program in a more general way than the previously
described operation of argument duplication.  This operation is, in some sense, a
generalization of the operation of argument duplication.

The steps in the operation of argument creation are as follows:
(1) Select a program from the population to participate in this operation.
(2) Pick a point in the body of one of the function-defining branches of the

selected program.
(3) Add a uniquely-named new argument to the argument list of the picked

function-defining branch for the purpose of defining the argument-to-be-created.
(4) Replace the picked point (and the entire subtree below it) in the picked

function-defining branch by the name of the new argument.
(5) For each occurrence of an invocation of the picked function-defining branch

anywhere in the selected program (e.g., the result-producing branch or other
branch that invokes the picked function-defining branch), add an additional
argument subtree to that invocation.  In each instance, the added argument subtree
consists of a modified copy of the picked point (and the entire subtree below it) in the
picked function-defining branch.  The modification is made in the following way:
For each dummy argument in a particular added argument subtree, replace the
dummy argument  with the ent i re  argument  subtree of  that  invocat ion
corresponding to that dummy argument.

Figures 6 and 1 illustrate the operation of argument creation.
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Figure 6:  Program with argument map of {3} created using the
operation of argument creation.

Suppose the point AND  422 from figure 1 is the picked point, from step (2), in the
body of the function-defining branch starting at DEFUN  410.  This picked point, A N D
422, is the top-most point of the three-point subtree (AND ARG1 ARG0) at 422, 423, and
424.  In figure 6, A R G 2  is the name given to the newly created argument and A R G 2
(labeled 3015) is added to the argument list starting at L I S T  (labeled 3012) of the
picked function-defining branch.  In figure 6, A R G 2  3022 has replaced the picked
point, AND  422, and the entire subtree below the picked point from figure 1.

There are two occurrences of invocations of the picked function-defining branch
(ADF0 ), namely at 481 and 487 in figure 1.  The first invocation of ADF0  in the selected
program is the two-argument invocation (ADF0  D1  D2 ) at 481, 482, and 483 in figure 1.
A new third argument is added for the invocation A D F 0  481.  The new argument
subtree is manufactured by starting with a copy of the picked point and the entire
subtree below that picked point, namely (AND  ARG1  ARG0 ) at 422, 423, and 424 in figure
1.  This copy is first modified by replacing the dummy argument A R G 1  423 by the
argument subtree of the invocation of A D F 0  at 481 corresponding to the dummy
argument A R G 1  423 (i.e., the single point D 2  483).  Note that it is D 2  483 that
corresponds because D2  483 is the second argument subtree of ADF0  481 and because
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ARG1  is the second dummy argument of DEFUN  410.  The copy is further modified by
replacing the dummy argument ARG0  424 by the argument subtree of the invocation
of ADF0  at 481 corresponding to that dummy argument (i.e., the single point D1  482).
The result is that ADF0  is now invoked at 3081 in figure 6 with three (instead of two)
arguments, namely

(ADF0 D1 D2 (AND D2 D1)).

The second invocation of A D F 0  in the selected program is the two-argument
invocation (ADF0 D3 (AND D4 D0)) at 487, 488, 489, 490 and 491 in figure 1.  A new
third argument is added for the invocation A D F 0  487. The new argument subtree is
manufactured by starting with a copy of the picked point and the entire subtree
below that picked point from figure 1, namely (AND ARG1 ARG0) at 422, 423, and 424.
This copy is first modified by replacing the dummy argument A R G 1  423 by the
argument subtree of the invocation of A D F 0  at 487 corresponding to the dummy
argument ARG1  423, namely the entire argument subtree (AND D4 D0) at 489, 490, and
491.  Note that a three-point subtree, (AND D4 D0), corresponds because it is the
second argument subtree of A D F 0  487 in figure 1 and because A R G 1  is the second
dummy argument of DEFUN  410.  The copy is further modified by replacing the dummy
argument A R G 0  424 by the argument subtree of the invocation of A D F 0  at 487
corresponding to that dummy argument (i.e., the single point D3  488).  The result is
that ADF0  is now  invoked at 3087 in figure 6 with three (instead of two) arguments,
n a m e l y

(ADF0 D3 (AND D4 D0) (AND (AND D4 D0) D3)).

The operation of argument creation changes the argument map of the selected
program from {2} to {3} because ADF0  now takes three arguments, instead of two.

The operation of argument creation does not have any immediate effect on the
value(s) returned and the action(s) performed by the selected program.  However,
subsequent operations may alter the argument that is created by this operation and
may therefore lead to some later divergence in structure and behavior.
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6 . Rotating the Tires on an Automobile
A g e d a n k e n  experiment can be used to illustrate the role of the six new architecture-
altering operations in automated problem-solving.  In the experiment, we will
visualize four ways of using genetic programming to evolve a procedure to perform
the hypothetical task of rotating the tires on an automobile.

The to-be-evolved problem-solving procedure is assumed to have access to all the
necessary information from the problem environment (such as the size of the bolts
for fastening a tire to an axle, the number of bolts on a tire,  the presence or absence
of a hubcap, and so forth).  In addition, the repertoire of primitive functions includes
all the operations necessary to complete the task (such as removing a hubcap,
unfastening a bolt, sliding the tire off of the axle, and so forth).

The goal is to evolve a procedure will specify a sequence of operations that will
successfully remove each of the four tires and remount them in their specified new
locations for any given model of car.

In addition, the to-be-evolved problem-solving procedure will have access to
certain extraneous information (such as the color of the car) and certain extraneous
operations (such as lifting the hood of the car).

 The task is designed to present considerable opportunities for reuse of sequences
of procedural steps because all four tires can be removed and remounted in
essentially the same way for any particular model of car.  The task also presents
opportunities for specialization and generalization because the only difference in
the procedure for different models of cars lies in what a human planner would
consider details (e.g., whether there is a hubcap to remove and remount).  In
addition, the task is designed to present opportunities for parameterization of
procedures (e.g., based on the size and number of the bolts on each tire).

The g e d a n k e n  experiment will visualize the use of genetic programming on this
task in the following three ways:

(1) without automatically defined functions,
(2) with automatically defined functions,
(3) with automatically defined functions and with the technique of evolutionary

selection of the architecture, and
(4) with automatically defined functions and the six new architecture-altering

opera t ions .

6 .1 . Approach Without Automatically Defined Functions
Five preparatory steps must be performed by the user prior to applying genetic
programming without automatically defined functions to a particular problem.

The user must first decide upon the ingredients from which the to-be-evolved
programs will be composed.  The terminal set for this hypothetical problem consists
of the information-carrying variables (e.g., the number and size of the bolts, the
presence or absence of hubcaps, the color of the car, etc.).  The function set consists
of the various primitive operations (e.g., unfastening a bolt, sliding the tire off of the
axle, etc.).

The fitness measure of a particular program is computed over a suite of fitness
cases consisting of various models of cars of different colors, with and without
hubcaps, and with the tires being fastened by different numbers and sizes of bolts.
Fitness might be the total number of tires that end up on their respective desired new
axles after the complete execution of the program or after some reasonable amount of
t ime .
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  When automatically defined functions are not being used, the evolved programs,
of course, consist only of a result-producing branch.

In principle, genetic programming should be able to evolve a solution to this
problem without employing automatically defined functions, provided the population
size is sufficiently large and provided that the run is allowed to continue for
sufficiently large number of generations.

Although genetic programming usually solves problem in a unexpected ways, we
will, for purposes of this g e d a n k e n  experiment, make some statements about the
likely characteristics of the evolved solution.

Since automatically defined functions are not being used, each identical or
marginally different situation must necessarily be handled by a uniquely-crafted
and separately-learned sequence of steps.  There is no possiblity of multiple
invocation of any part of the evolved code of a program during the execution of the
program.  Thus, there cannot be one common procedure that is reused four times on
each of the tires.  Instead, the overall evolved solution will contain four uniquely-
crafted (and almost certainly different) sequence of steps for handling each of the
four tires.  Similarly, there will not be one common procedure that is reused for each
of the bolts belonging to each tire.  Instead, the solution will contain a uniquely-
crafted sequence of steps for unfastening each bolt on each tire.

Moreover, since automatically defined functions are not being used, there would
be no possibility for parameterizing the sequence of steps for unfastening the bolts.
Thus, models of cars whose tires are fastened by one size of bolts cannot be handled
with a common sequence of reusable code in the same way as models with another
size of bolts.  Instead, there will be one sequence of code that causes the 1/2" wrench
to be used when the bolt size is determined to be 1/2" and an additional separate
sequence of code that causes the 5/8" wrench to be used on 5/8" bolts.  Moreover,
there will be one sequence of code for handling models of cars whose tires have six
bolts, and a separate sequence of code for handling tires that have five or four bolts.

Because the run without automatically defined functions is incapable of exploiting
the considerable underlying symmetry and regularity of this problem environment
and incapable of reusing parameterized sequences of code, the overall program
necessary to perform this task will be very large.  In addition, a large amount of
computational effort will have to be expended to evolve this large block of code.

6 .2 . Approach With Automatically Defined Functions
When automatically defined functions are being used, a solution to a problem
employing automatically defined functions can be interpreted such that each
automatically defined function represents a subproblem; the body (work) of each
automatically defined function represents the solution to a subproblem; and, the
result-producing branch represents the assembly of the solution to the subproblems
into a solution of the overall problem.

Each automatically defined function also can be interpreted as a change of
representation.  If, for example, one compares a solution to the overall problem by a
result-producing branch that does not invoke any automatically defined functions to
one that does, the difference can be viewed as a change of representation.  The
version of the solution with automatically defined functions solves the problem in
terms of the new representation created by the application of the automatically
defined functions.

If automatically defined functions are added to genetic programming, we can
expect to get a solution to the overall problem that would r e u s e  and p a r a m e t e r i z e
certain sequences of steps, rather than handling each identical or marginally
different situation with a uniquely-crafted and separately-learned sequence of steps.



                                                                                                         41

For example, we can reasonably anticipate a solution in which a tire-dismounting
function evolves within the overall multi-part program so that the result-producing
branch of the overall program is able to invoke this function with the bolt size as a
parameter.  When the bolt-unfastening function is parameterized by the bolt size,
separate code will not be necessary for handling each different size of bolt.

The ability to generalize is an important aspect of artificial intelligence and
automated programming.  A parameterized automatically defined function can be
interpreted as a generalization in the sense that a parameterized function-defining
branch is a generalized procedure for performing some subtask.  A particular
instantiation of the parameter has the effect of specializing the general procedure to
a particular situation.

We can reasonably expect that the size of the overall program will be considerably
smaller than the size of the program evolved without automatically defined functions
and that less computational effort will have been expended in the evolution of the
solution of this problem with automatically defined functions than without them.
That is, parsimony should be an emergent consequence of the availability of
automatically defined functions.

When automatically defined functions are being used, the evolved program would,
of course, consist of a result-producing branch and one or more function-defining
branches.  The question arises as to how many automatically defined functions will
there be?  And, how many arguments will each automatically defined function
possess?

Before the user can apply genetic programming with automatically defined
functions to a problem, the user must employ some technique (probably one of the
five existing previously described techniques) for determining the architecture of
the overall solution.

Once chosen,  the architecture of  the overal l  program constrains the
decomposition of the original problem into subproblems.  Each particular
architecture permits or prohibits certain ways of decomposing the overall problem
into subproblems.  A particular architecture may facilitate certain decompositions
while making others less likely.

The number of available automatically defined functions affects, in general, the
character of the solution.  If, for example, two or more automatically defined
functions are available, we might find separate automatically defined functions
devoted to the tire-dismounting and bolt-unfastening subtasks.  However, if only one
automatically defined function is available, both the tire-dismounting or the bolt-
unfastening subtasks would have to be performed inside one automatically defined
function or one of these subtasks would have to be performed in the result-
producing branch (where there would be no opportunity for parameterized reuse of
code).

The number of arguments possessed by each automatically defined functions also
generally affects the character of the solution.  If, for example, at least one of the
available automatically defined functions possesses two or more arguments, then we
might see one automatically defined function that is parameterized by several
variables.  However, if each automatically defined function possesses only one
argument, then it would not be possible to take an action inside any of the
automatically defined functions based on two or more variables.

6 .3 . Approach With Evolutionary Selection of the Architecture
As previously mentioned, e v o l u t i o n a r y  selection of the architecture during the run
of genetic programming is one of the five existing techniques by which the user can
determine the architecture of the overall program (Koza 1994a, chapters 21–25).  In
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this technique, the population is architecturally diverse starting with the initial
random population of generation 0.  Then there is a competition among the
preexisting architectures in population,  However, no architecture is actually created
or altered during the run in the technique of evolutionary selection of the
a r c h i t e c t u r e .

6 .4 . Approach With Architecture-Altering Operations
The new architecture-altering operations described herein provide a sixth way to
determine the architecture.  The architecture-altering operations enable the
architecture to be evolved dynamically and automatically during the run of genetic
programming in the sense of actually creating new architectures and altering
existing architectures during the run.

As previously mentioned, the six new architecture-altering operations can be
viewed from five perspectives.

First, the new architecture-altering operations provide a new way to solve the
problem of determining the architecture of the overall program in the context of
genetic programming with automatically defined functions.

Second,  the new archi tecture-al ter ing operat ions provide an automatic
implementation of the ability to specialize and generalize in the context of automated
p r o b l e m - s o l v i n g .

Third, the new architecture-altering operations automatically and dynamically
change the representation of the problem while simultaneously and automatically
solving the problem.

Fourth, the new architecture-altering operations automatically and dynamically
decompose problems into subproblems and then automatically solve the overall
problem by assembling the solutions of the subproblems into a solution of the overall
p r o b l e m .

Fifth, the new architecture-altering operations automatically and dynamically
discover useful subspaces (usually of lower dimensionality than that of the overall
problem) and then automatically assemble a solution of the overall problem from
solutions applicable to the individual subspaces.

When automatically defined functions are being used (but without the technique
of evolutionary selection of the architecture and without the architecture-altering
operations), the third, fourth, and fifth perspectives apply.  When automatically
defined functions are being used with the technique of evolutionary selection of the
architecture (but without the architecture-altering operations), the first perspective
applies.  Thus, we focus our attention on the second perspective involving
specialization and generalization.

As previously mentioned, the initial random population may be uniform and ADF-
less; it may be uniform and consist of programs with the minimal ADF structure (i.e.,
the "minimalist approach"); or, it may be architecturally diverse.  We use the
"minimalist approach" for purposes of the discussion here.

6 . 4 . 1 . Generalization by Means of Branch Deletion and Argument Deletion

During a run of genetic programming with the new architecture-altering
operations, arguments and branches of programs may be deleted.  These deletions
may be interpreted as generalizations in the sense that a generalization ignores some
previously available information or deletes some previously performed step in
carrying out a task.  The deletion of an argument or branch may be interpreted as a
generalization of the procedure represented by the branch.
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Of course, some generalizations are useful and some are not.
The process of generalizing a procedure is often useful because it permits the

development of a procedure that is applicable to a wider variety of situations.
Generalization may also be desirable because it shortens the description of the
procedure (i.e., improves parsimony).

First consider the deletion of an argument.
The deletion of the color of the car from the argument list of a branch would be a

helpful simplification of the procedure performed by the branch since there is no
possible benefit from this extraneous variable in solving the problem of rotating the
tires.  If the color of the car is actually used by the branch, deleting this argument
will make the branch applicable to a wider variety of situations (with no degradation
in performance as measured by the fitness measure of the problem).  If the color is
ignored, deleting this argument will make the branch more parsimonious.

On the other hand, deletion may make vital information unavailable.  Assuming
that argument deletion by consolidation or random regeneration are being used,
deleting an argument communicating vital information would (almost always) be an
unhelpful generalization.  The size of the tire's bolts is a necessary argument because
the task cannot be performed with a wrench of unsuitable size.  The tire-dismounting
function can not properly be performed without knowing how many bolts to remove.

Now consider deletion of a branch.
The operation of branch deletion may be viewed as a generalization at the

procedural level.  After branch deletion by consolidation or random regeneration is
performed, the overall program will (usually) be less specialized than before.  For
example, the deletion of a branch that lifts the car's hood would be a helpful
simplification of the procedure performed by the overall program since lifting the
hood is not helpful in solving the problem of rotating the tires.  On the other hand, it
would be unhelpful to delete a branch that checks whether a hubcap is present
because the wrench is useless for removing bolts if the bolts are made inaccessible
by an unremoved hubcap.  In either event, the operation of branch deletion usually
produces a procedure with improved parsimony.

There is no way of knowing in advance whether a particular generalization will
be helpful.  However, natural selection will ultimately judge whether the offspring
produced by a particular deletion prove to be more fit or less fit in grappling with
the problem environment.

6 . 4 . 2 . Specialization by Means of Branch Duplication and Argument
Duplication

In many instances of automated problem-solving, it is desirable to have the ability to
split the problem environment into different cases and treat the cases slightly
differently.  The operations of  branch duplication and argument duplication set the
stage for enabling a procedure to be specialized and refined at a later time.  Such a
specialization or refinement permits such slightly differing treatments of two
similar, but different situations.  This specialization can occur at the argument level
or procedure level.

For example, even though the procedure for changing the tire may be similar for
all cars, the procedure must be specialized to each particular type of car by including
a certain argument, such as the size of the bolts.  Argument duplication provides a
way to set the stage so that subsequent evolution can incorporate this additional
i n f o r m a t i o n .

Branch duplication can provide a way to set the stage so that subsequent evolution
can create a slightly different procedure for the two models of cars.  The procedure
for changing the tire on a Cadillac may differ from the procedure for a Honda
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because the Cadillac may have a hubcap that must be removed to expose the bolts so
that the wrench can then unfasten the bolts.

During the run, branches or arguments will be duplicated.
For example, consider a program with a branch that hastily tries to unfasten the

bolts without checking for the presence of a hubcap.  Such a branch works
satisfactorily for a car without hubcaps.  A program with this branch will accrue a
certain amount of fitness for correctly handling the subset of fitness cases involving
cars with no hubcaps.  However, this program will not receive the maximum possible
value of fitness because it will not correctly handle the fitness cases involving cars
with hubcaps.  After a branch duplication, there are two branches and both start by
hastily trying to unfasten the bolts without checking for the presence of a hubcap.
Each of these identical branches is invoked under different (randomly chosen)
circumstances by their calling branches.  Although branch duplication has no
immediate semantic effect, subsequent genetic operations may alter one or the other
new branch.  Some of these alterations will make the overall program more fit at
grappling with the problem environment by specializing one branch to some
particular situation.  For example, one of these branches may be modified by a
subsequent genetic operation (e.g., a crossover or mutation) so that it checks for the
presence of a hubcap, removes the hubcap, and then continues as before.  This
specialization is a potential benefit of a branch duplication.

Arguments may also be duplicated during the run.  Although argument
duplication has no immediate effect, the presence of an additional argument may,
after subsequent operations, make the altered program more fit at grappling with
certain fitness cases from the problem environment by enabling it to specialize its
behavior in response to the additional information provided by the additional
argument.  Of course, a specialization may be productive, counter-productive, useless
or harmless in the context of a particular problem.  For example, an argument
duplication may make the color of the car available to a branch.  This useless
information will, at best, be harmless.  This argument duplication may be harmful if
it overspecializes the branch or reduces the efficiency of operation of the branch.

6 . 4 . 3 . Specialization by Means of Branch Creation and Argument Creation

When the initial random population is uniformly ADF-less, the operation of branch
creation is necessary to create function-defining branches so that part of the initial
result-producing branch can become parameterized and generalized.  The existence
of some parameterized branches are necessary if there are to be multiple invocations
of portions of the overall program (and the associated benefit in terms of the overall
computational effort necessary to solve the problem).  In any event, regardless of
how the initial random population is created, the operation of branch creation
provides the potential benefit of achieving specialization in the future.

Similarly, the operation of argument creation provides the potential benefit of
achieving specialization in the future.

When operating together, the new architecture-altering genetic operations are
useful in enabling the simultaneous evolution of the architecture of the overall
program for solving a problem while solving the problem.  That is, the architecture
of the eventual solution to the problem need not be preordained by the user during
the preparatory steps.  Instead, the architecture can emerge from a competitive
fitness-driven process that occurs during the run at the same time as the problem is
being solved.
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7 . Examples of Actual Runs
The architecture-altering operations described herein will now be illustrated by
showing two actual runs of the problem of symbolic regression.  The problem
requires evolution of a computer program to mimic the behavior of the even-3-
parity function.

The frequency of use of the operations of branch duplication, argument
duplication, branch deletion, argument deletion, branch creation, and argument
creation are controlled by parameters.  We often use frequencies in the
neighborhood of 1/2% of each operation on each generation; however, for purposes
of illustration, we used larger percentages for the two runs described below in order
to concentrate more instances of the new architecture-altering operations into a
relatively small number of generations.  This concentration also enables us to show
an entire genealogical audit trail for the first run and the entire maternal lineage
for the second run.

7 .1 . Example 1
The run starts with the random creation of a population of 1,000 individual

programs.  The “single minimal ADF” approach is used in this example.  That is, each
program in the initial random population at generation 0 consists of one result-
producing branch and a single one-argument function-defining branch and has an
argument map of {1}.

Thus, the terminal set for the result-producing branch, T r p b , for a program in the
population for the Boolean even-3-parity problem is

Trpb  = {D0, D1, D2}.

The function set for the result-producing branch, F rpb, is

Frpb = {AND, OR, NAND, NOR, ADF0},

with an argument map of

{2, 2, 2, 2, 1}.

The terminal set for the automatically defined function, ADF0,  is

Tadf0  = {ARG0}.

The function set, F adf0, for ADF0  is

Fadf0 = {AND, OR, NAND, NOR},

with an argument map for this function set of

{2, 2, 2, 2}.

After creating the 1,000 programs for the initial random population, each program
in the population is evaluated as to how well it solves the problem at hand. The fitness
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of a program in the population of 1,000 programs is measured according to how well
that program mimics the target function for all eight combinations of three Boolean
arguments.  The raw fitness of a program is the number of matches.

In one particular run, the best program from among the 1,000 randomly created
programs in generation 0 has the function-defining branch (defining A D F 0 ) shown
below:

(OR (AND (NAND ARG0 ARG0) (OR ARG0 ARG0)) (NOR (NOR ARG0 ARG0) (AND ARG0
ARG0))).

The behavior of this function-defining branch is the Boolean constant function
zero (called “Always False”).

The result-producing branch of this best-of-generation program from generation
0  ignores ADF0  and is shown below:

(NOR (AND D0(NOR D2 D1)) (AND (AND D2 D1))).

 Of course, it should be no surprise that the function-defining branch of even the
best program of the initial random generation is not particularly useful or that this
branch is ignored by the result-producing branch.  The “single minimal ADF
approach” is not intended to provide a highly useful function-defining branch, but
rather merely to provide a starting point for the evolutionary process.

Table 5 shows the behavior of  this program from generation 0.  The first three
columns show the values of the three Boolean variables, D0 , D1 , and D2 .  The fourth
column shows the value produced by the overall program.  The fifth column shows
the value of the target function, the even-3-parity function.  The last column shows
how well the program performed at matching the behavior of the target function.
As is shown, the program was correct for six of the eight possible combinations
(fitness cases).  Thus, the program scored a raw fitness of 6 (out of a possible 8).

Table 5  Operation of the best-of-generation program from generation 0.
D0 D1 D2 BEST-OF-

GENERATION
PROGRAM
FOR
GENERATION
0

EVEN-3-
PARITY
FUNCTION

SCORE

0 0 0 1 1 correct
0 0 1 1 0 wrong
0 1 0 1 0 wrong
0 1 1 1 1 correct
1 0 0 0 0 correct
1 0 1 1 1 correct
1 1 0 1 1 correct
1 1 1 0 0 correct

A new population of 1,000 programs is then created from the existing population of
1,000 programs.  Each successive generation of the population is created from the
existing population by applying various genetic operations.  Reproduction and
crossover are the most frequently performed genetic operations.  In addition, the
architecture-altering operations described herein are used on this run.  Mutation
and other previously described genetic operations may also be used in the process
(although they are not used on this particular run).

The raw fitness of the best-of-generation program for generation 5 improves to 7.
That is, this program correctly mimics the behavior of the target even-3-parity
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function for seven of the eight fitness cases.  The program achieving this new and
higher level of fitness has a total of four branches (i.e., one result-producing branch
and three function-defining branches).  The change in the number of branches
from 1 at generation 0 to 4 at generation 5 is the consequence of the architecture-
altering operations.  In addition to its one result-producing branch, this best-of-
generation program for generation 5 has branches defining A D F 0  (taking two
arguments), ADF1  (taking two arguments), and ADF2  (taking three arguments), so that
its argument map is {2, 2, 3}.  The result producing branch of this program is shown
below.

(NOR (ADF2 D0 D2 D1) (AND (ADF1 D2 D1)D0))

The first function-defining branch (defining A D F 0 ) of the best-of-generation
program for generation 5 takes two dummy arguments, ARG0  and ARG1 , and is shown
below.  The existence of two dummy arguments in this function-defining branch is a
consequence of an argument duplication operation.  As it happens, the behavior of
this A D F 0  is not important since A D F 0  is not referenced by the result-producing
b r a n c h .

(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR ARG1 ARG0) (AND ARG0
ARG1)))

The second function-defining branch (defining A D F 1 ) of the best-of-generation
program for generation 5 also takes two dummy arguments, ARG0  and ARG1 , and is
shown below.  The existence of this second function-defining branch is a
consequence of a branch duplication operation.

(OR (AND ARG0 ARG1)(NOR ARG0 ARG1))

Table 6 shows the behavior of A D F 1  of the best-of-generation program for
generation 5 which, as can be seen, is equivalent to the even-2-parity function.

Table 6  A D F 1  of the best-of-generation program of generation 5.

ARG0 ARG1 ADF0
0 0 1
0 1 0
1 0 0
1 1 1

The function-defining branch for A D F 2  of this best-of-generation program for
generation 5 takes three dummy arguments, ARG0 , ARG1 , and ARG2 , and is shown below.
This third function-defining branch exists as a consequence of yet another branch
duplication operation.

(AND ARG1 (NOR ARG0 ARG2))

Table 7 shows that the behavior of ADF2  consists of returning 1 only when ARG0  and
ARG2 are 0 and ARG1 is 1.
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Table 7  A D F 2  of the best-of-generation program of generation 5.

ARG0 ARG1 ARG2 ADF2
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

The raw fitness of the best individual program in the population remains at a
value of 7 for generations 6, 7, 8, and 9; however, the average fitness of the
population as a whole improves during these generations.

On generation 10, the best program in the population of 1,000 perfectly mimics the
behavior of the even-3-parity function.  This 100%-correct solution to the problem
has a total of six branches (i.e., five function-defining branches and one result-
producing branch).  The argument map of this program is {2, 2, 3, 2, 2}.  This
multiplicity of branches is a consequence of the repeated application of the branch
duplication operation and the branch creation operation.  The function-defining
branches of this program each have more than one dummy argument.  All of these
additional arguments exist as a consequence of the repeated application of the
argument duplication operation.

The result-producing branch of this best-of-generation program for generation
10 is shown below:

(NOR (ADF4 D0(ADF1 D2 D1)) (AND (ADF1 D2 D1) D0))

The function-defining branch for A D F 0  of this best-of-generation program for
generation 10 takes two dummy arguments, ARG0  and ARG1 , and is shown below.  The
behavior of ADF0  is equivalent to the odd-2-parity function.

(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR ARG1 ARG0) (AND ARG0
ARG1)))

The function-defining branch for A D F 1  of the best-of-generation program for
generation 10 takes two dummy arguments, ARG0  and ARG1 , and is shown below.  ADF1
is equivalent to the even-2-parity function.

(OR (AND ARG0 ARG1) (NOR ARG0  ARG1))

The function-defining branch for ADF2  takes three dummy arguments, ARG0 , ARG1 ,
and ARG2 , and is shown below.  ADF2  returns 1 only when ARG0  and ARG2  are 0 and ARG1
is 1.  However, ADF2  is ignored by the result-producing branch.

(AND ARG1 (NOR ARG0 ARG2))

The function-defining branch for A D F 3  is the one-argument identity function.
This relatively useless branch is ignored by the result-producing branch.

The function-defining branch for A D F 4  of the best-of-generation program for
generation 10 takes two dummy arguments, ARG0  and ARG1 , and is shown below.  ADF4
is equivalent to the even-2-parity function.
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(OR (AND ARG0 ARG1) (NOR ARG0  ARG1))

Since both ADF1  and ADF4  are both even-2-parity functions, the result-producing
branch can be simplified to the expression below.  This expression can be verified as
being equivalent to the even-3-parity function.

(NOR (EVEN-2-PARITY D0(EVEN-2-PARITY D2 D1)) (AND (EVEN-2-PARITY D2 D1) D0))

An examination of the genealogical audit trail shows the interplay between the
Darwinian reproduction operation, the one-offspring crossover operation using
point typing, and the new architecture-altering operations.

Figure 7 shows all of the ancestors of the just-described 100%-correct solution
from generation 10 of the run in example 1 of the problem of symbolic regression of
the even-3-parity problem.  The generation numbers (from 0 to 10) are shown on the
left edge of figure 7.  Figure 7 also shows the sequence of reproduction operations,
crossover operations, and architecture-altering operations that gave rise to every
program that was an ancestor to the 100%-correct program in generation 10.  The
100%-correct solution from generation 10 is represented by the box labeled M10 at
the bottom of the figure.  The argument map of this solution, namely {2, 2, 3, 2, 2}, is
shown in this box.

The two lines flowing into the box M10 indicate that the solution in generation 10
was produced by a crossover operation acting on two programs from the previous
generation (generation 9).  Figure 7 uses the convention of placing the mother M9
(the receiving parent) on the right and father P9 (the contributing parent) on the
left.  Recall that, in a one-offspring crossover operation using point typing, the bulk
of the structure of a multi-part program comes from the mother since the father
contributes only one subtree into only one of the many branches of the mother.
Thus, the 11 boxes on the right side of this figure (consecutively numbered from M0
to M10) represent the maternal genetic lineage (from generations 0 through
generation 10) of the 100%-correct solution M10 that emerged in generation 10.  The
100%-correct solution M10 in generation 10 has the same argument map, {2, 2, 3, 2, 2},
as the mother M9 because the crossover operation is not an architecture-altering
operation and does not change the architecture (or argument map) of the offspring
(relative to the mother).

The maternal lineage will now be reviewed in detail so as to illustrate the overall
process of evolving the architecture of a solution to a problem while simultaneously
evolving the solution to the problem.

The mother M9 from generation 9 (shown on the right side of figure 7) has an
argument map of {2, 2, 3, 2, 2}, has a raw fitness of 7, was itself the result of a
crossover of two parents from generation 8.  The grandfather of the 100%-correct
solution M10 in generation 10 (and the father of M9) was P8.  The grandmother of the
100%-correct solution M10 in generation 10 (and the mother of M9) was M8.

The grandmother M8 from generation 8 of the 100%-correct solution M10 in
generation 10 (and the mother of M9) has an argument map of {2, 2, 3, 2, 2}, has a raw
fitness of 7, and was the result of a branch duplication from a single ancestor M7
from generation 7.

Because of the branch duplication operation, the program M7 from generation 7 of
the maternal lineage at the far right of figure 7 has one fewer branch than its
offspring M8.  Program M7 has an argument map of {2, 2, 3, 2}.  Program M7 was the
result of an argument duplication from a single ancestor from generation 6.
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Figure 7:  Genealogical audit trail for example 1.

Because of the argument duplication operation, the fourth function-defining
branch of the program M6 from generation 6 of the maternal lineage at the far right
of figure 7 has one less argument than its offspring M7.  Program M6 from
generation 6 has an argument map of {2, 2, 3, 1} whereas program M7 from
generation 7 has an argument map of {2, 2, 3, 2}.  Program M6 was the result of an
branch creation from a single ancestor M5 from generation 5.

Because of the branch creation operation, the program M5 from generation 5
shown on the right side of figure 7 has one fewer function-defining branch then
program M6.  Program M5 has an argument map of {2, 2, 3}.  In turn, program M5 was
the result of a branch creation from a single ancestor M4 from generation 4.

Program M4 from generation 4 shown on the right side of figure 7 has one less
function-defining branch than its offspring program M5.  Program M4 has an
argument map of {2, 2}.  Program M4 was the result of a reproduction operation from
a single ancestor M3 from generation 3.

Program M4 from generation 3 shown on the right side of figure 7 has an
argument map of {2, 2} and was the result of a crossover involving father P2 and
mother M2 from generation 2.
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Program M2 from generation 2 (shown on the right side of figure 7) has an
argument map of {2, 2} and was the result of a branch creation from a single
ancestor M1 from generation 1.

Program M1 from generation 1 has an argument map of {2} and was the result of
an argument duplication of a single ancestor M0 from generation 0.

Program M0 from generation 0 at the upper right corner of figure 7 has an
argument map of {1} and has a raw fitness of 6.  It has an argument map of {1}
because all programs at generation 0 consist of one result-producing branch and a
single one-argument function-defining branch when the “single minimal ADF”
approach is being used.

The sequence of genetic operations and architecture-altering operations of this
run shows the simultaneous evolution of the architecture while solving the problem.

7 .2 . Example 2
A second run of the process is now described in order to illustrate the evolution of a
hierarchical reference by one function-defining branch of another and to illustrate
the operation of branch deletion.  In this run, a 100%-correct solution emerges in
generation 15 to the problem of symbolic regression of the even-3-parity problem.

The best-of-generation program from generation 0 of this run has a raw fitness of
only 5.  There are many programs in the population with this level of fitness.  This
program M0 is an early ancestor of the 100%-correct solution that eventually
emerges in generation 15.  The result-producing branch of this program from
generation 0 is shown below:

(OR (NOR D2 (ADF0 (AND D1 D0))) (AND D2 (ADF0 (NAND D0 D0)))).

ADF0  of this program is shown below:

(AND  (NAND (OR ARG0 (OR ARG0 ARG0)) (AND (AND ARG0 ARG0) (OR ARG0 ARG0)))
(AND (NAND (OR ARG0 ARG0) (NOR ARG0 ARG0)) (OR (AND ARG0 ARG0)
(NOR ARG0 ARG0)))).

A D F 0  of this best-of-generation program from generation 0 is the one-argument
negation (N O T ) function.  The one-argument N O T  function was not one of the four
primitive functions of the original problem (i.e., the two-argument AND , OR , NAND , and
NOR  functions).

Figure 8 shows all of the maternal ancestors of the 100%-correct solution from
generation 15 (labeled M15 at the bottom of the figure) of the run of example 2.  The
figure also shows a few selected other ancestors.  The figure also shows the argument
map of each program in the box for that program.  In addition, the raw fitness of
each program is shown to the immediate left of its argument map in the box for that
program.  Because 15 generations are involved, this figure, unlike figure 7, does not
show all of the ancestors of the 100%-correct solution, M15, of generation 15.  The
program labeled M0 at the upper right of this figure is the program from generation
0 shown above, with an argument map of {1} and a raw fitness of 5.
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Figure 8:  Genealogical audit trail for example 2.

A branch duplication operates on program M0 to produce program M1 in
generation 1 with an argument map of {1, 1}.

Two crossovers occurring in generations 2 and 3 raise the raw fitness of the
maternal ancestor M3 in generation 3 from 5 to 6.

Program M3 has two one-argument function-defining branches.  Its A D F 0  is
“Always False” and is shown below:

(AND (NAND (OR ARG0 (OR ARG0 ARG0)) (AND (AND ARG0 ARG0) (OR ARG0 ARG0))) (AND
(NAND (OR ARG0 ARG0) (NOR ARG0 ARG0)) (OR (AND ARG0 ARG0) (OR ARG0
ARG0)))).
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A D F 1  of this program M3 is the exactly the same as A D F 0  of ancestor M0 at
generation 0 (i.e., the N O T  function).  The branch duplication that created program
M1 in generation 1 duplicated A D F 0  of ancestor M0 of generation 0.  Then the
intervening crossovers modified A D F 0  so as to convert it into the useless “Always
False” function.

Then, a branch deletion removes the now-always-false A D F 0  of program M3 to
produce program M4 in generation 4.  The surviving function-defining branch of
program M4 is exactly the same as ADF0  of ancestor M0 at generation 0 (i.e., it is the
NOT  function).  Program M4 retains a fitness level of 6.

The result-producing branch of program M4 from generation 4 is shown below:

(OR (NOR D2 (ADF0 (AND D1 D0))) (AND D2 (OR D1 D0))).

Next, a branch creation operation takes creates a new branch, ADF1 , of program M5
of generation 5 from the underlined portion of the result-producing branch of
program M4 above.  The new branch, ADF1 , is shown below:

(ADF0 (AND ARG1 ARG0)).

The result-producing branch of program M4 of generation 4 is also modified and
the modified version is part of program M5 of generation 5 as shown below:

(OR (NOR D2 (ADF1 D1 D0)) (AND D2 (OR D1 D0))).

Two crossovers, one reproduction, one branch creation, and one branch
duplication then occur on the maternal lineage.

The A D F 0  of program M10 is the N O T  function.  A D F 1  of program M10 from
generation 10 uses the hierarchical reference created above to emulate the behavior
of the NAND  function, as shown below:

(ADF0 (AND ARG1 ARG0)).

Mother M10 mates with father P10 to produce offspring M11 in generation 11.
ADF0  of father P10 performs the even-2-parity function and is shown below:

(AND (NAND (OR ARG1 ARG0) (AND (NAND ARG1 ARG0) (OR ARG1 ARG1))) (AND (NAND
ARG0 (NOR ARG1 ARG0)) (OR (AND ARG1 ARG1) (NOR ARG0 ARG0)))).

In the crossover, this entire branch from father P10 was inserted into A D F 1  of
mother M10 replacing (AND  ARG1  ARG0 ) and producing a new ADF1  that performs the
odd-2-parity function (since ADF0  performs the NOT  function).

Three crossovers and one branch creation then occur on the maternal lineage;
however, the A D F 1  that was created in generation 11 and that performs the odd-2-
parity functions remains intact.

The 100%-correct solution that emerged in generation 15 had an argument map of
{1, 2, 1, 1, 2}.  Only ADF0  and ADF1  of this particular program are referenced by the
result-producing branch.

ADF0  performs the NOT  function and is shown below:

(AND (NAND (OR ARG0 ARG0) (AND (AND ARG0 ARG0) (OR ARG0 ARG0))) (AND (NAND (OR
ARG0 ARG0) (NOR ARG0 ARG0)) (OR (AND ARG0 ARG0) (NOR ARG0
ARG0)))).
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ADF1  defines the odd-2-parity function by hierarchically referring to ADF0 .  ADF1  is
shown below:

(ADF0 (AND (NAND (OR ARG1 ARG0) (AND (NAND ARG1 ARG0) (OR ARG1 ARG1))) (AND
(NAND ARG0 (NOR ARG1 ARG0)) (OR (AND ARG1 ARG1) (NOR ARG0
ARG0))))).

As can be seen, a hierarchy of function definitions has emerged to solve the
problem of symbolic regression of the even-3-parity problem using the new
architecture-al ter ing operat ions.
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8 . Conclusions
We have shown that it is possible to evolve the architecture using the architecture-
altering operations while simultaneously solving a problem.

9 . Future Work
More computational effort is required to perform both tasks simultaneously than to
merely solve the problem when the architecture is given and fixed.  Future work will
attempt to quantify this amount of additional computation effort.
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ABSTRACT
Previous work described a way to evolutionarily select the architecture of a

multi-part computer program from among preexisting alternatives in the
population while concurrently solving a problem during a run of genetic
programming.  This report describes six new architecture-altering operations that
provide a way to evolve the architecture of a multi-part program in the sense of
actually changing the architecture of programs dynamically during the run.

The  new archi tec ture-a l ter ing  operat ions  are  mot ivated  by  the
natural ly  occurring operat ion of  gene dupl icat ion as  described in
Susumu Ohno's  provocative 1970 book Evolution by Means of Gene
D u p l i c a t i o n  as well  as the naturally occurring operation of gene
d e l e t i o n .

The six new architecture-altering operations are branch duplication,
argument  dupl i ca t ion ,  branch  creat ion ,  argument  creat ion ,  branch
deletion and argument deletion.

A connect ion i s  made between genet ic  programming and other
t e c h n i q u e s  o f  a u t o m a t e d  p r o b l e m  s o l v i n g  b y  i n t e r p r e t i n g  t h e
archi tecture-a l ter ing  operat ions  as  providing an automated way to
special ize and generalize programs.

The report  demonstrates  that  a  hierarchical  architecture can be
evolved to solve an illustrative symbolic regression problem using the
a r c h i t e c t u r e - a l t e r i n g  o p e r a t i o n s .

Future work will study the amount of additional computational effort
required to employ the architecture-altering operations.


