
 1

Version 3 – Submitted November 10, 1996 to Models of Action: Mechanisms for
Adaptive Behavior edited by Clive Wynne and John Staddon for Lawrence
Erlbaum Associates, Inc, Publishers.

USING BIOLOGY TO SOLVE A PROBLEM IN AUTOMATED

MACHINE LEARNING

John R. Koza

Computer Science Department
Stanford University
Margaret Jacks Hall

Stanford, California 94305 USA
E-MAIL: Koza@CS.Stanford.Edu

WWW: http://www-cs-faculty.stanford.edu/~koza/
PHONE: 415-941-0336

FAX: 415-941-9430

ABSTRACT

This chapter describes how the biological theory of gene duplication

described in Susumu Ohno's provocative book, Evolution by Means of Gene

Duplication, was brought to bear on a vexatious problem from the domain of

automated machine learning.

The goal of automatic programming is to create, in an automated way, a

computer program that enables a computer to solve a problem. Ideally, an

automatic programming system should require that the user pre-specify little

about the problem environment.

 2

Genetic programming is a domain-independent approach to automated

machine learning that attempts to evolve a computer program that solves, or

approximately solves, problems. Starting with a primordial ooze of

randomly generated computer programs composed of the available

programmatic ingredients, genetic programming applies the principles of

animal husbandry (including Darwinian selection and sexual recombination)

to breed new (and often improved) populations of computer programs.

One of the undesirable aspects of many techniques of automated machine

learning is that the user of the technique may be required to specify the size

and shape (i.e., the architecture) of the ultimate solution to his problem

before he can begin to apply the technique to his problem. Specification of

the size and shape of the solution often corresponds to discovering a way to

decompose the problem into useful subspaces (usually of lower

dimensionality) or to discovering a congenial representation of the problem

that facilitates solution of the problem. Thus, in practice, for many problems

of interest, determining the size and shape of the solution may be the problem

(or at least a substantial part of the problem).

This chapter describes how biology motivated a solution to the problem of

architecture discovery for genetic programming. The resulting biologically-

motivated approach enables genetic programming to automatically discover

the size and shape of the solution at the same time as genetic programming is

evolving a solution to the problem. This is accomplished using six new

architecture-altering operations that provide a way to automatically

discover, during a run of genetic programming, both the architecture and the

 3

sequence of steps of a multi-part computer program that will solve the given

problem.

1. Introduction
The goal of automatic programming is to create, in an automated way, a computer
program that enables a computer to solve a problem. This goal (attributed to
Arthur Samuel in the 1950s) can be stated as follows:

How can computers learn to solve problems without being explicitly

programmed?

Genetic programming is a domain-independent method for evolving a

computer program for solving, or approximately solving, a problem (Koza 1989).

Genetic programming is an extension of the biologically motivated genetic

algorithm that was first described in John Holland's pioneering Adaptation in

Natural and Artificial Systems (1975, 1992). David Goldberg (1989) and

Mitchell (1996) survey current work the field of genetic algorithms.

Genetic programming starts with a primordial ooze of randomly generated

computer programs composed of the available programmatic ingredients and then

applies the principles of animal husbandry to breed a new (and often improved)

population of programs. The breeding is done in a domain-independent way

using the Darwinian principle of survival of the fittest and an analog of the

naturally-occurring genetic operation of crossover (sexual recombination). The

crossover operation is designed to create syntactically valid offspring computer

programs from any selected pair of parental computer programs (given closure

amongst the set of ingredients). Genetic programming combines the expressive

 4

high-level symbolic representations of computer programs with the near-optimal

efficiency of learning of Holland's genetic algorithm.

Genetic Programming: On the Programming of Computers by Means of

Natural Selection (Koza 1992) provides evidence that genetic programming can

solve, or approximately solve, a variety of problems from a variety of fields,

including many benchmark problems from machine learning, artificial

intelligence, control, robotics, optimization, game playing, symbolic regression,

system identification, and concept learning. Recent advances in genetic

programming are described in Kinnear 1994, Angeline and Kinnear 1996, and the

proceedings of the annual genetic programming conferences (Koza, Goldberg,

Fogel, and Riolo 1996).

The sequence of the work-performing steps of the programs being evolved by

genetic programming is not specified in advance by the user. Instead, the

sequence of steps is evolved by genetic programming as a result of the

competitive and selective pressures of the evolutionary process and the

recombinative role of crossover. However, this first book Genetic Programming

has the limitation that the vast majority of its evolved programs are single-part

(i.e., one result-producing main part, but no subroutines).

I believe that no approach to automated programming is likely to be successful

on non-trivial problems unless it provides some hierarchical mechanism to

exploit, by reuse and parameterization, the regularities, symmetries,

homogeneities, similarities, patterns, and modularities inherent in problem

environments. Subroutines do this in ordinary computer programs. Accordingly,

Genetic Programming II: Automatic Discovery of Reusable Programs (Koza

 5

1994a) describes how genetic programming can be extended to evolve multi-part

programs consisting of a main program and one or more reusable, parameterized,

hierarchically-called subprograms.

An automatically defined function (ADF) is a function (i.e., subroutine,

subprogram, DEFUN, procedure, module) that is dynamically evolved during a

run of genetic programming and which may be called by a calling program (or

subprogram) that is concurrently being evolved. When automatically defined

functions are being used, a program in the population consists of a hierarchy of

one (or more) reusable function-defining branches (i.e., automatically defined

functions) along with a main result-producing branch. Typically, the

automatically defined functions possess one or more dummy arguments (formal

parameters) and are reused with different instantiations of these arguments. As a

run progresses, genetic programming evolves different subprograms in the

function-defining branches, different main programs in the result-producing

branch, different instantiations of the dummy arguments (formal parameters) of

the automatically defined functions in the function-defining branches, and

different hierarchical references between the automatically defined functions.

When automatically defined functions are being used in genetic programming,

the initial random generation of the population is created so that every individual

program in the population has a constrained syntactic structure consisting of a

particular architectural arrangement of branches. When crossover is to be

performed, a type is assigned to each potential crossover point in the parental

computer programs either on a branch-wide basis (called branch typing or like-

branch typing) or on the basis of the actual content of the subtree below each

 6

potential crossover point (called point typing). Crossover is then performed in a

structure-preserving way (given closure) so as to preserve the syntactic validity of

all offspring (Koza 1994a).

Genetic programming with automatically defined functions has been shown to

be capable of solving numerous problems. More importantly, the evidence so far

indicates that, for many problems, genetic programming requires less

computational effort (i.e., fewer fitness evaluations to yield a solution with a

satisfactorily high probability) with automatically defined functions than without

them (provided the difficulty of the problem is above a certain relatively low

break-even point). Also, genetic programming usually yields solutions with

smaller average overall size with automatically defined functions than without

them (again provided that the problem is not too simple). That is, both learning

efficiency and parsimony appear to be properties of genetic programming with

automatically defined functions.

Moreover, there is also evidence that genetic programming with automatically

defined functions is scalable. For a limited number of problems for which a

progression of scaled-up versions was studied, the computational effort increases

as a function of problem size at a slower rate with automatically defined functions

than without them. In addition, the average size of solutions similarly increases

as a function of problem size at a slower rate with automatically defined functions

than without them. This observed scalability results from the profitable reuse of

hierarchically-callable, parameterized subprograms within the overall program.

There are five major preparatory steps required before genetic programming

can be applied to a particular problem, namely determining

 7

(1) the set of terminals (i.e., the actual variables of the problem, zero-argument

functions, constants) for each branch,

(2) the set of functions (e.g., primitive functions) for each branch,

(3) the fitness measure (or other arrangement for implicitly measuring fitness),

(4) the parameters to control the run, and

(5) the termination criterion and the result designation method for the run.

When automatically defined functions are added to genetic programming, it is

also necessary to determine the architecture of the yet-to-be-evolved programs.

The specification of the architecture consists of

(a) the number of function-defining branches in the overall program,

(b) the number of arguments (if any) possessed by each function-defining

branch, and

(c) if there is more than one function-defining branch, the nature of the

hierarchical references (if any) allowed between the function-defining

branches.

Sometimes these architectural choices flow directly from the nature of the

problem. Sometimes heuristic methods are helpful. However, in general, there is

no way of knowing a priori the optimal (or minimum) number of automatically

defined functions that will prove to be useful for a given problem, or the optimal

(or sufficient) number of arguments for each automatically defined function, or

the optimal (or sufficient) arrangement of hierarchical references among the

automatically defined functions.

If the goal is to develop a single, unified, domain-independent approach to

automatic programming that requires that the user pre-specify as little direct

 8

information as possible about the problem, the question arises as to whether these

architectural choices can be automated. Indeed, the requirement that the user

predetermine the size and shape of the ultimate solution to a problem has been a

bane of automated machine learning from the earliest times (Samuel 1959).

In other words, the question is whether genetic programming can be enabled to

discover the architecture of a multi-part program during a run. Presumably, as the

evolutionary process proceeds from generation to generation, various

architectures would be dynamically created during the run of genetic

programming. The new architectures would then be tested as to how well they

solve the problem at hand. Certain individuals with certain architectures will

prove to be more fit than others at grappling with the problem. The more fit

architectures might tend to prosper, while the less fit architectures might tend to

wither away. Eventually a computer program with an appropriate architecture

might emerge from this process of evolution of architecture.

Section 2 of this chapter describes the naturally occurring processes of gene

duplication and gene deletion. Section 3 describes automatically defined

functions. Section 4 describes the six new architecture-altering operations.

Section 5 discusses the implications of the new architecture-altering operations.

Section 6 demonstrates that the problem of symbolic regression of the Boolean

even-5-parity function can be solved while the architecture is being

simultaneously evolved by showing an example of an actual run. Section 7

compares the computational effort required for five different ways of solving the

parity problem using genetic programming, including the new way described in

this chapter involving the evolution of architecture. Section 8 is the conclusion.

 9

2. Gene Duplication and Deletion in Nature
Nature points the way to perform the evolution of architecture that would enable
genetic programming to dynamically discover the program architecture for
solving a problem. A change in the architecture of a multi-part computer program
during a run of genetic programming corresponds to a change in genome structure
in the natural world. Therefore, it seems appropriate to consider the different
ways that a genomic structure may change in nature.

In nature, sexual recombination (crossover) exchanges alleles (gene values) at

particular locations (loci) along the chromosome (a molecule of DNA). The DNA

then controls the manufacture of various proteins that determine the structure,

function, and behavior of the living organism (Stryer 1988). The resulting

organism then spends its life attempting to grapple with its environment. Some

organisms in a given population do better than others in that they survive to the

age of reproduction, produce offspring, and thereby pass on all or part of their

genetic make-up to the next generation of the population. Over a period of time

and many generations, the population as a whole evolves so as to give increasing

representation to traits (and, more importantly, co-adapted combinations of traits)

that contribute to survival of the organism to the age of reproduction and that

facilitate large numbers of offspring. This process, which Charles Darwin (1859)

called natural selection, tends to evolve near-optimal (perhaps even optimal) co-

adapted sets of alleles in the chromosomes of the organism (given its

environment).

John Holland's pioneering Adaptation in Natural and Artificial Systems (1975)

described how an analog of the naturally-occurring evolutionary process can be

applied to solving artificial problems using what is now called the genetic

 10

algorithm. Before applying the genetic algorithm to the problem, the user designs

an artificial chromosome of a certain size and shape and then defines a mapping

(encoding) between the points in the search space of the problem and the artificial

chromosome. For example, in applying the genetic algorithm to a

multidimensional optimization problem (where the goal is to find the global

optimum of an unknown multidimensional function), the artificial chromosome is

often a linear character string (modeled directly after the linear string of

information found in DNA). A specific location (a gene) along this artificial

chromosome is associated with each of the variables of the problem. Character(s)

appearing at a particular location along the chromosome denote the value of a

particular variable (i.e., the gene value or allele). Each individual in the

population has a fitness value (which, for a multidimensional optimization

problem, is the value of an unknown function). The genetic algorithm then

manipulates a population of such artificial chromosomes (usually starting from a

randomly-created initial population of strings) using the operations of

reproduction, crossover, and mutation. Individuals are probabilistically selected

to participate in these genetic operations based on their fitness. That is,

individuals with better fitness are more likely to be selected in the genetic

operations. The goal of the genetic algorithm in a multidimensional optimization

problem is to find an artificial chromosome which, when decoded and mapped

back into the search space of the problem, corresponds to a globally optimum (or

near-optimum) point in the search space of the problem. The probabilistic aspect

of the genetic algorithm is important. The best individuals are not guaranteed to

be selected. Even poor individuals in the population are sometimes selected.

 11

Both the natural and artificial evolutionary processes described above indicate

how a globally optimum combination of alleles (gene values) within a fixed-size

chromosome can be discovered by means of evolution. However, in both the

natural and artificial processes described above, the crossover operation merely

exchanges alleles (gene values) at particular locations along an already-existing

chromosomal structure of fixed size and shape. The above description does not

address the question of how genome lengths change during the course of

evolution. Neither does the above description address the question of how totally

new structures, new functions, new behaviors, and new species arise.

In nature, there is not only short-term optimization of alleles in their fixed

locations within a fixed-size chromosome, but long-term emergence of new

proteins (which, in turn, create new structures, functions, and behaviors and

thereby sometimes create new and more complex organisms). The emergence of

new proteins alters the architecture of the chromosome. Indeed, genome lengths

in nature have generally increased with the emergence of new and more complex

organisms (Dyson and Sherratt 1985, Brooks Low 1988). In genetic algorithms, a

change in the architecture and length of a chromosome corresponds to a dynamic

alteration, during a run of the algorithm, of the user-created mapping (the

encoding and decoding) between points from the search space of the problem and

instances of the artificial chromosome. In genetic programming, a change in the

architecture of the evolving program corresponds to a change in the number of

automatically defined functions, the number of arguments possessed by each

automatically defined function in an overall program, and in the pattern of

hierarchical references among the automatically defined functions.

 12

As I considered how to solve the problem of how to evolve the architecture of

the multi-part computer program during a run of genetic programming, I realized

that an analogous mechanism must operating in nature. Therefore, it seemed

appropriate to examine the mechanism by which genome structure is altered in

nature over the course of millions of years of evolution.

Gene duplications are rare and unpredictable events in the evolution of

genomic sequences. In gene duplication, there is a duplication of a lengthy

portion of the linear string of nucleiotide bases of the DNA in the living cell.

After a sequence of bases that code for a particular protein is duplicated in the

DNA, there are two identical ways of manufacturing the same protein. Thus,

there is no immediate change in the proteins that are manufactured as a result of a

gene duplication even though the genomic structure has changed.

Over time, however, some other genetic operation, such as mutation or

crossover, may change one or the other of the two identical genes. Over short

periods of time, the changes accumulating in the changed gene may be of no

practical effect or value. As long as one of the two genes remains unchanged, the

original protein manufactured from the unchanged gene continues to be

manufactured and the structure and behavior of the organism involved may

continue as before. The changed gene is simply carried along in the DNA from

generation to generation.

Natural selection exerts a powerful force in favor of maintaining a gene that

encodes for the manufacture of a protein that is important for the survival and

successful performance of the organism. However, after a gene duplication has

occurred, there is no disadvantage associated with the loss of the second way of

 13

manufacturing the original protein. Consequently, natural selection usually exerts

little or no pressure to maintain a second way of manufacturing a particular

protein. Over a period of time, the second gene may accumulate additional

changes and diverge more and more from the original gene. Eventually the

changed gene may lead to the manufacture of a distinctly new and different

protein that actually does affect the structure and behavior of the living thing in

some advantageous or disadvantageous way. When a changed gene leads to the

manufacture of a viable and advantageous new protein, natural selection again

works to preserve that new gene.

Ohno's Evolution by Gene Duplication (1970) corrects the mistaken notion that

natural selection is a mechanism for promoting change. Instead, Ohno

emphasizes the essentially conservative role of natural selection in the

evolutionary process:

"...the true character of natural selection ... is not so much an

advocator or mediator of heritable changes, but rather it is an

extremely efficient policeman which conserves the vital base

sequence of each gene contained in the genome. As long as one vital

function is assigned to a single gene locus within the genome, natural

selection effectively forbids the perpetuation of mutation affecting the

active sites of a molecule." (Emphasis in original).

Ohno further points out that ordinary point mutation and crossover are

insufficient to explain major evolutionary changes.

"...while allelic changes at already existing gene loci suffice for racial

differentiation within species as well as for adaptive radiation from an

 14

immediate ancestor, they cannot account for large changes in

evolution, because large changes are made possible by the acquisition

of new gene loci with previously non-existent functions."

Ohno continues,

"Only by the accumulation of forbidden mutations at the active sites

can the gene locus change its basic character and become a new gene

locus. An escape from the ruthless pressure of natural selection is

provided by the mechanism of gene duplication. By duplication, a

redundant copy of a locus is created. Natural selection often ignores

such a redundant copy, and, while being ignored, it accumulates

formerly forbidden mutations and is reborn as a new gene locus with

a hitherto non-existent function." (Emphasis in original).

Ohno concludes,

"Thus, gene duplication emerges as the major force of evolution."

Ohno's provocative thesis is supported by the discovery of pairs of proteins

with similar sequences of DNA and similar sequences of amino acids, but

different functions. Examples include trypsin and chymotrypsin; the protein of

microtubules and actin of the skeletal muscle; myoglobin and the monomeric

hemoglobin of hagfish and lamprey; myoglobin used for storing oxygen in

muscle cells and the subunits of hemoglobin in red blood cells of vertebrates; and

the light and heavy immunoglobin chains (Nei 1987, Maeda and Smithies 1986,

Dyson and Sherratt 1985, Brooks Low 1988, Patthy 1991, Go 1991, Hood and

Hunkapiller 1991). For the Escherichia coli bacteria, a relatively simple

organism, it is known that more than 30% of its proteins are the result of gene

 15

duplications (Lazcano and Miller 1994; Riley 1993). These proteins include its

DNA polymerases, dehydrogenases, ferredoxins, glutamine synthetases,

carbamoyl-phosphate synthetases, F-type ATPases, and DNA topoisomerases.

The midge, Chironomus tentans, provides an additional example of gene

duplication (Galli and Wislander 1993, 1994). In particular, we focus our

attention on the particular contiguous sequence containing 3,959 nucleiotide bases

of the DNA of this midge that is archived under accession number X70063 in the

European Molecular Biology Laboratory (EMBL) database and the Gen Bank

database. The 732 nucleiotide bases located at positions 918–1,649 of the 3,959

bases of the DNA sequence involved become expressed as a protein containing

244 (i.e., one third of 732) amino acid residues. The 759 nucleiotide bases at

positions 2,513–3,271 become expressed as a protein containing 253 residues.

The 732-base subsequence is called the "C. tentans Sp38–40.A" gene and the

759-base subsequence is called "C. tentans Sp38–40.B." The bases of DNA

before position 918, the bases between positions 1,650 and 2,612, and the bases

after position 3,371 of this sequence of length 3,959 do not become expressed as

any protein.

Both the "A" and the "B" proteins are secreted from the midge's salivary gland

to form two similar, but different, kinds of water-insoluble fibers. The two kinds

of fibers are, in turn, spun into one of two similar, but different, kinds of tubes.

One tube is for larval protection and feeding while the other tube is for pupation

(the stage in the development of an insect in which it lies in repose and from

which it eventually emerges in the winged form).

 16

 Table 1 shows the bases of DNA in positions 900 through 3,399 of the 3,959

nucleiotide bases of X70063. In the DNA sequence, A represents the nucleiotide

base adenine, C represents cytosine, G represents guanine, and T represents

thymine. Each group of three consecutive bases (a codon) of DNA becomes

expressed as one of the 20 amino acid residues of the protein. The letters A, T,

and G appearing at positions 918, 919, and 920, respectively in this reading

frame, of the DNA sequence are translated into the amino acid residue methionine

(denoted by the single letter M using the 20-letter coding for amino acid residues

in proteins). Thus, methionine is the first amino acid residue (i.e., N-terminal) of

protein "A." Positions 921, 922, and 923 of the DNA contain the bases A, G, and

A, respectively, and these three bases, in this reading frame, are translated into

arginine (an amino acid residue denoted by the letter R). Thus, arginine is the

second amino acid residue of protein "A" and the protein sequence begins with

the residues M and R. The DNA up to position 1,649 encodes the first protein.

Positions 1,647, 1648, and 1,649 code for the amino acid resident lysine (denoted

by the letter K). Thus, lysine is the last (244th) residue (i.e., C-terminal) of

protein "A."

Table 2 shows the 244 amino acid residues of the C. tentans Sp38–40.A

protein.

Table 3 shows the 253 amino acid residues of the C. tentans Sp38–40.b

protein.

The two proteins are similar, but different. For example, the first 14 amino

acid residues are identical. Residue 15 of the "A" protein is phenylalanine (F),

while the residue 15 of the "B" protein is leucine (L), a chemically similar amino

 17

acid. Residues 16–50 are identical. Residue 51 of the "A" protein is glutamic

acid (E), while residue 51 of the "B" protein is Aspartic acid (D). Both D and E

are similar in that both are electrically negatively charged residues at normal pH

values. However, for some positions, such as 76, the amino acid residues (T and

A) are not chemically or electrically similar.

If we now read from the end of each protein, we see that the last few residues

of each protein are identical. Since the proteins are of different length,

identification of the similarity between the two protein sequences requires

aligning the two proteins in some way. Protein alignment algorithms, such as the

Smith-Waterman algorithm (Smith and Waterman 1981), provide a way to align

two proteins and to measure the degree of similarity or dissimilarity between two

proteins. The Smith-Waterman algorithm is a progressive alignment method

employing dynamic programming based on a scoring algorithm. Since the

proteins being aligned are typically of different lengths, gaps may be introduced

(and then lengthened) in an attempt to best align the residues making up the

proteins. A penalty is assessed to open a gap (5 here) and another penalty is

assessed to lengthen a gap (25 here). An additional penalty is assessed when one

residue disagrees with another. This penalty is smaller for substitutions involving

evolutionarily-close amino acid residues. The PAM-250 ("Percentage of

Accepted point Mutations") matrix is used to reflect the likelihood of one amino

acid residue being mutated into another. The overall scoring algorithm performs

a tradeoff employing dynamic programming between the penalties assessed by

the PAM-250 matrix, the gap-opening penalty, and the gap-lengthening penalty.

 18

The Smith-Waterman algorithm has been implemented in GeneWorks, a software

package available from Intelligenetics Inc. of Mountain View, California.

Table 4 shows the alignment of the C. tentans Sp38–40.A protein and the C.

tentans Sp38–40.B protein. Identical residues are boxed. The alignment shows

that there is 8l% identity between the two protein sequences. As can be seen, the

first disagreement between the two aligned sequences occurs at position 15 and

the second occurs at residue 51. The first gap is introduced at residue 112 where

the "A" protein has an alanine (A) residue. A gap of length 3 is introduced at

positions 147, 148, and 149 where the "A" protein has three proline (P) residues.

Note that this alignment recognizes the identity between the last five residues of

the two proteins. This alignment has a total cost of 265.

Galli and Wislander (1993) point out that these two similar proteins arise as a

consequence of a gene duplication. Immediately after the gene duplication

occurred at some time in the distant past, there were two identical copies of the

duplicated sequence of DNA. Over a period of millions of years since the initial

gene duplication, additional mutations accumulated so that the two proteins are

now only 81% identical (after alignment). More importantly, the two proteins

now perform different (but similar) functions in the midge.

More complex organisms have a general tendency to have more expressed

proteins, more different kinds of structures, more complex structures, perform

more different functions, and have longer genomes (Dyson and Sherratt 1985).

The rise of new functions as a consequence of gene duplication is consistent with

the observed longer genomes of more complex organisms.

 19

Gene deletion also occurs in nature. In gene deletion, there is a deletion of a

portion of the linear string of nucleiotide bases that would otherwise be translated

and manufactured into work-performing proteins in the living cell. After a gene

deletion occurs, some particular protein that was formerly manufactured will no

longer be manufactured and there may be some change in the structure or

behavior of the biological entity. The absence of the protein may then affect the

structure and behavior of the living thing in some advantageous or

disadvantageous way. If the deletion is advantageous, natural selection will tend

to perpetuate the change, but if the deletion is disadvantageous, natural selection

will tend to lead to the extinction of the change.

3. Automatically Defined Function in Genetic Programming
Automatically defined functions (ADFs) are the analog of subroutines in the
genetic programming process.

When automatically defined functions are being used, each program in the

population contains one or more function-defining branches (each defining an

automatically defined function) and one main result-producing branch. The

automatically defined functions can perform arithmetic, conditional, and other

types of operations, define constants, define subsets, and so forth. In addition, for

certain problems, there may be other problem-specific types of branches (such as

iteration-performing branches and iteration-terminating branches).

Figure 1 shows an overall program consisting of one two-argument

automatically defined function (called ADF0 here) and one result-producing

branch (RPB). The argument map describes the architecture of a multi-part

program in terms of the number of its function-defining branches and the number

 20

of arguments that they each possess. The argument map of the set of

automatically defined functions belonging to an overall program is the list

containing the number of arguments possessed by each automatically defined

function in the program. The argument map for the overall program in figure 2 is

{2} because there is one function-defining branch that takes two arguments.

The program in figure 2 contains architecture-defining points of the following

types:

(1) the PROGN (labeled 400) appearing as the top-most point of the overall

program,

(2) a DEFUN (labeled 410) as the top-most point of the function-defining

branch,

(3) a name (i.e. ADF0 labeled 411) appearing as the first argument below the

DEFUN,

(4) the function LIST (labeled 412) appearing as the second argument of the

DEFUN,

(5) dummy arguments (such as ARG0 and ARG1 labeled as 413 and 414,

respectively) appearing below LIST,

(6) the VALUES (labeled 419) of the function-defining branch appearing as

the third argument of the DEFUN, and

(7) the VALUES (labeled 470) of the result-producing branch appearing as the

final argument of PROGN.

If the program in figure 2 were to have more than one automatically defined

function, there would be additional occurrences of items (2), (3), (4), (5), and (6)

for each additional function-defining branch.

 21

These architecture-defining points were called "invariant points" in Genetic

Programming II because they were not subject to alteration by crossover or

mutation. However, this terminology becomes obsolete with the introduction of

the architecture-altering operations described herein.

The program in figure 2 also contains work-performing points. These work-

performing points are the bodies of the result-producing branch and the function-

defining branch(es).

The work-performing points of figure 2 include

(1) the five points labeled 420, 421, 422, 423, and 424 that are found below

the VALUES (labeled 419) in the function-defining branch, and

(2) the 11 points starting with the AND (labeled 480) that are found below the

VALUES (labeled 470).

These work-performing points were called "noninvariant points" in Genetic

Programming II because these points represented the sequence of steps of the to-

be-evolved computer program and because they were almost always different

from branch to branch within a program and from program to program within the

population. Again, this terminology becomes obsolete with the introduction of

the architecture-altering operations described herein.

The result-producing branch may invoke all, some, or none of the

automatically defined functions that are present within the overall program. The

result-producing branch does not contain dummy arguments (formal parameters).

The result-producing branch typically contains the actual variables of the problem

(e.g., D0, D1, D2, etc. here).

 22

The value returned by the overall program consists of the value returned by the

result-producing branch.

The automatically defined functions of a particular overall program are usually

named sequentially as ADF0, ADF1, etc.

The automatically defined functions typically each possess a certain number of

dummy arguments (formal parameters). Here, ADF0 possesses two dummy

arguments, ARG0 and ARG1. Typically, the actual variables do not appear in the

function-defining branches.

If the overall program has more than one automatically defined function, there

may (or may not) be hierarchical references between function-defining branches.

For example, the function-defining branch of an overall program may be allowed

to refer (non-recursively) to all other previously-defined (i.e., lower numbered)

function-defining branches.

References within a particular program to an automatically defined function

are to the automatically defined function belonging to that particular program.

Actions (with side effects) may be performed within the function-defining

branches, the result-producing branches, or both.

When automatically defined functions are being used, the initial random

generation of the population must be created so that each individual overall

program in the population has the intended constrained syntactic structure. The

constrained syntactic structure in figure 1 calls for one result-producing branch

and one function-defining branch. The function-defining branch for ADF0 is a

random composition of functions from the function set, Fadf, and terminals from

the terminal set, Tadf. Here the function set, Fadf, consists of the two-argument

 23

Boolean functions AND, OR, NAND, and NOR. The terminal set, Trpb, of the

function-defining branch consists of the two dummy arguments (formal

parameters), ARG0 and ARG1. The result-producing branch is a random

composition of functions from the function set, Frpb, and terminals from the

terminal set, Trpb. In figure 2, the function set, Frpb, of the result-producing

branch consists of the two-argument Boolean functions AND, OR, NAND, and NOR

as well as the now-defined automatically defined function, ADF0. The terminal

set, Trpb, of the result-producing branch consists of the five actual variables of the

problem (i.e., D0, D1, D2, etc.).

Execution of genetic programming consists of the following steps. The six

operations appearing as items (2)(c)(iii) through (2)(c)(ix) are the new

architecture-altering operations described in detail in a later section below.

The steps for executing genetic programming are as follows:

(1) Generate an initial random population (generation 0) of computer

programs.

(2) Iteratively perform the following sub-steps until the termination criterion

of the run has been satisfied:

(a) Execute each program in the population and assign it (explicitly or

implicitly) a fitness value according to how well it solves the

problem.

(b) Select program(s) from the population to participate in the genetic

operations in (c) below.

(c) Create new program(s) for the population by applying the following

genetic operations.

 24

(i)Reproduction: Copy an existing program to the new population.

(ii)Crossover: Create new offspring program(s) for the new

population by recombining randomly chosen parts of two

existing programs.

(iii) Mutation. Create one new offspring program for the new

population by randomly mutating a randomly chosen part of

one existing program.

(iv) Branch duplication:

(v) Argument duplication:

(vi) Branch deletion:

(vii) Argument deletion:

(viii) Branch Creation:

(ix) Argument creation:

(3) After satisfaction of the termination criterion (which usually includes a

maximum number of generations to be run as well as a problem-specific

success predicate), the single best computer program in the population

produced during the run (the best-so-far individual) is designated as the

result of the run. This result may (or may not) be a solution (or

approximate solution) to the problem.

4. Six New Architecture-Altering Genetic Operations
The six new architecture-altering genetic operations provide a new way of
determining the architecture of a multi-part program. When these operations are
performed during a run of genetic programming, the architecture of the
participating individuals changes during the run. Meanwhile, the Darwinian
selection and the reproduction operation continues to favor the more fit

 25

individuals in the population to be modified by the usual operations of crossover
and mutation.

4.1. Branch Duplication
The operation of branch duplication duplicates one of the branches of a program
in the following way:

(1) Select a program from the population to participate in this operation.

(2) Pick one of the function-defining branches of the selected program as the

branch-to-be-duplicated.

(3) Add a uniquely-named new function-defining branch to the selected

program, thus increasing, by one, the number of function-defining branches in the

selected program. The new function-defining branch has the same argument list

and the same body as the branch-to-be-duplicated.

(4) For each occurrence of an invocation of the branch-to-be-duplicated

anywhere in the selected program (e.g., the result-producing branch or any other

branch that invokes the branch-to-be-duplicated), randomly choose either to leave

that invocation unchanged or to replace that invocation with an invocation of the

newly created function-defining branch.

The step of selecting a program for this operation (and all the other new

operations described herein) is performed probabilistically on the basis of fitness,

so that a program that is more fit has a greater probability of being selected to

participate in the operation than a less fit program.

Figure 2 shows the program resulting after applying the operation of branch

duplication to the program in figure 1 (consisting of one two-argument

automatically defined function and one result-producing main branch).

Specifically, the function-defining branch 410 of figure 1 defining ADF0 (also

 26

shown as 510 of figure 2) is duplicated and a new function-defining branch

(defining ADF1) appears in figure 2.

There are two occurrences of invocations of the branch-to-be-duplicated,

ADF0, in the result-producing branch of the selected program, namely ADF0 at

481 and 487 of figure 1. For each of these two occurrences, a random choice is

made to either leave the occurrence of ADF0 unchanged or to replace it with the

newly created ADF1. For the first invocation of ADF0 at 481 of figure 1, the

choice is randomly made to replace ADF0 481 of figure 1 with the ADF1 581 in

figure 2. The arguments for the invocation of ADF1 581 in figure 2 are D1 582

and D2 583 (i.e., they are identical to the arguments D1 482 and D2 483 for the

invocation of ADF0 at 481 of the original program in figure 1). For the second

invocation of ADF0 at 487 of figure 1, the choice is randomly made to leave

ADF0 unchanged in figure 2.

Because the duplicated new function-defining branch is identical to the

previously existing function-defining branch (except for the name ADF1 at 541 in

figure 2) and because ADF1 is invoked with the same arguments as ADF0 had

been invoked, this operation is a semantics-preserving operation in that the

operation does not affect the value returned by the overall program.

The operation of branch duplication can be interpreted as a case splitting.

After the branch duplication, the result-producing branch invokes ADF0 at 587

and ADF1 at 581 of figure 2. ADF0 and ADF1 can be viewed as separate

procedures for handling the two separate newly-created subproblems (cases).

Subsequent genetic operations may alter one or both of these two presently-

identical function-defining branches and these subsequent changes to lead to a

 27

divergence in structure and behavior. This divergence may be interpreted as a

specialization or refinement. That is, once ADF0 and ADF1 diverge, ADF0 can

be viewed as a specialization for handling for subproblem (case) associated with

its invocation by the result-producing branch. Similarly, ADF1 can be viewed as

a specialization for handling its subproblem (case).

The operation of branch duplication as defined above (and all the other new

operations described herein) always produce a syntactically valid program.

Analogs of the naturally occurring operation of gene duplication have been

previously used with genetic algorithms operating on character strings and with

other evolutionary algorithms. Holland (1975, page 116) suggested that

intrachromosomal gene duplication might provide a means of adaptively

modifying the effective mutation rate by making two or more copies of a

substring of adjacent alleles. Cavicchio (1970) used intrachromosomal gene

duplication in early work on pattern recognition using the genetic algorithm.

Gene duplication is implicitly used in the messy genetic algorithm (Goldberg,

Korb, and Deb 1989). Lindgren (1991) analyzed the prisoner's dilemma game

using an evolutionary algorithm that employed an operation analogous to gene

duplication applied to chromosome strings. Gruau (1994) used genetic

programming to develop a clever and innovative technique to evolve the

architecture of a neural network at the same time as the weights are being

evolved.

4.2. Argument Duplication
The operation of argument duplication duplicates one of the dummy arguments
(format parameters) in one of the automatically defined functions of a program in
the following way:

 28

(1) Select a program from the population to participate in this operation.

(2) Pick one of the function-defining branches of the selected program.

(3) Choose one of the arguments of the picked function-defining branch of the

selected program as the argument-to-be-duplicated.

(4) Add a uniquely-named new argument to the argument list of the picked

function-defining branch of the selected program, thus increasing, by one, the

number of arguments in its argument list.

(5) For each occurrence of the argument-to-be-duplicated anywhere in the

body of picked function-defining branch of the selected program, randomly

choose either to leave that occurrence unchanged or to replace that occurrence

with the new argument.

(6) For each occurrence of an invocation of the picked function-defining

branch anywhere in the selected program, identify the argument subtree

corresponding to the argument-to-be-duplicated and duplicate that argument

subtree in that invocation, thereby increasing, by one, the number of arguments in

the invocation.

Because the function-defining branch containing the duplicated argument is

invoked with an identical copy of the previously existing argument, the effect of

this operation is to leave unchanged the value returned by the overall program.

Just as the operation of branch duplication was interpreted as a case splitting,

the operation of argument duplication can be similarly interpreted. After the

argument duplication, the result-producing branch invokes ADF0 with a new third

argument. The particular instantiations of the second and third arguments in each

invocation of ADF0 provide potentially different ways of handling the two

 29

separate subproblems (cases). Once the second and third arguments diverge, this

divergence may be interpreted as a specialization or refinement.

4.3. Branch Deletion
The operation of branch deletion deletes one of the automatically defined
functions of a program in the following way:

(1) Select a program from the population to participate in this operation.

(2) Pick one of the function-defining branches as the branch-to-be-deleted.

(3) Delete the branch-to-be-deleted from the selected program, thus

decreasing, by one, the number of branches in the selected program.

(4) For each occurrence of an invocation of the branch-to-be-deleted anywhere

in the selected program, replace the invocation of the branch-to-be-deleted with

an invocation of a surviving branch (described below).

When a function-defining branch is deleted, the question arises as to how to

modify invocations of the branch-to-be-deleted by the other branches of the

overall program. One alternative (called branch deletion by consolidation)

involves identifying a suitable second function-defining branch of the overall

program as the surviving branch and replacing (consolidating) the branch-to-be-

deleted with the surviving branch in each invocation of the branch-to-be-deleted.

Branch deletion by consolidation can be interpreted as a way to achieve

generalization in a problem-solving procedure. A second alternative (called

branch deletion with random regeneration) is to randomly generate new subtrees

composed of the available functions and terminals in lieu of an invocation of the

branch-to-be-deleted. A third alternative (called branch deletion by macro

expansion) is a semantics-preserving approach that involves inserting the entire

 30

body of the branch-to-be-deleted for each instance of an invocation of that

branch.

Both the argument duplication and the branch duplication operations create

larger programs. The operations of argument deletion and branch deletion

(described below) can create smaller programs and can balance the growth that

would otherwise occur (provided the alternative of argument deletion by macro

expansion is not used).

4.4. Argument Deletion
The operation of argument deletion deletes one of the arguments to one of the
automatically defined functions of a program in the following way:

(1) Select a program from the population to participate in this operation.

(2) Pick one of the function-defining branches of the selected program.

(3) Choose one of the arguments of the picked function-defining branch of the

selected program as the argument-to-be-deleted.

(4) Delete the argument-to-be-deleted from the argument list of the picked

function-defining branch of the selected program, thus decreasing, by one, the

number of arguments in the argument list.

(5) For each occurrence of an invocation of the picked function-defining

branch anywhere in the selected program, delete the argument subtree in that

invocation corresponding to the argument-to-be-deleted, thereby decreasing, by

one, the number of arguments in the invocation.

(6) For each occurrence of the argument-to-be-deleted in the body of the

picked function-defining branch, replace the argument-to-be-deleted with a

surviving argument.

 31

The operation of argument deletion may be viewed as a generalization in that

some information that was once considered in executing a procedure is now

ignored.

When an argument is deleted, references to the argument-to-be-deleted are

modified by using argument deletion by consolidation, argument deletion with

random regeneration, or argument deletion by macro expansion.

4.5. Branch Creation
The operation of branch creation creates a new automatically defined function
(ADF) within an overall program in the following way:

(1) Select a program from the population to participate in this operation.

(2) Pick a point in the body of one of the function-defining branches or result-

producing branches of the selected program. This picked point will become the

top-most point of the body of the branch-to-be-created.

(3) Starting at the picked point, begin traversing the subtree below the picked

point in a depth-first manner.

(4) As each point below the picked point in the selected program is

encountered during the traversal, make a determination as to whether to designate

that point as being the top-most point of an argument subtree for the branch-to-

be-created. If such a designation is made, no traversal is made of the subtree

below that designated point. The depth-first traversal continues and this step (4)

is repeatedly applied to each point encountered during the traversal so that when

the traversal of the subtree below the picked point is completed, zero points, one

point, or more than one point are so designated during the traversal.

 32

(5) Add a uniquely-named new function-defining branch to the selected

program. The argument list of the new branch consists of as many consecutively-

numbered dummy variables (formal parameters) as the number of points that were

designated during the depth-first traversal. The body of the new branch consists

of a modified copy of the subtree starting at the picked point. The modifications

to the copy are made in the following way: For each point in the copy

corresponding to a point designated during the traversal of the original subtree,

replace the designated point in the copy (and the subtree in the copy below that

designated point in the copy) by a unique dummy variable. The result is a body

for the new function-defining branch that contains as many uniquely named

dummy variables as there are dummy variables in the argument list of the new

function-defining branch.

(6) Replace the picked point in the selected program by the name of the new

function-defining branch. If no points below the picked point were designated

during the traversal, the operation of branch creation is now completed.

(7) If one or more points below the picked point were designated during the

traversal, the subtree below the just-inserted name of the new function-defining

branch will be given as many argument subtrees as there are dummy arguments in

the new function-defining branch in the following way: For each point in the

subtree below the picked point designated during the traversal, attach the

designated point and the subtree below it as an argument to the function whose

name was just inserted in the new function-defining branch.

Several different methods may be used to determine how to designate a point

below the picked point during the depth-first traversal described above.

 33

The operation of branch creation is similar to, but different than, the

compression (module acquisition) operation described by Angeline and Pollack

(1994).

4.6. Argument Creation
The operation of argument creation creates a new dummy argument (formal
parameter) within a function-defining branch of an overall program in the
following way:

(1) Select a program from the population to participate in this operation.

(2) Pick a point in the body of a function-defining branch of the selected

program.

(3) Add a uniquely-named new argument to the argument list of the picked

function-defining branch for the purpose of defining the argument-to-be-created.

(4) Replace the picked point (and the entire subtree below it) in the picked

function-defining branch by the name of the new argument.

(5) For each occurrence of an invocation of the picked function-defining

branch anywhere in the selected program, add an additional argument subtree to

that invocation. In each instance, the added argument subtree consists of a

modified copy of the picked point (and the entire subtree below it) from the

picked function-defining branch. The modification is made in the following way:

For each dummy argument in a particular added argument subtree, replace the

dummy argument with the entire argument subtree of that invocation

corresponding to that dummy argument.

5. Implications of the Architecture-Altering Operations
The six new architecture-altering operations can be viewed from five
perspectives.

 34

First, the new architecture-altering operations provide a new way to solve the

problem of determining the architecture of the overall program in the context of

genetic programming with automatically defined functions.

Second, the new architecture-altering operations provide an automatic

implementation of the ability to specialize and generalize in the context of

automated problem-solving.

Third, the new architecture-altering operations, in conjunction with

automatically defined functions, provide a way to automatically and dynamically

change the representation of the problem while simultaneously solving the

problem.

Fourth, the new architecture-altering operations, in conjunction with

automatically defined functions, provide a way to automatically and dynamically

decompose problems into subproblems and then automatically solve the overall

problem by assembling the solutions of the subproblems into a solution of the

overall problem.

Fifth, the new architecture-altering operations, in conjunction with

automatically defined functions, provide a way to automatically and dynamically

discover useful subspaces (usually of lower dimensionality than that of the overall

problem) and then automatically assemble a solution of the overall problem from

solutions applicable to the individual subspaces.

In addition, the new architecture-altering operations affect the implementation

of genetic programming with regard to the creation of the initial random

population and the crossover operation, as described below.

 35

5.1. Creation of the Initial Population
When automatically defined functions are being used, the initial random
generation of the population must be created so that each individual overall
program in the population has the intended constrained syntactic structure. For
example, figure 1 shows a program for which the constrained syntactic structure
calls for one result-producing branch and one function-defining branch. The
function-defining branch for ADF0 is a random composition of functions from the
function set, Fadf, and terminals from the terminal set, Tadf. Here the function set,
Fadf, consists of the two-argument Boolean primitive functions AND, OR, NAND,
and NOR. The terminal set, Trpb, of the function-defining branch consists of the
two dummy arguments (formal parameters), ARG0 and ARG1. The result-
producing branch is a random composition of functions from the function set,
Frpb, and terminals from the terminal set, Trpb. In the result-producing branch of
figure 1, the function set, Frpb, consists of the two-argument Boolean primitive
functions AND, OR, NAND, and NOR as well as the now-defined automatically
defined function, ADF0. The terminal set, Trpb, of the result-producing branch
consists of the five actual variables (i.e., D0, D1, D2, D3, D4).

When the architecture-altering operations are used, the initial population of

programs may be created in any one of three ways. One possibility (called the

"minimalist approach") is that each multi-part program in the population at

generation 0 has a uniform architecture with exactly one automatically defined

function possessing a minimal number of arguments appropriate to the problem.

A second possibility (called "the big bang") is that each program in the population

has a uniform architecture with no automatically defined functions (i.e., only a

result-producing branch). This approach relies on the operation of branch

creation to create multi-part programs in such runs. A third possibility is that the

population at generation 0 is architecturally diverse (as described in Koza 1994a).

 36

5.2. Structure-Preserving Crossover
In the crossover operation in genetic programming, a crossover point is randomly
and independently chosen in each of two parents and genetic material from one
parent is then inserted into a part of the other parent to create an offspring. A
population may be architecturally diverse either because it was initially created
with architectural diversity (as described above) or because the six new
architecture-altering genetic operations (described below) create a diversity of
new architectures during the run. Structure-preserving crossover with point
typing (as described in Koza 1994a) permits robust recombination while
simultaneously guaranteeing that any pair of architecturally different parents will
produce syntactically and semantically valid offspring.

If the population is architecturally diverse, the parents selected to participate in

the crossover operation will often possess different numbers of automatically

defined functions. Moreover, an automatically defined function with a certain

name (e.g., ADF2) belonging to one parent will often possess a different number

of arguments than the same-named automatically defined function belonging to

the other parent (if indeed ADF2 is present at all). After a crossover is performed,

each call to an automatically defined function actually appearing in the crossover

fragment from the contributing parent will no longer refer to the automatically

defined function of the contributing parent, but instead will refer to the same-

named automatically defined function of the receiving parent.

Thus, we must redefine the crossover operation when it is employed in an

architecturally diverse population.

When automatically defined functions are involved, each program in the

population conforms to a more complex constrained syntactic structure (such as

shown above in figure 1). The initial random population is created in accordance

 37

with this constrained syntactic structure. Crossover must be performed in a

structure-preserving way so as to preserve the syntactic validity of all offspring.

In structure-preserving crossover, the architecture-defining points of an overall

program are never eligible to be chosen as crossover points and are never altered

by crossover. Instead, structure-preserving crossover is restricted to the work-

performing points. In structure-preserving crossover, the work-performing points

in the overall program are partitioned into a certain number of types.

The basic idea of structure-preserving crossover is that any work-performing

point anywhere in the overall program is randomly chosen, without restriction, as

the crossover point of the first parent. That point has a type assigned to it. Then,

once the crossover point of the first parent has been chosen, the crossover point of

the second parent is randomly chosen from among points of the same type.

The typing of the work-performing points of an overall program constrains the

set of subtrees that can potentially replace the chosen crossover point and the

subtree below it. This typing is done so that the structure-preserving crossover

operation will always produce valid offspring.

There are several ways of assigning types to the work-performing points of an

overall program.

(1) Branch typing assigns the same type to all the work-performing points of

each separate branch of an overall program (but a different type to each

different branch). There are as many types of work-performing points as

there are branches in the overall program.

(2) Like-Branch Typing assigns the same type to all the work-performing

points of each separate branch of an overall program and assigns a

 38

different type to each different branch, except that if the function sets and

terminal sets of two branches are identical, all the points of both such

branches are assigned the same type.

(3)Point typing assigns a type to each individual work-performing point in the

overall program reflective of both the branch where the point is located

and the contents of the subtree starting at the point. The characteristics of

the branch where the point is located is relevant in determining whether a

subtree from another program may be inserted at the point. The contents

of the subtree starting at the point are relevant in determining if the

subtree may be inserted at a particular point of another program.

If a program is subject to any additional problem-specific constrained syntactic

structure, that additional structure, if any, must also be considered in typing.

When all the programs in the population have a common architecture, any of

the three methods of typing may be used. In practice, branch typing is most

commonly used. The crossover operation starts with two parents and produces

two offspring when either branch typing or like-branch typing is being used.

Point typing is used for architecturally diverse populations. If, for the sake of

argument, branch typing or like-branch typing were to be used on an

architecturally diverse population, the crossover operation would be virtually

hamstrung; hardly any crossovers could occur. The types produced by branch

typing or like-branch typing are insufficiently descriptive and overly constraining

in an architecturally diverse population.

When point typing is used, the crossover operation acquires a directionality

that did not exist with branch typing or like-branch typing. A distinction must be

 39

made between the contributing (first) parent and the receiving (second) parent.

Consequently, the crossover operation starts with two parents, but produces only

one offspring.

The crossover point (called the point of insertion) of the receiving (second)

parent must be chosen from the set of points for which the crossover fragment

from the contributing (first) parent "has meaning" if the crossover fragment were

to be inserted at the point.

When genetic material is inserted into the receiving parent during structure-

preserving crossover with point typing, the offspring inherits its architecture from

the receiving parent (the maternal line) and is guaranteed to be syntactically and

semantically valid.

Point typing is governed by three general principles.

First, every terminal and function actually appearing in the crossover fragment

from the contributing parent must be in the terminal set or function set of the

branch of the receiving parent containing the point of insertion. This first general

principle applies to actual variables of the problem, dummy variables, random

constants, primitive functions, and automatically defined functions.

Second, the number of arguments of every function actually appearing in the

crossover fragment from the contributing parent must equal the number of

arguments specified for the same-named function in the argument map of the

branch of the receiving parent containing the insertion point. This second general

principle governing point typing applies to all functions. However, the emphasis

is on the automatically defined functions because the same function name is used

 40

to represent entirely different functions with differing number of arguments for

different individuals in the population.

Third, all additional problem-specific syntactic rules of construction, if any,

must be satisfied.

Structure-preserving crossover with point typing is described in detail in Koza

1994a.

Structure-preserving crossover with point typing permits robust recombination

while simultaneously guaranteeing that any pair of architecturally different

parents will produce syntactically and semantically valid offspring. In addition,

structure-preserving crossover with point typing enables the architecture

appropriate for solving the problem to be evolutionarily selected during a run

while the problem is being solved. In addition, when the six new architecture-

altering operations are being used, structure-preserving crossover with point

typing enables the architecture appropriate for solving the problem to be evolved

during a run while the problem is being solved in the sense of actually changing

the architecture of programs dynamically during the run.

5.3. Steps for Executing Genetic Programming
Execution of genetic programming consists of the following steps. The six new
architecture-altering operations appear as items (2)(c)(iii) through (2)(c)(ix).

The steps for executing genetic programming are as follows:

(1) Generate an initial random population (generation 0) of computer

programs.

(2) Iteratively perform the following sub-steps until the termination criterion

of the run has been satisfied:

 41

(a) Execute each program in the population and assign it (explicitly or

implicitly) a fitness value according to how well it solves the

problem.

(b) Select program(s) from the population to participate in the genetic

operations in (c) below.

(c) Create new program(s) for the population by applying the following

genetic operations.

(i)Reproduction: Copy an existing program to the new population.

(ii)Crossover: Create new offspring program(s) for the new

population by recombining randomly chosen parts of two

existing programs.

(iii) Mutation. Create one new offspring program for the new

population by randomly mutating a randomly chosen part of

one existing program.

(iv) Branch duplication: Create one new offspring program for the

new population by duplicating one function-defining branch of

one existing program and making additional appropriate

changes to reflect this change.

(v) Argument duplication: Create one new offspring program for the

new population by duplicating one argument of one function-

defining branch of one existing program and making additional

appropriate changes to reflect this change.

(vi) Branch deletion: Create one new offspring program for the new

population by deleting one function-defining branch of one

 42

existing program and making additional appropriate changes to

reflect this change.

(vii) Argument deletion: Create one new offspring program for the

new population by deleting one argument of one function-

defining branch of one existing program and making additional

appropriate changes to reflect this change.

(viii) Branch Creation: Create one new offspring program for the

new population by adding one new function-defining branch

containing a portion of an existing branch and creating a

reference to that new branch.

(ix) Argument creation: Create one new offspring program for the

population by adding one new argument to the argument list of

an existing function-defining branch and appropriately

modifying references to that branch.

(3) After satisfaction of the termination criterion (which usually includes a

maximum number of generations to be run as well as a problem-specific

success predicate), the single best computer program in the population

produced during the run (the best-so-far individual) is designated as the

result of the run. This result may (or may not) be a solution (or

approximate solution) to the problem.

6. Example of an Actual Run
The architecture-altering operations described herein will now be illustrated by
showing an actual run of the problem of symbolic regression of the even-5-parity
function. The Boolean even-k-parity function takes k Boolean arguments, D0,
D1, D2, and so forth (up to a total of k arguments). The even-k-parity function

 43

returns T (true) if an even number of its Boolean arguments are T, but otherwise
returns NIL (false). Boolean parity functions are often used as benchmarks for
experiments in machine learning because a change in any one input
(environmental sensor) toggles the outcome. The problem is to discover a
computer program that mimics the behavior of the Boolean even-k-parity problem
for every one of the 2k combinations of its k Boolean inputs. The primitive
functions for this problem are AND, OR, NAND, and NOR.

6.1. Example with an Complete Genealogical Audit Trail
The run starts with the random creation of a population of 1,000 individual
programs. The minimalist approach is used herein. That is, each program in the
initial random population at generation 0 consists of one result-producing branch
and one one-argument function-defining branch and has an argument map of {1}.

Thus, the terminal set for the result-producing branch, Trpb, for a program in

the population for the Boolean even-3-parity problem is

Trpb = {D0, D1, D2}.

The function set for the result-producing branch, Frpb, is

Frpb = {AND, OR, NAND, NOR, ADF0},

with an argument map of

{2, 2, 2, 2, 1}.

The terminal set for the automatically defined function, ADF0, is

Tadf0 = {ARG0}.

The function set, Fadf0, for ADF0 is

 44

Fadf0 = {AND, OR, NAND, NOR},

with an argument map for this function set of

{2, 2, 2, 2}.

After creating the 1,000 programs for the initial random population, each

program in the population is evaluated as to how well it solves the problem at

hand. The fitness of a program in the population of 1,000 programs is measured

according to how well that program mimics the target function for all eight

combinations of three Boolean arguments. The raw fitness of a program is the

number of matches.

In one particular run, the best program from among the 1,000 randomly created

programs in generation 0 has the function-defining branch (defining ADF0)

shown below:

(OR (AND (NAND ARG0 ARG0) (OR ARG0 ARG0)) (NOR (NOR ARG0 ARG0)

(AND ARG0 ARG0))).

The behavior of this function-defining branch is the Boolean constant function

zero (called “Always False”).

The result-producing branch of this best-of-generation program from

generation 0 ignores ADF0 and is shown below:

(NOR (AND D0(NOR D2 D1)) (AND (AND D2 D1))).

 45

 Of course, it should be no surprise that the function-defining branch of even

the best program of the initial random generation is not particularly useful or that

this branch is ignored by the result-producing branch. The minimalist approach is

not intended to provide a highly useful function-defining branch, but rather

merely to provide a starting point for the evolutionary process.

Table 5 shows the behavior of this program from generation 0. The first three

columns show the values of the three Boolean variables, D0, D1, and D2. The

fourth column shows the value produced by the overall program. The fifth

column shows the value of the target function, the even-3-parity function. The

last column shows how well the program performed at matching the behavior of

the target function. As is shown, the program was correct for six of the eight

possible combinations (fitness cases). Thus, the program scored a raw fitness of 6

(out of a possible 8).

A new population of 1,000 programs is then created from the existing

population of 1,000 programs. Each successive generation of the population is

created from the existing population by applying various genetic operations.

Reproduction and crossover are the most frequently performed genetic operations.

In addition, the architecture-altering operations described herein are used on this

run. Mutation and other previously described genetic operations may also be

used in the process (although they are not used here).

The raw fitness of the best-of-generation program for generation 5 improves to

7. That is, this program correctly mimics the behavior of the target even-3-parity

function for seven of the eight fitness cases. The program achieving this new and

higher level of fitness has a total of four branches (i.e., one result-producing

 46

branch and three function-defining branches). The change in the number of

branches from 1 at generation 0 to 4 at generation 5 is the consequence of the

architecture-altering operations. In addition to its one result-producing branch,

this best-of-generation program for generation 5 has branches defining ADF0

(taking two arguments), ADF1 (taking two arguments), and ADF2 (taking three

arguments), so that its argument map is {2, 2, 3}. The result producing branch of

this program is shown below:

(NOR (ADF2 D0 D2 D1) (AND (ADF1 D2 D1)D0)).

The first function-defining branch (defining ADF0) of the best-of-generation

program for generation 5 takes two dummy arguments, ARG0 and ARG1, and is

shown below. The existence of two dummy arguments in this function-defining

branch is a consequence of an argument duplication operation. As it happens, the

behavior of this ADF0 is not important because ADF0 is not referenced by the

result-producing branch.

(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR ARG1 ARG0)

(AND ARG0 ARG1))).

The second function-defining branch (defining ADF1) of the best-of-

generation program for generation 5 also takes two dummy arguments, ARG0 and

ARG1, and is shown below. The existence of this second function-defining

branch is a consequence of a branch duplication operation.

(OR (AND ARG0 ARG1) (NOR ARG0 ARG1)).

 47

Table 6 shows the behavior of ADF1 of the best-of-generation program for

generation 5 which, as can be seen, is equivalent to the even-2-parity function.

The function-defining branch for ADF2 of this best-of-generation program for

generation 5 takes three dummy arguments, ARG0, ARG1, and ARG2, and is

shown below. This third function-defining branch exists as a consequence of yet

another branch duplication operation.

(AND ARG1 (NOR ARG0 ARG2)).

Table 7 shows that the behavior of ADF2 consists of returning 1 only when

ARG0 and ARG2 are 0 and ARG1 is 1.

The raw fitness of the best individual program in the population remains at a

value of 7 for generations 6, 7, 8, and 9; however, the average fitness of the

population as a whole improves during these generations.

On generation 10, the best program in the population of 1,000 perfectly mimics

the behavior of the even-3-parity function. This 100%-correct solution to the

problem has a total of six branches (i.e., five function-defining branches and one

result-producing branch). The argument map of this program is {2, 2, 3, 2, 2}.

This multiplicity of branches is a consequence of the repeated application of the

branch duplication operation and the branch creation operation. The function-

defining branches of this program each have more than one dummy argument.

All of these additional arguments exist as a consequence of the repeated

application of the argument duplication operation.

The result-producing branch of this best-of-generation program for generation

10 is shown below:

 48

(NOR (ADF4 D0(ADF1 D2 D1)) (AND (ADF1 D2 D1) D0))

The function-defining branch for ADF0 of this best-of-generation program for

generation 10 takes two dummy arguments, ARG0 and ARG1, and is shown

below. The behavior of ADF0 is equivalent to the odd-2-parity function.

(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR ARG1 ARG0)

(AND ARG0 ARG1)))

The function-defining branch for ADF1 of the best-of-generation program for

generation 10 takes two dummy arguments, ARG0 and ARG1, and is shown

below. ADF1 is equivalent to the even-2-parity function.

(OR (AND ARG0 ARG1) (NOR ARG0 ARG1))

The function-defining branch for ADF2 takes three dummy arguments, ARG0,

ARG1, and ARG2, and is shown below. ADF2 returns 1 only when ARG0 and

ARG2 are 0 and ARG1 is 1. However, ADF2 is ignored by the result-producing

branch.

(AND ARG1 (NOR ARG0 ARG2))

The function-defining branch for ADF3 is the one-argument identity function.

This relatively useless branch is ignored by the result-producing branch.

The function-defining branch for ADF4 of the best-of-generation program for

generation 10 takes two dummy arguments, ARG0 and ARG1, and is shown

below. ADF4 is equivalent to the even-2-parity function.

 49

(OR (AND ARG0 ARG1) (NOR ARG0 ARG1))

Since both ADF1 and ADF4 are both even-2-parity functions, the result-

producing branch can be simplified to the expression below. This expression is

equivalent to the even-3-parity function.

(NOR (EVEN-2-PARITY D0(EVEN-2-PARITY D2 D1)) (AND (EVEN-2-PARITY

D2 D1) D0))

An examination of the genealogical audit trail shows the interplay between the

Darwinian reproduction operation, the one-offspring crossover operation using

point typing, and the new architecture-altering operations.

Figure 3 shows all of the ancestors of the just-described 100%-correct solution

from generation 10 of the run in example 1 of the problem of symbolic regression

of the even-3-parity problem. The generation numbers (from 0 to 10) are shown

on the left edge of figure 3. Figure 3 also shows the sequence of reproduction

operations, crossover operations, and architecture-altering operations that gave

rise to every program that was an ancestor to the 100%-correct program in

generation 10. The 100%-correct solution from generation 10 is represented by

the box labeled M10 at the bottom of the figure. The argument map of this

solution, namely {2, 2, 3, 2, 2}, is shown in this box.

The two lines flowing into the box M10 indicate that the solution in generation

10 was produced by a crossover operation acting on two programs from the

previous generation (generation 9). Figure 3 uses the convention of placing the

mother M9 (the receiving parent) on the right and father P9 (the contributing

parent) on the left. Recall that, in a one-offspring crossover operation using point

 50

typing, the bulk of the structure of a multi-part program comes from the mother

since the father contributes only one subtree into only one of the many branches

of the mother. Thus, the 11 boxes on the right side of this figure (consecutively

numbered from M0 to M10) represent the maternal genetic lineage (from

generations 0 through generation 10) of the 100%-correct solution M10 that

emerged in generation 10. The 100%-correct solution M10 in generation 10 has

the same argument map, {2, 2, 3, 2, 2}, as the mother M9 because the crossover

operation is not an architecture-altering operation and does not change the

architecture (or argument map) of the offspring (relative to the mother).

The maternal lineage will now be reviewed in detail so as to illustrate the

overall process of evolving the architecture of a solution to a problem while

simultaneously evolving the solution to the problem.

The mother M9 from generation 9 (shown on the right side of figure 3) has an

argument map of {2, 2, 3, 2, 2}, has a raw fitness of 7, was itself the result of a

crossover of two parents from generation 8. The grandfather of the 100%-correct

solution M10 in generation 10 (and the father of M9) was P8. The grandmother of

the 100%-correct solution M10 in generation 10 (and the mother of M9) was M8.

The grandmother M8 from generation 8 of the 100%-correct solution M10 in

generation 10 (and the mother of M9) has an argument map of {2, 2, 3, 2, 2}, has

a raw fitness of 7, and was the result of a branch duplication from a single

ancestor M7 from generation 7.

Because of the branch duplication operation, the program M7 from generation

7 of the maternal lineage at the far right of figure 3 has one fewer branch than its

 51

offspring M8. Program M7 has an argument map of {2, 2, 3, 2}. Program M7 was

the result of an argument duplication from a single ancestor from generation 6.

Because of the argument duplication operation, the fourth function-defining

branch of the program M6 from generation 6 of the maternal lineage at the far

right of figure 3 has one less argument than its offspring M7. Program M6 from

generation 6 has an argument map of {2, 2, 3, 1} whereas program M7 from

generation 7 has an argument map of {2, 2, 3, 2}. Program M6 was the result of

an branch creation from a single ancestor M5 from generation 5.

Because of the branch creation operation, the program M5 from generation 5

shown on the right side of figure 3 has one fewer function-defining branch then

program M6. Program M5 has an argument map of {2, 2, 3}. In turn, program M5

was the result of a branch creation from a single ancestor M4 from generation 4.

Program M4 from generation 4 shown on the right side of figure 3 has one less

function-defining branch than its offspring program M5. Program M4 has an

argument map of {2, 2}. Program M4 was the result of a reproduction operation

from a single ancestor M3 from generation 3.

Program M4 from generation 3 shown on the right side of figure 3 has an

argument map of {2, 2} and was the result of a crossover involving father P2 and

mother M2 from generation 2.

Program M2 from generation 2 (shown on the right side of figure 3) has an

argument map of {2, 2} and was the result of a branch creation from a single

ancestor M1 from generation 1.

Program M1 from generation 1 has an argument map of {2} and was the result

of an argument duplication of a single ancestor M0 from generation 0.

 52

Program M0 from generation 0 at the upper right corner of figure 3 has an

argument map of {1} and has a raw fitness of 6. It has an argument map of {1}

because all programs at generation 0 consist of one result-producing branch and a

single one-argument function-defining branch when the minimalist approach is

being used.

The sequence of genetic operations and architecture-altering operations of this

run shows the simultaneous evolution of the architecture while solving the

problem.

6.2. Example with Even-5-Parity Problem
For the problem of symbolic regression of the even-5-parity function, A
population size, M, of 96,000 was used. The targeted maximum number of
generations, G, was set at 76. The run uses the “minimalist approach" in which
each program in generation 0 consists of one result-producing branch and a single
two-argument function-defining branch. Branch deletion and argument deletion
with random regeneration were used. The percentage of operations at each
processing node on each generation was 74% crossovers; 10% reproductions; 0%
mutations; 5% branch duplications, 5 argument duplications; 0.5% branch
deletions; 0.5% argument deletions; 5% branch creations; and 0% argument
creations. Other minor parameters were chosen as in Koza 1994a.

The problem was run on a home-built medium-grained parallel computer

system. In the so-called distributed genetic algorithm or island model for

parallelization (Tanese 1989), different semi-isolated subpopulations (called

demes after Sewall Wright 1943) are situated at the different processing nodes of

the system. The system consisted of a host PC 486 type computer running

Windows and 64 Transtech TRAMs (containing one INMOS T805 transputer and

4 megabytes of RAM memory) arranged in a toroidal mesh. There were D = 64

 53

demes, a population size of Q = 1,500 per deme, and a migration rate (boatload

size) of B = 8% (in each of four directions on each generation for each deme).

Generations are run asynchronously. Additional details of the parallel

implementation of genetic programming on a network of transputers can be found

in Koza and Andre 1995.

On generation 13 of one run, a 100%-correct solution to the even-5-parity

problem emerged in the form of a computer program with one three-argument

automatically defined function and one two-argument automatically defined

function.

Three-argument ADF0 (which had only two arguments in generation 0)

performs Boolean rule 106, a non-parity rule, and is below:

(NOR (OR (AND (OR (OR ARG0 ARG2) (NAND ARG0 ARG2)) (AND (NAND ARG0

ARG1) (NOR ARG2 ARG0))) (AND (AND (NOR ARG1 ARG0) (OR ARG2 ARG0))

(OR (NAND ARG0 ARG1) (NOR ARG2 ARG0)))) (NAND (NAND (AND (NOR ARG0

ARG2) (NAND ARG0 ARG0)) (NOR (NAND ARG0 ARG0) (NOR ARG2 ARG1)))

(OR (NAND (AND ARG1 ARG0) (OR ARG1 ARG0)) (OR (NAND ARG2 ARG2)

(NOR ARG0 ARG0)))))

Two-argument ADF1 (which did not exist at all in generation 0) is equivalent

to the odd-2-parity function and is below:

(NOR (OR (AND (OR (OR ARG0 ARG1) (NAND ARG0 ARG1)) (AND (NAND ARG0

ARG1) (NOR ARG1 ARG0))) (AND (AND (NOR ARG1 ARG0) (OR ARG1 ARG0))

(OR (NAND ARG0 ARG1) (NOR ARG1 ARG0)))) (NAND (NAND (AND (NOR ARG0

ARG1) (NAND ARG0 ARG0)) (NOR (NAND ARG0 ARG0) (NOR ARG1 ARG1)))

 54

(OR (NAND (AND ARG1 ARG0) (OR ARG1 ARG0)) (OR (NAND ARG1 ARG1)

(NOR ARG0 ARG0))))).

The result-producing branch of this program invokes both ADF0 and ADF1

and is below:

(AND (OR (ADF0 (NAND D1 D2) (ADF0 D2 D0 D0) (ADF0 D2 D0 D0)) (NAND

(OR D3 D1) (ADF1 D3 D3))) (ADF0 (ADF1 (NAND D1 D2) (NOR D4 D4))

(ADF1 (ADF1 D3 D0) (NOR D1 D2)) (ADF1 (ADF1 D3 D0) (NOR D1 D2))))

7. Performance Characteristics of the New Operations
We now use the Boolean even-5-parity problem to compare, over a series of runs,
three performance characteristics of the architecture-altering operations for the
following five approaches:

(A) without automatically defined functions (corresponding to the style of

runs discussed throughout most of Genetic Programming),

(B) with automatically defined functions, evolutionary selection of the

architecture (corresponding to the style of runs discussed in chapters 21–25 of

Genetic Programming II on the evolutionary selection of the architecture), an

architecturally diverse initial population, and structure-preserving crossover with

point typing,

(C) with automatically defined functions, the architecture-altering

operations, an architecturally diverse population (after generation 0), and

structure-preserving crossover with point typing,

(D) with automatically defined functions, a fixed, user-supplied architecture

(i.e., an argument map of {3, 2} that is known to be a good choice of architecture

for this problem), and structure-preserving crossover with point typing, and

 55

(E) with automatically defined functions, the fixed, known-good, user-supplied

{3, 2} architecture, and structure-preserving crossover with branch typing

(corresponding to the style of runs discussed throughout most of Genetic

Programming II).

The comparisons are made for the following three performance characteristics:

computational effort, E (with 99% probability); the wallclock time, W(M,t,z) in

seconds(with 99% probability); and the average structural complexity, S . These

three measures are described in detail in Koza 1994a.

The comparisons in table 8 all used a common population size, M, of 96,000.

All runs solved well before the targeted maximum number of generations, G, of

76.

As can be seen from the table, all four approaches (B, C, D, or E) employing

automatically defined functions require less computational effort than not using

them (approach A). Approach E (which benefits from the most user-supplied

information) requires the least computational effort. At the other extreme,

approach A requires the most computational effort.

Approach C (using the architecture-altering operations) requires less

computational effort than solving the problem without automatically defined

functions (approach A), but more computational effort than with the fixed,

known-good, user-supplied architecture (approach E).

Approach B requires greater computational effort than approach C, but less

than that for approach A.

Approach D isolates the additional computational effort required by point

typing (relative to approach E). Greater computational effort is required by

 56

approach D than approach E. Since the computational effort for approach C is

virtually tied with approach D, the cost of architecture-altering operations for this

problem is not much greater than the cost of point typing.

Approach E consumes less wallclock time than approach C (using the

architecture-altering operations), which, in turn, consumes less wallclock time

than approach A (without automatically defined functions).

The average structural complexity, S , for all four approaches (B, C, D, or E)

employing automatically defined functions is less than that for approach A

(without automatically defined functions). Approach C (using the architecture-

altering operations) has the lowest value of S .

Note also that all four approaches (B, C, D, or E) employing ADFs require less

computational effort, require less wallclock time, and produce smaller solutions

(i.e., are more parsimonious) than the ADF-less approach (approach A).

Additional work in this area is described in Koza (1995a, b, c) and Koza and

Andre (1996). Application of the architecture-altering operations to the

automated design of analog electrical circuits using genetic programming with

automatically defined functions is described in Koza, Andre, Bennett, and Keane

(1996).

8. Conclusions
This chapter describes how the biological theory of gene duplication described in
Susumu Ohno's provocative book, Evolution by Means of Gene Duplication, was
brought to bear on a vexatious problem of architecture discovery for automated
machine learning. The resulting biologically-motivated approach enables genetic
programming to automatically discover the size and shape of the solution at the
same time as genetic programming is evolving a solution to the problem. This is
accomplished using six biologically-motivated architecture-altering operations

 57

that provide a way to automatically discover, during a run of genetic
programming, both the architecture and the sequence of steps of a multi-part
computer program that will solve the given problem.

9. Acknowledgements
David Andre and Walter Alden Tackett wrote the program in C for the
architecture-altering operations used above. The midge comes from "Destructive
and useful insects" by C.L. Metcalf and W.P Flint.

10. Bibliography

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in

Genetic Programming 2. Cambridge, MA: The MIT Press.

Angeline, Peter J. and Pollack, Jordan B. Coevolving high-level representations.

In Langton, Christopher G. (editor). Artificial Life III, SFI Studies in the

Sciences of Complexity. Volume XVII Redwood City, CA: Addison-Wesley.

Pages 55–71. 1994.

Brooks Low, K. 1988. Genetic recombination: A brief overview. In Brooks

Low, K. (editor) The Recombination of Genetic Material. San Diego:

Academic Press. Pages 1–21.

Cavicchio, Daniel J. 1970. Adaptive Search using Simulated Evolution. Ph.D.

dissertation. Department of Computer and Communications Science,

University of Michigan.

Darwin, Charles. 1859. On the Origin of Species by Means of Natural Selection.

John Murray.

Dyson, P. and Sherratt, D. 1985. Molecular mechanisms of duplication, deletion,

and transposition of DNA. In Cavalier-Smith, T. (editor). The Evolution of

Genome Size. Chichester: John Wiley & Sons.

 58

Galli, Joakim and Wislander, Lars. 1993. Two secretary protein genes in

Chironomus tentans have arisen by gene duplication and exhibit different

developmental expression patterns. Journal of Molecular Biology. 231:324–

334.

Galli, Joakim and Wislander, Lars. 1994. Structure of the smallest salivary-gland

secretory protein in Chironomus tentans. Journal of Molecular Evolution.

38:482-488.

Go, Mittko. 1991. Module organization in proteins and exon shuffling. In

Osawa, S. and Honjo, T. (editors). Evolution of Life. Tokyo: Springer-Verlag.

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, MA: Addison-Wesley.

Goldberg, David E., Korb, Bradley, and Deb, Kalyanmoy. 1989. Messy genetic

algorithms: Motivation, analysis, and first results. Complex Systems. 3(5):

493–530.

Gruau, Frederic. 1994. Genetic micro programming of neural networks. In

Kinnear, Kenneth E. Jr. (editor). Advances in Genetic Programming.

Cambridge, MA: The MIT Press. Pages 495–518.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. Ann Arbor, MI: University of Michigan Press. The second

edition is currently available from The MIT Press 1992.

Hood, Leory and Hunkapiller, Tim. 1991. Modular evolution and the

immunoglobin gene superfamily. In Osawa, S. and Honjo, T. (editors).

Evolution of Life. Tokyo: Springer-Verlag.

 59

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.

Cambridge, MA: The MIT Press.

Koza, John R. 1989. Hierarchical genetic algorithms operating on populations of

computer programs. In Proceedings of the 11th International Joint Conference

on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. I:768-774.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA: The MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of

Reusable Programs. Cambridge, MA: The MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation.

Cambridge, MA: The MIT Press.

Koza, John R. 1994c. Architecture-altering operations for evolving the

architecture of a multi-part program in genetic programming. Stanford

University Computer Science Department technical report STAN-CS-TR-94-

1528. October 21, 1994.

Koza, John R. 1995a. Evolving the architecture of a multi-part program in

genetic programming using architecture-altering operations. In McDonnell,

John R., Reynolds, Robert G., and Fogel, David B. (editors). 1995.

Evolutionary Programming IV: Proceedings of the Fourth Annual Conference

on Evolutionary Programming. Cambridge, MA: The MIT Press. Pages 695–

717.

Koza, John R. 1995b. Gene duplication to enable genetic programming to

concurrently evolve both the architecture and work-performing steps of a

 60

computer program. Proceedings of the 14th International Joint Conference on

Artificial Intelligence. San Francisco, CA: Morgan Kaufmann. Pages 734–740.

Koza, John R. 1995c. Two ways of discovering the size and shape of a computer

program to solve a problem. In Eshelman, Larry J. (editor). Proceedings of

the Sixth International Conference on Genetic Algorithms. San Francisco,

CA: Morgan Kaufmann Publishers. Pages 287–294.

Koza, John R. and Andre, David. 1995. Parallel Genetic Programming on a

Network of Transputers. Stanford University Computer Science Department

technical report STAN-CS-TR-95-1542. January 30, 1995.

Koza, John R. and Andre, David. 1996. Classifying protein segments as

transmembrane domains using architecture-altering operations in genetic

programming. In Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).

1996. Advances in Genetic Programming 2. Cambridge, MA: The MIT Press.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin A. 1996.

Use of automatically defined functions and architecture-altering operations in

automated circuit synthesis with genetic programming. In Koza, John R.,

Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996.

Genetic Programming 1996: Proceedings of the First Annual Conference, July

28-31, 1996, Stanford University. Cambridge, MA: The MIT Press. Pages

132–140.

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).

1996. Genetic Programming 1996: Proceedings of the First Annual

Conference, July 28-31, 1996, Stanford University. Cambridge, MA: The MIT

Press.

 61

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.

Cambridge, MA: The MIT Press.

Lazcano, A. and Miller, S. L. 1994. How long did it take for life to begin and

evolve to cyanobacteria? Journal of Molecular Evolution. 39:546–554.

Lindgren, Kristian. 1991. Evolutionary phenomena in simple dynamics. In

Langton, Christopher, Taylor, Charles, Farmer, J. Doyne, and Rasmussen,

Steen (editors). Artificial Life II, SFI Studies in the Sciences of Complexity.

Volume X. Redwood City, CA: Addison-Wesley. Pages 295-312.

Maeda, Nobuyo and Smithies, Oliver. 1986. The evolution of multigene

families: Human haptoglobin genes. Annual Review of Genetics. 20:81-108.

Mitchell, Melanie. 1996. An Introduction to Genetic Algorithms. Cambridge,

MA: The MIT Press.

Nei, Masatoshi. 1987. Molecular Evolutionary Genetics. New York: Columbia

University Press.

Ohno, Susumu. 1970. Evolution by Gene Duplication. New York: Springer-

Verlag.

Patthy, Laszlo. 1991. Modular exchange principles in proteins. Current Opinion

in Structural Biology. 1:351–361.

Riley, M. 1993. Functions of the gene products of Escherichia coli. Reviews of

Microbiology. 32:519–560.

Samuel, Arthur L. 1959. Some studies in machine learning using the game of

checkers. IBM Journal of Research and Development. 3(3): 210–229.

Smith, T. F. and Waterman, M. S. 1981.Identification of common molecular

subsequences. Journal of Molecular Biology. 147:195-197.

 62

Stryer, Lubert. 1988. Biochemistry. W. H. Freeman. Third Edition.

Tanese, Reiko. 1989. Distributed Genetic Algorithm for Function Optimization.

PhD. dissertation. Department of Electrical Engineering and Computer

Science. University of Michigan.

Wright, Sewall. 1943. Isolation by distance. Genetics. 28:114–138.

 63

Figure 1 Program with an argument map of {2} consisting of one two-

argument function-defining branch (ADF0) and one result-producing

branch.

progn
400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491

 64

Figure 2 Program with an argument map of {2, 2} consisting of two two-

argument function-defining branches (ADF0 and ADF1) and one result-

producing branch.

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

 65

{2 2 3 2 2}

{2 2 3 2 2}

{4 2 1 1 2} {2 2 3 2 2}

{2 2 3 1 3}

{2 2 3 1}

{4 2 1 1} {2 2 3 2}

{2 2 3 1}

{2 2 3 1}{2 2 3 1}

{2 2 3 1} {2 2 3}

{2 2 1} {2 2 3}

{4 2 1}

{3 2 1} {2 2 3}{2 2 3}

{3 2}

{1}

BRC

BrDup ADup

Repro

BRCBrDup

ADup

Repro

BrDupADup ADup ADup

BRC

ADup

Repro

BRC BRC
BRC BRC BRC

BRC

BRC

ADupBRC

ADup

BrDup BrDup

Cross Cross

Cross

Cross Cross

Cross

Cross

Cross

CrossBRC

0

1

2

3

4

5

6

7

8

9

10

M
at
er
na
l

Pa
te
rn
al

M0

M1

M2

M3

P2

M4

M5

M6

M7

M8
P8

P9 M9

M10

P12

P4

{1} {1} {1} {1} {1} {1}

{2}

{2} {2} {2} {2}

{2}

{2}{1 1}

{2 2}

{2 2} {2 2}

{3 2}

{3 2}

{1 1}

{2 2}

{2 2}

{2 2}

{2 2}

ADup

Gen

Figure 3 Complete genealogical audit trail showing all of the ancestors in

generations 0 through 9 for the ultimate solution M10 from generation 10 for

 66

the run in example 1. The maternal line is shown at the right and the

paternal line at the left.

 67

Table 1 Portion of a DNA sequence containing the two expressed proteins.

TGAAGTAATA TTAAGCTATG AGAATTAAGT TCCTAGTAGT ATTAGCAGTT 950
 M R I K F L V V L A V

ATCTGCTTGT TTGCACATTA TGCCTCAGCT AGTGGTATGG GGGGTGATAA 1000
I C L F A H Y A S A S G M G G D K

AAAACCCAAA GATGCCCCAA AACCCAAAGA TGCCCCAAAA CCCAAAGAAG 1050
 K P K D A P K P K D A P K P K E V

TGAAGCCTGT CAAAGCTGAG TCATCAGAGT ATGAGATAGA AGTCATTAAA 1100
 K P V K A E S S E Y E I E V I K

CACCAGAAAG AAAAGACCGA GAAGAAGGAG AAGGAGAAGA AGACTCACGT 1150
H Q K E K T E K K E K E K K T H V

TGAAACCAAG AAAGAAGTTA AAAAGAAGGA GAAGAAGCAA ATCCCTTGTT 1200
 E T K K E V K K K E K K Q I P C S

CTGAAAAACT CAAGGATGAA AAACTTGATT GTGAGACCAA GGGCGTCCCT 1250
 E K L K D E K L D C E T K G V P

GCAGGCTACA AAGCAATCTT CAAATTCACA GAAAACGAGG AGTGCGATTG 1300
A G Y K A I F K F T E N E E C D W

GACGTGCGAT TATGAAGCAC TTCCACCACC TCCAGGAGCA AAGAAAGACG 1350
 T C D Y E A L P P P P G A K K D D

ACAAGAAAGA AAAGAAGACA GTTAAAGTCG TTAAGCCACC AAAGGAGAAA 1400
 K K E K K T V K V V K P P K E K

CCACCAAAGA AGCTTAGAAA GGAATGCTCT GGCGAAAAAG TGATCAAATT 1450
P P K K L R K E C S G E K V I K F

CCAAAACTGT CTCGTTAAGA TTAGAGGACT TATTGCCTTT GGTGATAAGA 1500
 Q N C L V K I R G L I A F G D K T

CAAAGAACTT TGATAAGAAG TTCGCAAAGC TTGTCCAAGG AAAGCAGAAG 1550
 K N F D K K F A K L V Q G K Q K

AAGGGCGCAA AAAAAGCTAA AGGCGGTAAG AAGGCAGCAC CAAAACCAGG 1600
K G A K K A K G G K K A A P K P G

ACCAAAACCA GGGCCAAAAC AAGCTGATAA ACCAAAAGAT GCAAAAAAAT 1650
 P K P G P K Q A D K P K D A K K

AAACTGACAT AGTAAGAATA ATAAAATAAA CATTATTTGA GCAACATCAC 1700
AACACAAGAA AAAAATCATA TCAACATAAT TAAGACCTAA AAATTCTCGC 1750
TATTCACTTT TTTTCAAATG AATATCCAAA ACAACATCAT TAAGGGATCT 1800
TACACAATTT TATCCCAAAT TAGTTTTAAG TCTATTTTTT AGTTTTAAGT 1850
AAAACATTAG TTAGAGAAAT TTCAAATGCG AAAAAAAGAC AAAATCAAAA 1900
TTAACTCCAA CTAATTGTCT AGATCTAATC ACCACTGAAA AACAATATTT 1950
TTTTCAATAA TATCTGAGAT GAAAATTTTG TAAGATACGA TTCAAAAAAA 2000
AAAAAACAAA AACTTAAATA TTTTCTTTAT AAGAAAGTAA AAAACTTACA 2050
TGAACAACAA GTAGACTAAG GGCTTAAAAA TACTAAGGAA TTTAAAGAAA 2100

 68

CTGAACCAAT AACATCCAAT AAATATAAGC GTGTATTTAA CATCCATTCA 2150
TGCAAAATTT GACTTGTTTT ATTCTAAACT TTTGAATTGT GAATATTTTT 2200
GATGATTATT GAATATTTTA CAGCATTTTT CGACAAAATC CAAGGAAACT 2250
GTTTTGTTTA ATATATACTA CAGCTCAGTA TCTATGCACA CGAAAAACTG 2300
TAACAGACCA GACCATAAAA CCTACACATC ACCAAGATAC GTATTTTAAA 2350
TTCATGTGAC TGACAAAAGC TGGAAACACT TGTGTCACGT CATGAAAACC 2400
TCGTTGAAAT AAAACTTCTA GAAAGGTTAT CATGAAAGAG TATAAAAGAG 2450
ATCTCAAACG AGGCTCAGTC AGTTCAGTTT AGCTTGGACT TCATATGAAG 2500
TAATATTTAG CTATGAGAAT TAAGTTCCTA GTAGTATTAG CAGTTATCTG 2550
 M R I K F L V V L A V I C

CTTGCTTGCA CATTATGCCT CAGCTAGTGG TATGGGGGGT GATAAAAAAC 2600
 L L A H Y A S A S G M G G D K K P

CCAAAGATGC CCCAAAACCC AAAGATGCCC CAAAACCCAA AGAAGTGAAG 2650
 K D A P K P K D A P K P K E V K

CCTGTCAAAG CTGACTCATC AGAGTATGAG ATAGAAGTCA TTAAACACCA 2700
P V K A D S S E Y E I E V I K H Q

GAAAGAAAAG ACCGAGAAGA AGGAGAAGGA GAAGAAAGCT CACGTCGAAA 2750
 K E K T E K K E K E K K A H V E I

TCAAGAAAAA GATTAAAAAT AAGGAGAAGA AGTTTGTCCC ATGTTCTGAA 2800
 K K K I K N K E K K F V P C S E

ATTCTCAAGG ATGAAAAACT TGAATGTGAG AAAAATGCTA CTCCAGGCTA 2850
I L K D E K L E C E K N A T P G Y

TAAAGCACTC TTCGAATTCA AAGAAAGCGA AAGTTTTTGC GAATGGGAGT 2900
 K A L F E F K E S E S F C E W E C

GCGATTATGA AGCAATTCCA GGAGCAAAGA AAGACGAAAA AAAGGAGAAG 2950
 D Y E A I P G A K K D E K K E K

AAGGTAGTTA AAGTCATTAA GCCACCAAAG GAAAAACCAC CAAAGAAGCC 3000
K V V K V I K P P K E K P P K K P

TAGAAAGGAA TGCTCTGGCG AAAAAGTGAT CAAATTCCAA AACTGTCTCG 3050
 R K E C S G E K V I K F Q N C L V

TTAAGATTAG AGGACTTATT GCCTTTGGTG ATAAGACAAA GAACTTTGAT 3100
 K I R G L I A F G D K T K N F D

AAGAAGTTTG CAAAGCTTGT CCAAGGAAAG CAAAAGAAGG GCGCAAAAAA 3150
K K F A K L V Q G K Q K K G A K K

AGCTAAAGGC GGTAAGAAGG CAGAACCAAA ACCAGGACCA AAACCAGCAC 3200
 A K G G K K A E P K P G P K P A P

CAAAACCAGG ACCAAAACCA GCACCAAAAC CAGTACCAAA ACCAGCTGAT 3250
 K P G P K P A P K P V P K P A D

AAACCAAAAG ATGCAAAAAA ATAAACTGAC ATAGTGAGAA TAATAAAATA 3300
K P K D A K K

 69

Table 2 Protein sequence of "A" protein.

MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
EKLDCETKGV PAGYKAIFKF TENEECDWTC DYEALPPPPG AKKDDKKEKK 150
TVKVVKPPKE KPPKKLRKEC SGEKVIKFQN CLVKIRGLIA FGDKTKNFDK 200
KFAKLVQGKQ KKGAKKAKGG KKAAPKPGPK PGPKQADKPK DAKK 244

 70

Table 3 Protein sequence of "B" protein.

MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100
EKLECEKNAT PGYKALFEFK ESESFCEWEC DYEAIPGAKK DEKKEKKVVK 150
VIKPPKEKPP KKPRKECSGE KVIKFQNCLV KIRGLIAFGD KTKNFDKKFA 200
KLVQGKQKKG AKKAKGGKKA EPKPGPKPAP KPGPKPAPKP VPKPADKPKD 250
AKK 253

 71

Table 4 Protein alignment of the "A" and "B" proteins.
First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK 149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK 146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------ 239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD 246

First.protein --KDAKK 244
Second.protein KPKDAKK 253

 72

Table 5 Operation of the best-of-generation program from generation 0.
D0 D1 D2 BEST-OF-

GENERATION
PROGRAM
FOR
GENERATION
0

EVEN-3-
PARITY
FUNCTION

SCORE

0 0 0 1 1 correct
0 0 1 1 0 wrong
0 1 0 1 0 wrong
0 1 1 1 1 correct
1 0 0 0 0 correct
1 0 1 1 1 correct
1 1 0 1 1 correct
1 1 1 0 0 correct

 73

Table 6 ADF1 of the best-of-generation program of generation 5.
ARG0 ARG1 ADF0
0 0 1
0 1 0
1 0 0
1 1 1

 74

Table 7 ADF2 of the best-of-generation program of generation 5.
ARG0 ARG1 ARG2 ADF2
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

 75

Table 8 Comparison of the five approaches.
Approach Runs Computatio

nal effort
E

Wallclock
time
W(M,t,z)

Average
Size of
solution
S

A - No ADFs 14 5,025,000 36,950 469.1
B - ADFs + Evolutionary
Selection of Architecture

14 4,263,000 66,667 180.9

C - ADFs + Architecture-
Altering Operations

25 1,789,500 13,594 88.8

D - ADFs + Point Typing–Fixed,
Known-Good Architecture

25 1,705,500 14,088 130.0

E - ADFs + Branch Typing–Fixed,
Known-Good Architecture

25 1,261,500 6,481 112.2

