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ABSTRACT 

This chapter describes how the biological theory of gene duplication 

described in Susumu Ohno's provocative book, Evolution by Means of Gene 

Duplication, was brought to bear on a vexatious problem from the domain of 

automated machine learning.   

The goal of automatic programming is to create, in an automated way, a 

computer program that enables a computer to solve a problem.  Ideally, an 

automatic programming system should require that the user pre-specify little 

about the problem environment.    
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Genetic programming is a domain-independent approach to automated 

machine learning that attempts to evolve a computer program that solves, or 

approximately solves, problems.  Starting with a primordial ooze of 

randomly generated computer programs composed of the available 

programmatic ingredients, genetic programming applies the principles of 

animal husbandry (including Darwinian selection and sexual recombination) 

to breed new (and often improved) populations of computer programs.   

One of the undesirable aspects of many techniques of automated machine 

learning is that the user of the technique may be required to specify the size 

and shape (i.e., the architecture) of the ultimate solution to his problem 

before he can begin to apply the technique to his problem.  Specification of 

the size and shape of the solution often corresponds to discovering a way to 

decompose the problem into useful subspaces (usually of lower 

dimensionality) or to discovering a congenial representation of the problem 

that facilitates solution of the problem.  Thus, in practice, for many problems 

of interest, determining the size and shape of the solution may be the problem 

(or at least a substantial part of the problem).   

This chapter describes how biology motivated a solution to the problem of 

architecture discovery for genetic programming.  The resulting biologically-

motivated approach enables genetic programming to automatically discover 

the size and shape of the solution at the same time as genetic programming is 

evolving a solution to the problem.  This is accomplished using six new 

architecture-altering operations that provide a way to automatically 

discover, during a run of genetic programming, both the architecture and the 
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sequence of steps of a multi-part computer program that will solve the given 

problem.   

 

1. Introduction 
The goal of automatic programming is to create, in an automated way, a computer 
program that enables a computer to solve a problem.  This goal (attributed to 
Arthur Samuel in the 1950s) can be stated as follows:  

How can computers learn to solve problems without being explicitly 

programmed? 

Genetic programming is a domain-independent method for evolving a 

computer program for solving, or approximately solving, a problem (Koza 1989).  

Genetic programming is an extension of the biologically motivated genetic 

algorithm that was first described in John Holland's pioneering Adaptation in 

Natural and Artificial Systems (1975, 1992).  David Goldberg (1989) and 

Mitchell (1996) survey current work the field of genetic algorithms.  

Genetic programming starts with a primordial ooze of randomly generated 

computer programs composed of the available programmatic ingredients and then 

applies the principles of animal husbandry to breed a new (and often improved) 

population of programs.  The breeding is done in a domain-independent way 

using the Darwinian principle of survival of the fittest and an analog of the 

naturally-occurring genetic operation of crossover (sexual recombination).  The 

crossover operation is designed to create syntactically valid offspring computer 

programs from any selected pair of parental computer programs (given closure 

amongst the set of ingredients).  Genetic programming combines the expressive 
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high-level symbolic representations of computer programs with the near-optimal 

efficiency of learning of Holland's genetic algorithm.   

Genetic Programming: On the Programming of Computers by Means of 

Natural Selection (Koza 1992) provides evidence that genetic programming can 

solve, or approximately solve, a variety of problems from a variety of fields, 

including many benchmark problems from machine learning, artificial 

intelligence, control, robotics, optimization, game playing, symbolic regression, 

system identification, and concept learning.  Recent advances in genetic 

programming are described in Kinnear 1994, Angeline and Kinnear 1996, and the 

proceedings of the annual genetic programming conferences (Koza, Goldberg, 

Fogel, and Riolo 1996).   

The sequence of the work-performing steps of the programs being evolved by 

genetic programming is not specified in advance by the user.  Instead, the 

sequence of steps is evolved by genetic programming as a result of the 

competitive and selective pressures of the evolutionary process and the 

recombinative role of crossover.  However, this first book Genetic Programming 

has the limitation that the vast majority of its evolved programs are single-part 

(i.e., one result-producing main part, but no subroutines).   

I believe that no approach to automated programming is likely to be successful 

on non-trivial problems unless it provides some hierarchical mechanism to 

exploit, by reuse and parameterization, the regularities, symmetries, 

homogeneities, similarities, patterns, and modularities inherent in problem 

environments.  Subroutines do this in ordinary computer programs.  Accordingly, 

Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 
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1994a) describes how genetic programming can be extended to evolve multi-part 

programs consisting of a main program and one or more reusable, parameterized, 

hierarchically-called subprograms.   

An automatically defined function (ADF) is a function (i.e., subroutine, 

subprogram, DEFUN, procedure, module) that is dynamically evolved during a 

run of genetic programming and which may be called by a calling program (or 

subprogram) that is concurrently being evolved.  When automatically defined 

functions are being used, a program in the population consists of a hierarchy of 

one (or more) reusable function-defining branches (i.e., automatically defined 

functions) along with a main result-producing branch.  Typically, the 

automatically defined functions possess one or more dummy arguments (formal 

parameters) and are reused with different instantiations of these arguments.  As a 

run progresses, genetic programming evolves different subprograms in the 

function-defining branches, different main programs in the result-producing 

branch, different instantiations of the dummy arguments (formal parameters) of 

the automatically defined functions in the function-defining branches, and 

different hierarchical references between the automatically defined functions.   

When automatically defined functions are being used in genetic programming, 

the initial random generation of the population is created so that every individual 

program in the population has a constrained syntactic structure consisting of a 

particular architectural arrangement of branches.  When crossover is to be 

performed, a type is assigned to each potential crossover point in the parental 

computer programs either on a branch-wide basis (called branch typing or like-

branch typing) or on the basis of the actual content of the subtree below each 
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potential crossover point (called point typing).  Crossover is then performed in a 

structure-preserving way (given closure) so as to preserve the syntactic validity of 

all offspring (Koza 1994a).   

Genetic programming with automatically defined functions has been shown to 

be capable of solving numerous problems.  More importantly, the evidence so far 

indicates that, for many problems, genetic programming requires less 

computational effort (i.e., fewer fitness evaluations to yield a solution with a 

satisfactorily high probability) with automatically defined functions than without 

them (provided the difficulty of the problem is above a certain relatively low 

break-even point).  Also, genetic programming usually yields solutions with 

smaller average overall size with automatically defined functions than without 

them (again provided that the problem is not too simple).  That is, both learning 

efficiency and parsimony appear to be properties of genetic programming with 

automatically defined functions.   

Moreover, there is also evidence that genetic programming with automatically 

defined functions is scalable.  For a limited number of problems for which a 

progression of scaled-up versions was studied, the computational effort increases 

as a function of problem size at a slower rate with automatically defined functions 

than without them.  In addition, the average size of solutions similarly increases 

as a function of problem size at a slower rate with automatically defined functions 

than without them.  This observed scalability results from the profitable reuse of 

hierarchically-callable, parameterized subprograms within the overall program.    

There are five major preparatory steps required before genetic programming 

can be applied to a particular problem, namely determining  
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(1) the set of terminals (i.e., the actual variables of the problem, zero-argument 

functions, constants) for each branch,  

(2) the set of functions  (e.g., primitive functions) for each branch,  

(3) the fitness measure (or other arrangement for implicitly measuring fitness),  

(4) the parameters to control the run, and  

(5) the termination criterion and the result designation method for the run.   

When automatically defined functions are added to genetic programming, it is 

also necessary to determine the architecture of the yet-to-be-evolved programs.  

The specification of the architecture consists of  

(a) the number of function-defining branches in the overall program,  

(b) the number of arguments (if any) possessed by each function-defining 

branch, and  

(c) if there is more than one function-defining branch, the nature of the 

hierarchical references (if any) allowed between the function-defining 

branches.   

Sometimes these architectural choices flow directly from the nature of the 

problem.   Sometimes heuristic methods are helpful.  However, in general, there is 

no way of knowing a priori the optimal (or minimum) number of automatically 

defined functions that will prove to be useful for a given problem, or the optimal 

(or sufficient) number of arguments for each automatically defined function, or 

the optimal (or sufficient) arrangement of hierarchical references among the 

automatically defined functions.   

If the goal is to develop a single, unified, domain-independent approach to 

automatic programming that requires that the user pre-specify as little direct 
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information as possible about the problem, the question arises as to whether these 

architectural choices can be automated.  Indeed, the requirement that the user 

predetermine the size and shape of the ultimate solution to a problem has been a 

bane of automated machine learning from the earliest times (Samuel 1959).   

In other words, the question is whether genetic programming can be enabled to 

discover the architecture of a multi-part program during a run.  Presumably, as the 

evolutionary process proceeds from generation to generation, various 

architectures would be dynamically created during the run of genetic 

programming.  The new architectures would then be tested as to how well they 

solve the problem at hand.  Certain individuals with certain architectures will 

prove to be more fit than others at grappling with the problem.  The more fit 

architectures might tend to prosper, while the less fit architectures might tend to 

wither away.  Eventually a computer program with an appropriate architecture 

might emerge from this process of evolution of architecture.   

Section 2 of this chapter describes the naturally occurring processes of gene 

duplication and gene deletion.  Section 3 describes automatically defined 

functions.  Section 4 describes the six new architecture-altering operations.  

Section 5 discusses the implications of the new architecture-altering operations.  

Section 6 demonstrates that the problem of symbolic regression of the Boolean 

even-5-parity function can be solved while the architecture is being 

simultaneously evolved by showing an example of an actual run.  Section 7 

compares the computational effort required for five different ways of solving the 

parity problem using genetic programming, including the new way described in 

this chapter involving the evolution of architecture.  Section 8 is the conclusion.   
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2. Gene Duplication and Deletion in Nature 
Nature points the way to perform the evolution of architecture that would enable 
genetic programming to dynamically discover the program architecture for 
solving a problem.  A change in the architecture of a multi-part computer program 
during a run of genetic programming corresponds to a change in genome structure 
in the natural world.  Therefore, it seems appropriate to consider the different 
ways that a genomic structure may change in nature.   

In nature, sexual recombination (crossover) exchanges alleles (gene values) at 

particular locations (loci) along the chromosome (a molecule of DNA).  The DNA 

then controls the manufacture of various proteins that determine the structure, 

function, and behavior of the living organism (Stryer 1988).  The resulting 

organism then spends its life attempting to grapple with its environment.  Some 

organisms in a given population do better than others in that they survive to the 

age of reproduction, produce offspring, and thereby pass on all or part of their 

genetic make-up to the next generation of the population.  Over a period of time 

and many generations, the population as a whole evolves so as to give increasing 

representation to traits (and, more importantly, co-adapted combinations of traits) 

that contribute to survival of the organism to the age of reproduction and that 

facilitate large numbers of offspring.  This process, which Charles Darwin (1859) 

called natural selection, tends to evolve near-optimal (perhaps even optimal) co-

adapted sets of alleles in the chromosomes of the organism (given its 

environment).   

John Holland's pioneering Adaptation in Natural and Artificial Systems (1975) 

described how an analog of the naturally-occurring evolutionary process can be 

applied to solving artificial problems using what is now called the genetic 
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algorithm.  Before applying the genetic algorithm to the problem, the user designs 

an artificial chromosome of a certain size and shape and then defines a mapping 

(encoding) between the points in the search space of the problem and the artificial 

chromosome.  For example, in applying the genetic algorithm to a 

multidimensional optimization problem (where the goal is to find the global 

optimum of an unknown multidimensional function), the artificial chromosome is 

often a linear character string (modeled directly after the linear string of 

information found in DNA).  A specific location (a gene) along this artificial 

chromosome is associated with each of the variables of the problem.  Character(s) 

appearing at a particular location along the chromosome denote the value of a 

particular variable (i.e., the gene value or allele).  Each individual in the 

population has a fitness value (which, for a multidimensional optimization 

problem, is the value of an unknown function).  The genetic algorithm then 

manipulates a population of such artificial chromosomes (usually starting from a 

randomly-created initial population of strings) using the operations of 

reproduction, crossover, and mutation.  Individuals are probabilistically selected 

to participate in these genetic operations based on their fitness.  That is, 

individuals with better fitness are more likely to be selected in the genetic 

operations.  The goal of the genetic algorithm in a multidimensional optimization 

problem is to find an artificial chromosome which, when decoded and mapped 

back into the search space of the problem, corresponds to a globally optimum (or 

near-optimum) point in the search space of the problem.  The probabilistic aspect 

of the genetic algorithm is important.  The best individuals are not guaranteed to 

be selected.  Even poor individuals in the population are sometimes selected.   
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Both the natural and artificial evolutionary processes described above indicate 

how a globally optimum combination of alleles (gene values) within a fixed-size 

chromosome can be discovered by means of evolution.  However, in both the 

natural and artificial processes described above, the crossover operation merely 

exchanges alleles (gene values) at particular locations along an already-existing 

chromosomal structure of fixed size and shape.  The above description does not 

address the question of how genome lengths change during the course of 

evolution.  Neither does the above description address the question of how totally 

new structures, new functions, new behaviors, and new species arise.    

In nature, there is not only short-term optimization of alleles in their fixed 

locations within a fixed-size chromosome, but long-term emergence of new 

proteins (which, in turn, create new structures, functions, and behaviors and 

thereby sometimes create new and more complex organisms).  The emergence of 

new proteins alters the architecture of the chromosome.  Indeed, genome lengths 

in nature have generally increased with the emergence of new and more complex 

organisms (Dyson and Sherratt 1985, Brooks Low 1988).  In genetic algorithms, a 

change in the architecture and length of a chromosome corresponds to a dynamic 

alteration, during a run of the algorithm, of the user-created mapping (the 

encoding and decoding) between points from the search space of the problem and 

instances of the artificial chromosome.  In genetic programming, a change in the 

architecture of the evolving program corresponds to a change in the number of 

automatically defined functions, the number of arguments possessed by each 

automatically defined function in an overall program, and in the pattern of 

hierarchical references among the automatically defined functions.   
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As I considered how to solve the problem of how to evolve the architecture of 

the multi-part computer program during a run of genetic programming, I realized 

that an analogous mechanism must operating in nature.  Therefore, it seemed 

appropriate to examine the mechanism by which genome structure is altered in 

nature over the course of millions of years of evolution. 

Gene duplications are rare and unpredictable events in the evolution of 

genomic sequences.  In gene duplication, there is a duplication of a lengthy 

portion of the linear string of nucleiotide bases of the DNA in the living cell.  

After a sequence of bases that code for a particular protein is duplicated in the 

DNA, there are two identical ways of manufacturing the same protein.  Thus, 

there is no immediate change in the proteins that are manufactured as a result of a 

gene duplication even though the genomic structure has changed.     

Over time, however, some other genetic operation, such as mutation or 

crossover, may change one or the other of the two identical genes.  Over short 

periods of time, the changes accumulating in the changed gene may be of no 

practical effect or value.  As long as one of the two genes remains unchanged, the 

original protein manufactured from the unchanged gene continues to be 

manufactured and the structure and behavior of the organism involved may 

continue as before.  The changed gene is simply carried along in the DNA from 

generation to generation.   

Natural selection exerts a powerful force in favor of maintaining a gene that 

encodes for the manufacture of a protein that is important for the survival and 

successful performance of the organism.  However, after a gene duplication has 

occurred, there is no disadvantage associated with the loss of the second way of 
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manufacturing the original protein.  Consequently, natural selection usually exerts 

little or no pressure to maintain a second way of manufacturing a particular 

protein.  Over a period of time, the second gene may accumulate additional 

changes and diverge more and more from the original gene.  Eventually the 

changed gene may lead to the manufacture of a distinctly new and different 

protein that actually does affect the structure and behavior of the living thing in 

some advantageous or disadvantageous way.  When a changed gene leads to the 

manufacture of a viable and advantageous new protein, natural selection again 

works to preserve that new gene.   

Ohno's Evolution by Gene Duplication (1970) corrects the mistaken notion that 

natural selection is a mechanism for promoting change.  Instead, Ohno 

emphasizes the essentially conservative role of natural selection in the 

evolutionary process: 

"...the true character of natural selection ... is not so much an 

advocator or mediator of heritable changes, but rather it is an 

extremely efficient policeman which conserves the vital base 

sequence of each gene contained in the genome.  As long as one vital 

function is assigned to a single gene locus within the genome, natural 

selection effectively forbids the perpetuation of mutation affecting the 

active sites of a molecule."  (Emphasis in original).  

Ohno further points out that ordinary point mutation and crossover are 

insufficient to explain major evolutionary changes.   

"...while allelic changes at already existing gene loci suffice for racial 

differentiation within species as well as for adaptive radiation from an 
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immediate ancestor, they cannot account for large changes in 

evolution, because large changes are made possible by the acquisition 

of new gene loci with previously non-existent functions." 

Ohno continues, 

"Only by the accumulation of forbidden mutations at the active sites 

can the gene locus change its basic character and become a new gene 

locus.  An escape from the ruthless pressure of natural selection is 

provided by the mechanism of gene duplication.  By duplication, a 

redundant copy of a locus is created.  Natural selection often ignores 

such a redundant copy, and, while being ignored, it accumulates 

formerly forbidden mutations and is reborn as a new gene locus with 

a hitherto non-existent function."  (Emphasis in original).   

Ohno concludes, 

"Thus, gene duplication emerges as the major force of evolution."   

Ohno's provocative thesis is supported by the discovery of pairs of proteins 

with similar sequences of DNA and similar sequences of amino acids, but 

different functions.  Examples include trypsin and chymotrypsin; the protein of 

microtubules and actin of the skeletal muscle;  myoglobin and the monomeric 

hemoglobin of hagfish and lamprey;  myoglobin used for storing oxygen in 

muscle cells and the subunits of hemoglobin in red blood cells of vertebrates; and 

the light and heavy immunoglobin chains (Nei 1987, Maeda and Smithies 1986, 

Dyson and Sherratt 1985, Brooks Low 1988, Patthy  1991, Go 1991, Hood and 

Hunkapiller  1991).  For the Escherichia coli bacteria, a relatively simple 

organism, it is known that more than 30% of its proteins are the result of gene 
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duplications (Lazcano and Miller 1994; Riley 1993).  These proteins include its 

DNA polymerases, dehydrogenases, ferredoxins, glutamine synthetases, 

carbamoyl-phosphate synthetases, F-type ATPases, and DNA topoisomerases.   

The midge, Chironomus tentans, provides an additional example of gene 

duplication (Galli and Wislander 1993, 1994).  In particular, we focus our 

attention on the particular contiguous sequence containing 3,959 nucleiotide bases 

of the DNA of this midge that is archived under accession number X70063 in the 

European Molecular Biology Laboratory (EMBL) database and the Gen Bank 

database.  The 732 nucleiotide bases located at positions 918–1,649 of the 3,959 

bases of the DNA sequence involved become expressed as a protein containing 

244 (i.e., one third of 732) amino acid residues.  The 759 nucleiotide bases at 

positions 2,513–3,271 become expressed as a protein containing 253 residues.  

The 732-base subsequence is called the "C. tentans Sp38–40.A" gene and the 

759-base subsequence is called "C. tentans Sp38–40.B."  The bases of DNA 

before position 918, the bases between positions 1,650 and 2,612, and the bases 

after position 3,371 of this sequence of length 3,959 do not become expressed as 

any protein. 

Both the "A" and the "B" proteins are secreted from the midge's salivary gland 

to form two similar, but different, kinds of water-insoluble fibers.  The two kinds 

of fibers are, in turn, spun into one of two similar, but different, kinds of tubes.  

One tube is for larval protection and feeding while the other tube is for pupation 

(the stage in the development of an insect in which it lies in repose and from 

which it eventually emerges in the winged form).  
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 Table 1 shows the bases of DNA in positions 900 through 3,399 of the 3,959 

nucleiotide bases of X70063.  In the DNA sequence, A represents the nucleiotide 

base adenine, C represents cytosine, G represents guanine, and T represents 

thymine.  Each group of three consecutive bases (a codon) of DNA becomes 

expressed as one of the 20 amino acid residues of the protein.  The letters A, T, 

and G appearing at positions 918, 919, and 920, respectively in this reading 

frame, of the DNA sequence are translated into the amino acid residue methionine 

(denoted by the single letter M using the 20-letter coding for amino acid residues 

in proteins).  Thus, methionine is the first amino acid residue (i.e., N-terminal) of 

protein "A."  Positions 921, 922, and 923 of the DNA contain the bases A, G, and 

A, respectively, and these three bases, in this reading frame, are translated into 

arginine (an amino acid residue denoted by the letter R).  Thus, arginine is the 

second amino acid residue of protein "A" and the protein sequence begins with 

the residues M and R.  The DNA up to position 1,649 encodes the first protein.  

Positions 1,647, 1648, and 1,649 code for the amino acid resident lysine (denoted 

by the letter K).  Thus, lysine is the last (244th) residue (i.e., C-terminal) of 

protein "A." 

Table 2 shows the 244 amino acid residues of the C. tentans Sp38–40.A 

protein.  

Table 3 shows the 253 amino acid residues of the C. tentans Sp38–40.b 

protein.  

The two proteins are similar, but different.  For example, the first 14 amino 

acid residues are identical.  Residue 15 of the "A" protein is phenylalanine (F), 

while the residue 15 of the "B" protein is leucine (L), a chemically similar amino 
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acid.  Residues 16–50 are identical.  Residue 51 of the "A" protein is glutamic 

acid (E), while residue 51 of the "B" protein is Aspartic acid (D).  Both D and E 

are similar in that both are electrically negatively charged residues at normal pH 

values.  However, for some positions, such as 76, the amino acid residues (T and 

A) are not chemically or electrically similar. 

If we now read from the end of each protein, we see that the last few residues 

of each protein are identical.  Since the proteins are of different length, 

identification of the similarity between the two protein sequences requires 

aligning the two proteins in some way.  Protein alignment algorithms, such as the 

Smith-Waterman algorithm (Smith and Waterman 1981), provide a way to align 

two proteins and to measure the degree of similarity or dissimilarity between two 

proteins.  The Smith-Waterman algorithm is a progressive alignment method 

employing dynamic programming based on a scoring algorithm.  Since the 

proteins being aligned are typically of different lengths, gaps may be introduced 

(and then lengthened) in an attempt to best align the residues making up the 

proteins.  A penalty is assessed to open a gap (5 here) and another penalty is 

assessed to lengthen a gap (25 here).  An additional penalty is assessed when one 

residue disagrees with another.  This penalty is smaller for substitutions involving 

evolutionarily-close amino acid residues.  The PAM-250 ("Percentage of 

Accepted point Mutations") matrix is used to reflect the likelihood of one amino 

acid residue being mutated into another.  The overall scoring algorithm performs 

a tradeoff employing dynamic programming between the penalties assessed by 

the PAM-250 matrix, the gap-opening penalty, and the gap-lengthening penalty.  
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The Smith-Waterman algorithm has been implemented in GeneWorks, a software 

package available from Intelligenetics Inc. of Mountain View, California.  

Table 4 shows the alignment of the C. tentans Sp38–40.A protein and the C. 

tentans Sp38–40.B protein.  Identical residues are boxed.  The alignment shows 

that there is 8l% identity between the two protein sequences.  As can be seen, the 

first disagreement between the two aligned sequences occurs at position 15 and 

the second occurs at residue 51.  The first gap is introduced at residue 112 where 

the "A" protein has an alanine (A) residue.  A gap of length 3 is introduced at 

positions 147, 148, and 149 where the "A" protein has three proline (P) residues.  

Note that this alignment recognizes the identity between the last five residues of 

the two proteins. This alignment has a total cost of 265. 

Galli and Wislander (1993) point out that these two similar proteins arise as a 

consequence of a gene duplication.  Immediately after the gene duplication 

occurred at some time in the distant past, there were two identical copies of the 

duplicated sequence of DNA.  Over a period of millions of years since the initial 

gene duplication, additional mutations accumulated so that the two proteins are 

now only 81% identical (after alignment).  More importantly, the two proteins 

now perform different (but similar) functions in the midge. 

More complex organisms have a general tendency to have more expressed 

proteins, more different kinds of structures, more complex structures, perform 

more different functions, and have longer genomes (Dyson and Sherratt 1985).  

The rise of new functions as a consequence of gene duplication is consistent with 

the observed longer genomes of more complex organisms.  
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Gene deletion also occurs in nature.  In gene deletion, there is a deletion of a 

portion of the linear string of nucleiotide bases that would otherwise be translated 

and manufactured into work-performing proteins in the living cell.  After a gene 

deletion occurs, some particular protein that was formerly manufactured will no 

longer be manufactured and there may be some change in the structure or 

behavior of the biological entity.  The absence of the protein may then affect the 

structure and behavior of the living thing in some advantageous or 

disadvantageous way.  If the deletion is advantageous, natural selection will tend 

to perpetuate the change, but if the deletion is disadvantageous, natural selection 

will tend to lead to the extinction of the change.   

3. Automatically Defined Function in Genetic Programming 
Automatically defined functions (ADFs) are the analog of subroutines in the 
genetic programming process.   

When automatically defined functions are being used, each program in the 

population contains one or more function-defining branches (each defining an 

automatically defined function) and one main result-producing branch.  The 

automatically defined functions can perform arithmetic, conditional, and other 

types of operations, define constants, define subsets, and so forth.  In addition, for 

certain problems, there may be other problem-specific types of branches (such as 

iteration-performing branches and iteration-terminating branches).  

Figure 1 shows an overall program consisting of one two-argument 

automatically defined function (called ADF0 here) and one result-producing 

branch (RPB).  The argument map describes the architecture of a multi-part 

program in terms of the number of its function-defining branches and the number 
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of arguments that they each possess.  The argument map of the set of 

automatically defined functions belonging to an overall program is the list 

containing the number of arguments possessed by each automatically defined 

function in the program.  The argument map for the overall program in figure 2 is 

{2} because there is one function-defining branch that takes two arguments.   

The program in figure 2 contains architecture-defining points of the following 

types:  

(1) the PROGN (labeled 400) appearing as the top-most point of the overall 

program,  

(2) a DEFUN (labeled 410) as the top-most point of the function-defining 

branch,  

(3) a name (i.e. ADF0 labeled 411) appearing as the first argument below the 

DEFUN,  

(4) the function LIST (labeled 412) appearing as the second argument of the 

DEFUN,  

(5) dummy arguments (such as ARG0 and ARG1 labeled as 413 and 414, 

respectively) appearing below LIST, 

(6) the VALUES (labeled 419) of the function-defining branch appearing as 

the third argument of the DEFUN, and 

(7) the VALUES (labeled 470) of the result-producing branch appearing as the 

final argument of PROGN. 

If the program in figure 2 were to have more than one automatically defined 

function, there would be additional occurrences of items (2), (3), (4), (5), and (6) 

for each additional function-defining branch.   
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These architecture-defining points were called "invariant points" in Genetic 

Programming II because they were not subject to alteration by crossover or 

mutation.  However, this terminology becomes obsolete with the introduction of 

the architecture-altering operations described herein.    

The program in figure 2 also contains work-performing points.  These work-

performing points are the bodies of the result-producing branch and the function-

defining branch(es). 

The work-performing points of figure 2 include 

(1) the five points labeled 420, 421, 422, 423, and 424 that are found below 

the VALUES (labeled 419) in the function-defining branch, and 

(2) the 11 points starting with the AND (labeled 480) that are found below the 

VALUES (labeled 470).  

These work-performing points were called "noninvariant points" in Genetic 

Programming II because these points represented the sequence of steps of the to-

be-evolved computer program and because they were almost always different 

from branch to branch within a program and from program to program within the 

population.  Again, this terminology becomes obsolete with the introduction of 

the architecture-altering operations described herein.   

The result-producing branch may invoke all, some, or none of the 

automatically defined functions that are present within the overall program.  The 

result-producing branch does not contain dummy arguments (formal parameters).  

The result-producing branch typically contains the actual variables of the problem 

(e.g., D0, D1, D2, etc. here). 
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The value returned by the overall program consists of the value returned by the 

result-producing branch. 

The automatically defined functions of a particular overall program are usually 

named sequentially as ADF0, ADF1, etc. 

The automatically defined functions typically each possess a certain number of 

dummy arguments (formal parameters).  Here, ADF0 possesses two dummy 

arguments, ARG0 and ARG1.  Typically, the actual variables do not appear in the 

function-defining branches. 

If the overall program has more than one automatically defined function, there 

may (or may not) be hierarchical references between function-defining branches.  

For example, the function-defining branch of an overall program may be allowed 

to refer (non-recursively) to all other previously-defined (i.e., lower numbered) 

function-defining branches. 

References within a particular program to an automatically defined function 

are to the automatically defined function belonging to that particular program. 

Actions (with side effects) may be performed within the function-defining 

branches, the result-producing branches, or both.   

When automatically defined functions are being used, the initial random 

generation of the population must be created so that each individual overall 

program in the population has the intended constrained syntactic structure.  The 

constrained syntactic structure in figure 1 calls for one result-producing branch 

and one function-defining branch.  The function-defining branch for ADF0 is a 

random composition of functions from the function set, Fadf, and terminals from 

the terminal set, Tadf.  Here the function set, Fadf, consists of the two-argument 
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Boolean functions AND, OR, NAND, and NOR.  The terminal set, Trpb, of the 

function-defining branch consists of the two dummy arguments (formal 

parameters), ARG0 and ARG1.  The result-producing branch is a random 

composition of functions from the function set, Frpb, and terminals from the 

terminal set, Trpb.  In figure 2, the function set, Frpb, of the result-producing 

branch consists of the two-argument Boolean functions AND, OR, NAND, and NOR 

as well as the now-defined automatically defined function, ADF0. The terminal 

set, Trpb, of the result-producing branch consists of the five actual variables of the 

problem (i.e., D0, D1, D2, etc.).   

Execution of genetic programming consists of the following steps.  The six 

operations appearing as items (2)(c)(iii) through (2)(c)(ix) are the new 

architecture-altering operations described in detail in a later section below.  

The steps for executing genetic programming are as follows: 

(1) Generate an initial random population (generation 0) of computer 

programs. 

(2) Iteratively perform the following sub-steps until the termination criterion 

of the run has been satisfied: 

(a) Execute each program in the population and assign it (explicitly or 

implicitly) a fitness value according to how well it solves the 

problem. 

(b) Select program(s) from the population to participate in the genetic 

operations in (c) below. 

(c) Create new program(s) for the population by applying the following 

genetic operations. 
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(i)Reproduction: Copy an existing program to the new population. 

(ii)Crossover: Create new offspring program(s) for the new 

population by recombining randomly chosen parts of two 

existing programs. 

(iii) Mutation.  Create one new offspring program for the new 

population by randomly mutating a randomly chosen part of 

one existing program. 

(iv) Branch duplication:   

(v) Argument duplication:   

(vi) Branch deletion:   

(vii) Argument deletion:   

(viii) Branch Creation:    

(ix) Argument creation:   

(3) After satisfaction of the termination criterion (which usually includes a 

maximum number of generations to be run as well as a problem-specific 

success predicate), the single best computer program in the population 

produced during the run (the best-so-far individual) is designated as the 

result of the run.  This result may (or may not) be a solution (or 

approximate solution) to the problem. 

4. Six New Architecture-Altering Genetic Operations 
The six new architecture-altering genetic operations provide a new way of 
determining the architecture of a multi-part program.  When these operations are 
performed during a run of genetic programming, the architecture of the 
participating individuals changes during the run.  Meanwhile, the Darwinian 
selection and the reproduction operation continues to favor the more fit 
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individuals in the population to be modified by the usual operations of crossover 
and mutation.   

4.1. Branch Duplication 
The operation of branch duplication duplicates one of the branches of a program 
in the following way: 

(1) Select a program from the population to participate in this operation.   

(2) Pick one of the function-defining branches of the selected program as the 

branch-to-be-duplicated.   

(3) Add a uniquely-named new function-defining branch to the selected 

program, thus increasing, by one, the number of function-defining branches in the 

selected program.  The new function-defining branch has the same argument list 

and the same body as the branch-to-be-duplicated.   

(4) For each occurrence of an invocation of the branch-to-be-duplicated 

anywhere in the selected program (e.g., the result-producing branch or any other 

branch that invokes the branch-to-be-duplicated), randomly choose either to leave 

that invocation unchanged or to replace that invocation with an invocation of the 

newly created function-defining branch.   

The step of selecting a program for this operation (and all the other new 

operations described herein) is performed probabilistically on the basis of fitness, 

so that a program that is more fit has a greater probability of being selected to 

participate in the operation than a less fit program.   

Figure 2 shows the program resulting after applying the operation of branch 

duplication to the program in figure 1 (consisting of one two-argument 

automatically defined function and one result-producing main branch).  

Specifically, the function-defining branch 410 of figure 1 defining ADF0 (also 
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shown as 510 of figure 2) is duplicated and a new function-defining branch 

(defining ADF1) appears in figure 2.   

There are two occurrences of invocations of the branch-to-be-duplicated, 

ADF0, in the result-producing branch of the selected program, namely ADF0 at 

481 and 487 of figure 1.  For each of these two occurrences, a random choice is 

made to either leave the occurrence of ADF0 unchanged or to replace it with the 

newly created ADF1.  For the first invocation of ADF0 at 481 of figure 1, the 

choice is randomly made to replace ADF0 481 of figure 1 with the ADF1 581 in 

figure 2.  The arguments for the invocation of ADF1 581 in figure 2 are D1 582 

and D2 583 (i.e., they are identical to the arguments D1 482 and D2 483 for the 

invocation of ADF0 at 481 of the original program in figure 1).  For the second 

invocation of ADF0 at 487 of figure 1, the choice is randomly made to leave 

ADF0 unchanged in figure 2.   

Because the duplicated new function-defining branch is identical to the 

previously existing function-defining branch (except for the name ADF1 at 541 in 

figure 2) and because ADF1 is invoked with the same arguments as ADF0 had 

been invoked, this operation is a semantics-preserving operation in that the 

operation does not affect the value returned by the overall program.   

The operation of branch duplication can be interpreted as a case splitting.  

After the branch duplication, the result-producing branch invokes ADF0 at 587 

and ADF1 at 581 of figure 2.  ADF0 and ADF1 can be viewed as separate 

procedures for handling the two separate newly-created subproblems (cases).  

Subsequent genetic operations may alter one or both of these two presently-

identical function-defining branches and these subsequent changes to lead to a 
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divergence in structure and behavior.  This divergence may be interpreted as a 

specialization or refinement.  That is, once ADF0 and ADF1 diverge, ADF0 can 

be viewed as a specialization for handling for subproblem (case) associated with 

its invocation by the result-producing branch.  Similarly, ADF1 can be viewed as 

a specialization for handling its subproblem (case).   

The operation of branch duplication as defined above (and all the other new 

operations described herein) always produce a syntactically valid program.   

Analogs of the naturally occurring operation of gene duplication have been 

previously used with genetic algorithms operating on character strings and with 

other evolutionary algorithms.  Holland (1975, page 116) suggested that 

intrachromosomal gene duplication might provide a means of adaptively 

modifying the effective mutation rate by making two or more copies of a 

substring of adjacent alleles.  Cavicchio (1970) used intrachromosomal gene 

duplication in early work on pattern recognition using the genetic algorithm.  

Gene duplication is implicitly used in the messy genetic algorithm (Goldberg, 

Korb, and Deb 1989).  Lindgren (1991) analyzed the prisoner's dilemma game 

using an evolutionary algorithm that employed an operation analogous to gene 

duplication applied to chromosome strings.  Gruau (1994) used genetic 

programming to develop a clever and innovative technique  to evolve the 

architecture of a neural network at the same time as the weights are being 

evolved.   

4.2. Argument Duplication 
The operation of argument duplication  duplicates one of the dummy arguments 
(format parameters) in one of the automatically defined functions of a program in 
the following way: 
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(1) Select a program from the population to participate in this operation.   

(2) Pick one of the function-defining branches of the selected program.   

(3) Choose one of the arguments of the picked function-defining branch of the 

selected program as the argument-to-be-duplicated.   

(4) Add a uniquely-named new argument to the argument list of the picked 

function-defining branch of the selected program, thus increasing, by one, the 

number of arguments in its argument list.   

(5) For each occurrence of the argument-to-be-duplicated anywhere in the 

body of picked function-defining branch of the selected program, randomly 

choose either to leave that occurrence unchanged or to replace that occurrence 

with the new argument.   

(6) For each occurrence of an invocation of the picked function-defining 

branch anywhere in the selected program, identify the argument subtree 

corresponding to the argument-to-be-duplicated and duplicate that argument 

subtree in that invocation, thereby increasing, by one, the number of arguments in 

the invocation.   

Because the function-defining branch containing the duplicated argument is 

invoked with an identical copy of the previously existing argument, the effect of 

this operation is to leave unchanged the value returned by the overall program.   

Just as the operation of branch duplication was interpreted as a case splitting, 

the operation of argument duplication can be similarly interpreted.  After the 

argument duplication, the result-producing branch invokes ADF0 with a new third 

argument.  The particular instantiations of the second and third arguments in each 

invocation of ADF0 provide potentially different ways of handling the two 
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separate subproblems (cases).  Once the second and third arguments diverge, this 

divergence may be interpreted as a specialization or refinement.  

4.3. Branch Deletion 
The operation of branch deletion deletes one of the automatically defined 
functions of a program in the following way:  

(1) Select a program from the population to participate in this operation.   

(2) Pick one of the function-defining branches as the branch-to-be-deleted.   

(3) Delete the branch-to-be-deleted from the selected program, thus 

decreasing, by one, the number of branches in the selected program. 

(4) For each occurrence of an invocation of the branch-to-be-deleted anywhere 

in the selected program, replace the invocation of the branch-to-be-deleted with 

an invocation of a surviving branch (described below).   

When a function-defining branch is deleted, the question arises as to how to 

modify invocations of the branch-to-be-deleted by the other branches of the 

overall program.  One alternative (called branch deletion by consolidation) 

involves identifying a suitable second function-defining branch of the overall 

program as the surviving branch and replacing (consolidating) the branch-to-be-

deleted with the surviving branch in each invocation of the branch-to-be-deleted.  

Branch deletion by consolidation can be interpreted as a way to achieve 

generalization in a problem-solving procedure.  A second alternative (called 

branch deletion with random regeneration) is to randomly generate new subtrees 

composed of the available functions and terminals in lieu of an invocation of the 

branch-to-be-deleted.  A third alternative (called branch deletion by macro 

expansion) is a semantics-preserving approach that involves inserting the entire 
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body of the branch-to-be-deleted for each instance of an invocation of that 

branch.  

Both the argument duplication and the branch duplication operations create 

larger programs.  The operations of argument deletion and branch deletion 

(described below) can create smaller programs and can balance the growth that 

would otherwise occur (provided the alternative of argument deletion by macro 

expansion is not used).   

4.4. Argument Deletion 
The operation of argument deletion  deletes one of the arguments to one of the 
automatically defined functions of a program in the following way:   

(1) Select a program from the population to participate in this operation.   

(2) Pick one of the function-defining branches of the selected program.   

(3) Choose one of the arguments of the picked function-defining branch of the 

selected program as the argument-to-be-deleted.   

(4) Delete the argument-to-be-deleted from the argument list of the picked 

function-defining branch of the selected program, thus decreasing, by one, the 

number of arguments in the argument list.   

(5) For each occurrence of an invocation of the picked function-defining 

branch anywhere in the selected program, delete the argument subtree in that 

invocation corresponding to the argument-to-be-deleted, thereby decreasing, by 

one, the number of arguments in the invocation.   

(6) For each occurrence of the argument-to-be-deleted in the body of the 

picked function-defining branch, replace the argument-to-be-deleted with a 

surviving argument.   
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The operation of argument deletion may be viewed as a generalization in that 

some information that was once considered in executing a procedure is now 

ignored.   

When an argument is deleted, references to the argument-to-be-deleted are 

modified by using argument deletion by consolidation, argument deletion with 

random regeneration, or argument deletion by macro expansion.   

4.5. Branch Creation 
The operation of branch creation creates a new automatically defined function 
(ADF) within an overall program in the following way:  

(1) Select a program from the population to participate in this operation.   

(2) Pick a point in the body of one of the function-defining branches or result-

producing branches of the selected program.  This picked point will become the 

top-most point of the body of the branch-to-be-created.   

(3) Starting at the picked point, begin traversing the subtree below the picked 

point in a depth-first manner.  

(4) As each point below the picked point in the selected program is 

encountered during the traversal, make a determination as to whether to designate 

that point as being the top-most point of an argument subtree for the branch-to-

be-created.  If such a designation is made, no traversal is made of the subtree 

below that designated point.  The depth-first traversal continues and this step (4) 

is repeatedly applied to each point encountered during the traversal so that when 

the traversal of the subtree below the picked point is completed, zero points, one 

point, or more than one point are so designated during the traversal.   
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(5) Add a uniquely-named new function-defining branch to the selected 

program.  The argument list of the new branch consists of as many consecutively-

numbered dummy variables (formal parameters) as the number of points that were 

designated during the depth-first traversal.  The body of the new branch consists 

of a modified copy of the subtree starting at the picked point.  The modifications 

to the copy are made in the following way:  For each point in the copy 

corresponding to a point designated during the traversal of the original subtree, 

replace the designated point in the copy (and the subtree in the copy below that 

designated point in the copy) by a unique dummy variable.  The result is a body 

for the new function-defining branch that contains as many uniquely named 

dummy variables as there are dummy variables in the argument list of the new 

function-defining branch. 

(6) Replace the picked point in the selected program by the name of the new 

function-defining branch.  If no points below the picked point were designated 

during the traversal, the operation of branch creation is now completed.   

(7) If one or more points below the picked point were designated during the 

traversal, the subtree below the just-inserted name of the new function-defining 

branch will be given as many argument subtrees as there are dummy arguments in 

the new function-defining branch in the following way:  For each point in the 

subtree below the picked point designated during the traversal, attach the 

designated point and the subtree below it as an argument to the function whose 

name was just inserted in the new function-defining branch.   

Several different methods may be used to determine how to designate a point 

below the picked point during the depth-first traversal described above.   
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The operation of branch creation is similar to, but different than, the 

compression (module acquisition) operation  described by Angeline and Pollack 

(1994).   

4.6. Argument Creation  
The operation of argument creation creates a new dummy argument (formal 
parameter) within a function-defining branch of an overall program in the 
following way:   

(1) Select a program from the population to participate in this operation. 

(2) Pick a point in the body of a function-defining branch of the selected 

program.   

(3) Add a uniquely-named new argument to the argument list of the picked 

function-defining branch for the purpose of defining the argument-to-be-created.   

(4) Replace the picked point (and the entire subtree below it) in the picked 

function-defining branch by the name of the new argument.   

(5) For each occurrence of an invocation of the picked function-defining 

branch anywhere in the selected program, add an additional argument subtree to 

that invocation.  In each instance, the added argument subtree consists of a 

modified copy of the picked point (and the entire subtree below it) from the 

picked function-defining branch.  The modification is made in the following way:  

For each dummy argument in a particular added argument subtree, replace the 

dummy argument with the entire argument subtree of that invocation 

corresponding to that dummy argument.   

5. Implications of the Architecture-Altering Operations 
The six new architecture-altering operations can be viewed from five 
perspectives.  
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First, the new architecture-altering operations provide a new way to solve the 

problem of determining the architecture of the overall program in the context of 

genetic programming with automatically defined functions.  

Second, the new architecture-altering operations provide an automatic 

implementation of the ability to specialize and generalize in the context of 

automated problem-solving.  

Third, the new architecture-altering operations, in conjunction with 

automatically defined functions, provide a way to automatically and dynamically 

change the representation of the problem while simultaneously solving the 

problem.  

Fourth, the new architecture-altering operations, in conjunction with 

automatically defined functions, provide a way to automatically and dynamically 

decompose problems into subproblems and then automatically solve the overall 

problem by assembling the solutions of the subproblems into a solution of the 

overall problem. 

Fifth, the new architecture-altering operations, in conjunction with 

automatically defined functions, provide a way to automatically and dynamically 

discover useful subspaces (usually of lower dimensionality than that of the overall 

problem) and then automatically assemble a solution of the overall problem from 

solutions applicable to the individual subspaces.  

In addition, the new architecture-altering operations affect the implementation 

of genetic programming with regard to the creation of the initial random 

population and the crossover operation, as described below.   
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5.1. Creation of the Initial Population 
When automatically defined functions are being used, the initial random 
generation of the population must be created so that each individual overall 
program in the population has the intended constrained syntactic structure.  For 
example, figure 1 shows a program for which the constrained syntactic structure 
calls for one result-producing branch and one function-defining branch.  The 
function-defining branch for ADF0 is a random composition of functions from the 
function set, Fadf, and terminals from the terminal set, Tadf.  Here the function set, 
Fadf, consists of the two-argument Boolean primitive functions AND, OR, NAND, 
and NOR.  The terminal set, Trpb, of the function-defining branch consists of the 
two dummy arguments (formal parameters), ARG0 and ARG1.  The result-
producing branch is a random composition of functions from the function set, 
Frpb, and terminals from the terminal set, Trpb.  In the result-producing branch of 
figure 1, the function set, Frpb,  consists of the two-argument Boolean primitive 
functions AND, OR, NAND, and NOR as well as the now-defined automatically 
defined function, ADF0. The terminal set, Trpb, of the result-producing branch 
consists of the five actual variables (i.e., D0, D1, D2, D3, D4). 

When the architecture-altering operations are used, the initial population of 

programs may be created in any one of three ways.  One possibility (called the 

"minimalist approach") is that each multi-part program in the population at 

generation 0 has a uniform architecture with exactly one automatically defined 

function possessing a minimal number of arguments appropriate to the problem.  

A second possibility (called "the big bang") is that each program in the population 

has a uniform architecture with no automatically defined functions (i.e., only a 

result-producing branch).  This approach relies on the operation of branch 

creation to create multi-part programs in such runs.  A third possibility is that the 

population at generation 0 is architecturally diverse (as described in Koza 1994a).   
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5.2. Structure-Preserving Crossover 
In the crossover operation in genetic programming, a crossover point is randomly 
and independently chosen in each of two parents and genetic material from one 
parent is then inserted into a part of the other parent to create an offspring.  A 
population may be architecturally diverse either because it was initially created 
with architectural diversity (as described above) or because the six new 
architecture-altering genetic operations (described below) create a diversity of 
new architectures during the run.  Structure-preserving crossover with point 
typing (as described in Koza 1994a) permits robust recombination while 
simultaneously guaranteeing that any pair of architecturally different parents will 
produce syntactically and semantically valid offspring.   

If the population is architecturally diverse, the parents selected to participate in 

the crossover operation will often possess different numbers of automatically 

defined functions.  Moreover, an automatically defined function with a certain 

name (e.g., ADF2) belonging to one parent will often possess a different number 

of arguments than the same-named automatically defined function belonging to 

the other parent (if indeed ADF2 is present at all).  After a crossover is performed, 

each call to an automatically defined function actually appearing in the crossover 

fragment from the contributing parent will no longer refer to the automatically 

defined function of the contributing parent, but instead will refer to the same-

named automatically defined function of the receiving parent. 

Thus, we must redefine the crossover operation when it is employed in an 

architecturally diverse population. 

When automatically defined functions are involved, each program in the 

population conforms to a more complex constrained syntactic structure (such as 

shown above in figure 1).  The initial random population is created in accordance 
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with this constrained syntactic structure.  Crossover must be performed in a 

structure-preserving way so as to preserve the syntactic validity of all offspring.  

In structure-preserving crossover, the architecture-defining points of an overall 

program are never eligible to be chosen as crossover points and are never altered 

by crossover.  Instead, structure-preserving crossover is restricted to the work-

performing points.  In structure-preserving crossover, the work-performing points 

in the overall program are partitioned into a certain number of types.  

The basic idea of structure-preserving crossover is that any work-performing 

point anywhere in the overall program is randomly chosen, without restriction, as 

the crossover point of the first parent.  That point has a type assigned to it.  Then, 

once the crossover point of the first parent has been chosen, the crossover point of 

the second parent is randomly chosen from among points of the same type. 

The typing of the work-performing points of an overall program constrains the 

set of subtrees that can potentially replace the chosen crossover point and the 

subtree below it.  This typing is done so that the structure-preserving crossover 

operation will always produce valid offspring. 

There are several ways of assigning types to the work-performing points of an 

overall program. 

(1) Branch typing assigns the same type to all the work-performing points of 

each separate branch of an overall program (but a different type to each 

different branch).  There are as many types of work-performing points as 

there are branches in the overall program. 

(2) Like-Branch Typing assigns the same type to all the work-performing 

points of each separate branch of an overall program and assigns a 
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different type to each different branch, except that if the function sets and 

terminal sets of two branches are identical, all the points of both such 

branches are assigned the same type. 

(3)Point typing assigns a type to each individual work-performing point in the 

overall program reflective of both the branch where the point is located 

and the contents of the subtree starting at the point.  The characteristics of 

the branch where the point is located is relevant in determining whether a 

subtree from another program may be inserted at the point.  The contents 

of the subtree starting at the point are relevant in determining if the 

subtree may be inserted at a particular point of another program.  

If a program is subject to any additional problem-specific constrained syntactic 

structure, that additional structure, if any, must also be considered in typing.   

When all the programs in the population have a common architecture, any of 

the three methods of typing may be used.  In practice, branch typing is most 

commonly used.  The crossover operation starts with two parents and produces 

two offspring when either branch typing or like-branch typing is being used. 

Point typing is used for architecturally diverse populations.  If, for the sake of 

argument, branch typing or like-branch typing were to be used on an 

architecturally diverse population, the crossover operation would be virtually 

hamstrung; hardly any crossovers could occur.  The types produced by branch 

typing or like-branch typing are insufficiently descriptive and overly constraining 

in an architecturally diverse population. 

When point typing is used, the crossover operation acquires a directionality 

that did not exist with branch typing or like-branch typing.  A distinction must be 
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made between the contributing (first) parent and the receiving (second) parent.  

Consequently, the crossover operation starts with two parents, but produces only 

one offspring.   

The crossover point (called the point of insertion) of the receiving (second) 

parent must be chosen from the set of points for which the crossover fragment 

from the contributing (first) parent "has meaning" if the crossover fragment were 

to be inserted at the point. 

When genetic material is inserted into the receiving parent during structure-

preserving crossover with point typing, the offspring inherits its architecture from 

the receiving parent (the maternal line) and is guaranteed to be syntactically and 

semantically valid. 

Point typing is governed by three general principles. 

First, every terminal and function actually appearing in the crossover fragment 

from the contributing parent must be in the terminal set or function set of the 

branch of the receiving parent containing the point of insertion.  This first general 

principle applies to actual variables of the problem, dummy variables, random 

constants, primitive functions, and automatically defined functions. 

Second, the number of arguments of every function actually appearing in the 

crossover fragment from the contributing parent must equal the number of 

arguments specified for the same-named function in the argument map of the 

branch of the receiving parent containing the insertion point.  This second general 

principle governing point typing applies to all functions.  However, the emphasis 

is on the automatically defined functions because the same function name is used 
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to represent entirely different functions with differing number of arguments for 

different individuals in the population. 

Third, all additional problem-specific syntactic rules of construction, if any, 

must be satisfied. 

Structure-preserving crossover with point typing is described in detail in Koza 

1994a.  

Structure-preserving crossover with point typing permits robust recombination 

while simultaneously guaranteeing that any pair of architecturally different 

parents will produce syntactically and semantically valid offspring.  In addition, 

structure-preserving crossover with point typing enables the architecture 

appropriate for solving the problem to be evolutionarily selected during a run 

while the problem is being solved.  In addition, when the six new architecture-

altering operations are being used, structure-preserving crossover with point 

typing enables the architecture appropriate for solving the problem to be evolved 

during a run while the problem is being solved in the sense of actually changing 

the architecture of programs dynamically during the run. 

5.3. Steps for Executing Genetic Programming 
Execution of genetic programming consists of the following steps.  The six new 
architecture-altering operations appear as items (2)(c)(iii) through (2)(c)(ix).   

The steps for executing genetic programming are as follows: 

(1) Generate an initial random population (generation 0) of computer 

programs. 

(2) Iteratively perform the following sub-steps until the termination criterion 

of the run has been satisfied: 
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(a) Execute each program in the population and assign it (explicitly or 

implicitly) a fitness value according to how well it solves the 

problem. 

(b) Select program(s) from the population to participate in the genetic 

operations in (c) below. 

(c) Create new program(s) for the population by applying the following 

genetic operations. 

(i)Reproduction: Copy an existing program to the new population. 

(ii)Crossover: Create new offspring program(s) for the new 

population by recombining randomly chosen parts of two 

existing programs. 

(iii) Mutation.  Create one new offspring program for the new 

population by randomly mutating a randomly chosen part of 

one existing program. 

(iv) Branch duplication:  Create one new offspring program for the 

new population by duplicating one function-defining branch of 

one existing program and making additional appropriate 

changes to reflect this change. 

(v) Argument duplication:  Create one new offspring program for the 

new population by duplicating one argument of one function-

defining branch of one existing program and making additional 

appropriate changes to reflect this change. 

(vi) Branch deletion:  Create one new offspring program for the new 

population by deleting one function-defining branch of one 
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existing program and making additional appropriate changes to 

reflect this change. 

(vii) Argument deletion:  Create one new offspring program for the 

new population by deleting one argument of one function-

defining branch of one existing program and making additional 

appropriate changes to reflect this change. 

(viii) Branch Creation:  Create one new offspring program for the 

new population by adding one new function-defining branch 

containing a portion of an existing branch and creating a 

reference to that new branch.  

(ix) Argument creation:  Create one new offspring program for the 

population by adding one new argument to the argument list of 

an existing function-defining branch and appropriately 

modifying references to that branch. 

(3) After satisfaction of the termination criterion (which usually includes a 

maximum number of generations to be run as well as a problem-specific 

success predicate), the single best computer program in the population 

produced during the run (the best-so-far individual) is designated as the 

result of the run.  This result may (or may not) be a solution (or 

approximate solution) to the problem. 

6. Example of an Actual Run 
The architecture-altering operations described herein will now be illustrated by 
showing an actual run of the problem of symbolic regression of the even-5-parity 
function.  The Boolean even-k-parity function takes k Boolean arguments, D0, 
D1, D2, and so forth (up to a total of k arguments).  The even-k-parity function 
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returns T (true) if an even number of its Boolean arguments are T, but otherwise 
returns NIL (false).  Boolean parity functions are often used as benchmarks for 
experiments in machine learning because a change in any one input 
(environmental sensor) toggles the outcome. The problem is to discover a 
computer program that mimics the behavior of the Boolean even-k-parity problem 
for every one of the 2k combinations of its k Boolean inputs.  The primitive 
functions for this problem are AND, OR, NAND, and NOR.   

6.1. Example with an Complete Genealogical Audit Trail 
The run starts with the random creation of a population of 1,000 individual 
programs.  The minimalist approach is used herein.  That is, each program in the 
initial random population at generation 0 consists of one result-producing branch 
and one one-argument function-defining branch and has an argument map of {1}. 

Thus, the terminal set for the result-producing branch, Trpb, for a program in 

the population for the Boolean even-3-parity problem is 

Trpb  = {D0, D1, D2}. 

The function set for the result-producing branch, Frpb, is 

Frpb = {AND, OR, NAND, NOR, ADF0}, 

with an argument map of  

{2, 2, 2, 2, 1}. 

The terminal set for the automatically defined function, ADF0, is 

Tadf0  = {ARG0}. 

The function set, Fadf0, for ADF0 is 
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Fadf0 = {AND, OR, NAND, NOR},  

with an argument map for this function set of  

{2, 2, 2, 2}. 

After creating the 1,000 programs for the initial random population, each 

program in the population is evaluated as to how well it solves the problem at 

hand. The fitness of a program in the population of 1,000 programs is measured 

according to how well that program mimics the target function for all eight 

combinations of three Boolean arguments.  The raw fitness of a program is the 

number of matches. 

In one particular run, the best program from among the 1,000 randomly created 

programs in generation 0 has the function-defining branch (defining ADF0) 

shown below: 

(OR (AND (NAND ARG0 ARG0) (OR ARG0 ARG0)) (NOR (NOR ARG0 ARG0) 

(AND ARG0 ARG0))). 

The behavior of this function-defining branch is the Boolean constant function 

zero (called “Always False”). 

The result-producing branch of this best-of-generation program from 

generation 0  ignores ADF0 and is shown below: 

(NOR (AND D0(NOR D2 D1)) (AND (AND D2 D1))).  
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 Of course, it should be no surprise that the function-defining branch of even 

the best program of the initial random generation is not particularly useful or that 

this branch is ignored by the result-producing branch.  The minimalist approach is 

not intended to provide a highly useful function-defining branch, but rather 

merely to provide a starting point for the evolutionary process. 

Table 5 shows the behavior of this program from generation 0.  The first three 

columns show the values of the three Boolean variables, D0, D1, and D2.  The 

fourth column shows the value produced by the overall program.  The fifth 

column shows the value of the target function, the even-3-parity function.  The 

last column shows how well the program performed at matching the behavior of 

the target function.  As is shown, the program was correct for six of the eight 

possible combinations (fitness cases).  Thus, the program scored a raw fitness of 6 

(out of a possible 8). 

A new population of 1,000 programs is then created from the existing 

population of 1,000 programs.  Each successive generation of the population is 

created from the existing population by applying various genetic operations.  

Reproduction and crossover are the most frequently performed genetic operations.  

In addition, the architecture-altering operations described herein are used on this 

run.  Mutation and other previously described genetic operations may also be 

used in the process (although they are not used here).  

The raw fitness of the best-of-generation program for generation 5 improves to 

7.  That is, this program correctly mimics the behavior of the target even-3-parity 

function for seven of the eight fitness cases.  The program achieving this new and 

higher level of fitness has a total of four branches (i.e., one result-producing 
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branch and three function-defining branches).  The change in the number of 

branches from 1 at generation 0 to 4 at generation 5 is the consequence of the 

architecture-altering operations.  In addition to its one result-producing branch, 

this best-of-generation program for generation 5 has branches defining ADF0 

(taking two arguments), ADF1 (taking two arguments), and ADF2 (taking three 

arguments), so that its argument map is {2, 2, 3}.  The result producing branch of 

this program is shown below: 

(NOR (ADF2 D0 D2 D1) (AND (ADF1 D2 D1)D0)). 

The first function-defining branch (defining ADF0) of the best-of-generation 

program for generation 5 takes two dummy arguments, ARG0 and ARG1, and is 

shown below.  The existence of two dummy arguments in this function-defining 

branch is a consequence of an argument duplication operation.  As it happens, the 

behavior of this ADF0 is not important because ADF0 is not referenced by the 

result-producing branch. 

(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR ARG1 ARG0) 

(AND ARG0 ARG1))). 

The second function-defining branch (defining ADF1) of the best-of-

generation program for generation 5 also takes two dummy arguments, ARG0 and 

ARG1, and is shown below.  The existence of this second function-defining 

branch is a consequence of a branch duplication operation. 

(OR (AND ARG0 ARG1) (NOR ARG0 ARG1)). 
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Table 6 shows the behavior of ADF1 of the best-of-generation program for 

generation 5 which, as can be seen, is equivalent to the even-2-parity function.  

The function-defining branch for ADF2 of this best-of-generation program for 

generation 5 takes three dummy arguments, ARG0, ARG1, and ARG2, and is 

shown below.  This third function-defining branch exists as a consequence of yet 

another branch duplication operation. 

(AND ARG1 (NOR ARG0 ARG2)). 

Table 7 shows that the behavior of ADF2 consists of returning 1 only when 

ARG0 and ARG2 are 0 and ARG1 is 1. 

The raw fitness of the best individual program in the population remains at a 

value of 7 for generations 6, 7, 8, and 9; however, the average fitness of the 

population as a whole improves during these generations. 

On generation 10, the best program in the population of 1,000 perfectly mimics 

the behavior of the even-3-parity function.  This 100%-correct solution to the 

problem has a total of six branches (i.e., five function-defining branches and one 

result-producing branch).  The argument map of this program is {2, 2, 3, 2, 2}.  

This multiplicity of branches is a consequence of the repeated application of the 

branch duplication operation and the branch creation operation.  The function-

defining branches of this program each have more than one dummy argument.  

All of these additional arguments exist as a consequence of the repeated 

application of the argument duplication operation. 

The result-producing branch of this best-of-generation program for generation 

10 is shown below: 
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(NOR (ADF4 D0(ADF1 D2 D1)) (AND (ADF1 D2 D1) D0)) 

The function-defining branch for ADF0 of this best-of-generation program for 

generation 10 takes two dummy arguments, ARG0 and ARG1, and is shown 

below.  The behavior of ADF0 is equivalent to the odd-2-parity function.  

(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR ARG1 ARG0) 

(AND ARG0 ARG1))) 

The function-defining branch for ADF1 of the best-of-generation program for 

generation 10 takes two dummy arguments, ARG0 and ARG1, and is shown 

below.  ADF1 is equivalent to the even-2-parity function. 

(OR (AND ARG0 ARG1) (NOR ARG0  ARG1)) 

The function-defining branch for ADF2 takes three dummy arguments, ARG0, 

ARG1, and ARG2, and is shown below.  ADF2 returns 1 only when ARG0 and 

ARG2 are 0 and ARG1 is 1.  However, ADF2 is ignored by the result-producing 

branch. 

(AND ARG1 (NOR ARG0 ARG2)) 

The function-defining branch for ADF3 is the one-argument identity function.  

This relatively useless branch is ignored by the result-producing branch. 

The function-defining branch for ADF4 of the best-of-generation program for 

generation 10 takes two dummy arguments, ARG0 and ARG1, and is shown 

below.  ADF4 is equivalent to the even-2-parity function. 
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(OR (AND ARG0 ARG1) (NOR ARG0  ARG1)) 

Since both ADF1 and ADF4 are both even-2-parity functions, the result-

producing branch can be simplified to the expression below.  This expression is 

equivalent to the even-3-parity function. 

(NOR (EVEN-2-PARITY D0(EVEN-2-PARITY D2 D1)) (AND (EVEN-2-PARITY 

D2 D1) D0)) 

An examination of the genealogical audit trail shows the interplay between the 

Darwinian reproduction operation, the one-offspring crossover operation using 

point typing, and the new architecture-altering operations. 

Figure 3 shows all of the ancestors of the just-described 100%-correct solution 

from generation 10 of the run in example 1 of the problem of symbolic regression 

of the even-3-parity problem.  The generation numbers (from 0 to 10) are shown 

on the left edge of figure 3.  Figure 3 also shows the sequence of reproduction 

operations, crossover operations, and architecture-altering operations that gave 

rise to every program that was an ancestor to the 100%-correct program in 

generation 10.  The 100%-correct solution from generation 10 is represented by 

the box labeled M10 at the bottom of the figure.  The argument map of this 

solution, namely {2, 2, 3, 2, 2}, is shown in this box.  

The two lines flowing into the box M10 indicate that the solution in generation 

10 was produced by a crossover operation acting on two programs from the 

previous generation (generation 9).  Figure 3 uses the convention of placing the 

mother M9 (the receiving parent) on the right and father P9 (the contributing 

parent) on the left.  Recall that, in a one-offspring crossover operation using point 
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typing, the bulk of the structure of a multi-part program comes from the mother 

since the father contributes only one subtree into only one of the many branches 

of the mother.  Thus, the 11 boxes on the right side of this figure (consecutively 

numbered from M0 to M10) represent the maternal genetic lineage (from 

generations 0 through generation 10) of the 100%-correct solution M10 that 

emerged in generation 10.  The 100%-correct solution M10 in generation 10 has 

the same argument map, {2, 2, 3, 2, 2}, as the mother M9 because the crossover 

operation is not an architecture-altering operation and does not change the 

architecture (or argument map) of the offspring (relative to the mother). 

The maternal lineage will now be reviewed in detail so as to illustrate the 

overall process of evolving the architecture of a solution to a problem while 

simultaneously evolving the solution to the problem.   

The mother M9 from generation 9 (shown on the right side of figure 3) has an 

argument map of {2, 2, 3, 2, 2}, has a raw fitness of 7, was itself the result of a 

crossover of two parents from generation 8.  The grandfather of the 100%-correct 

solution M10 in generation 10 (and the father of M9) was P8.  The grandmother of 

the 100%-correct solution M10 in generation 10 (and the mother of M9) was M8. 

The grandmother M8 from generation 8 of the 100%-correct solution M10 in 

generation 10 (and the mother of M9) has an argument map of {2, 2, 3, 2, 2}, has 

a raw fitness of 7, and was the result of a branch duplication from a single 

ancestor M7 from generation 7. 

Because of the branch duplication operation, the program M7 from generation 

7 of the maternal lineage at the far right of figure 3 has one fewer branch than its 
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offspring M8.  Program M7 has an argument map of {2, 2, 3, 2}.  Program M7 was 

the result of an argument duplication from a single ancestor from generation 6. 

Because of the argument duplication operation, the fourth function-defining 

branch of the program M6 from generation 6 of the maternal lineage at the far 

right of figure 3 has one less argument than its offspring M7.  Program M6 from 

generation 6 has an argument map of {2, 2, 3, 1} whereas program M7 from 

generation 7 has an argument map of {2, 2, 3, 2}.  Program M6 was the result of 

an branch creation from a single ancestor M5 from generation 5. 

Because of the branch creation operation, the program M5 from generation 5 

shown on the right side of figure 3 has one fewer function-defining branch then 

program M6.  Program M5 has an argument map of {2, 2, 3}.  In turn, program M5 

was the result of a branch creation from a single ancestor M4 from generation 4. 

Program M4 from generation 4 shown on the right side of figure 3 has one less 

function-defining branch than its offspring program M5.  Program M4 has an 

argument map of {2, 2}.  Program M4 was the result of a reproduction operation 

from a single ancestor M3 from generation 3. 

Program M4 from generation 3 shown on the right side of figure 3 has an 

argument map of {2, 2} and was the result of a crossover involving father P2 and 

mother M2 from generation 2. 

Program M2 from generation 2 (shown on the right side of figure 3) has an 

argument map of {2, 2} and was the result of a branch creation from a single 

ancestor M1 from generation 1. 

Program M1 from generation 1 has an argument map of {2} and was the result 

of an argument duplication of a single ancestor M0 from generation 0. 
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Program M0 from generation 0 at the upper right corner of figure 3 has an 

argument map of {1} and has a raw fitness of 6.  It has an argument map of {1} 

because all programs at generation 0 consist of one result-producing branch and a 

single one-argument function-defining branch when the minimalist approach is 

being used. 

The sequence of genetic operations and architecture-altering operations of this 

run shows the simultaneous evolution of the architecture while solving the 

problem. 

6.2. Example with Even-5-Parity Problem 
For the problem of symbolic regression of the even-5-parity function, A 
population size, M, of 96,000 was used.  The targeted maximum number of 
generations, G, was set at 76.  The run uses the “minimalist approach" in which 
each program in generation 0 consists of one result-producing branch and a single 
two-argument function-defining branch.  Branch deletion and argument deletion 
with random regeneration were used.  The percentage of operations at each 
processing node on each generation was 74% crossovers; 10% reproductions; 0% 
mutations; 5% branch duplications, 5 argument duplications; 0.5% branch 
deletions; 0.5% argument deletions; 5% branch creations; and 0% argument 
creations.  Other minor parameters were chosen as in Koza 1994a. 

The problem was run on a home-built medium-grained parallel computer 

system.  In the so-called distributed genetic algorithm  or island model for 

parallelization (Tanese 1989), different semi-isolated subpopulations (called 

demes after Sewall Wright 1943) are situated at the different processing nodes of 

the system.  The system consisted of a host PC 486 type computer running 

Windows and 64 Transtech TRAMs (containing one INMOS T805 transputer and 

4 megabytes of RAM memory) arranged in a toroidal mesh.  There were D = 64 
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demes, a population size of Q =  1,500 per deme, and a migration rate (boatload 

size) of B = 8% (in each of four directions on each generation for each deme).  

Generations are run asynchronously.  Additional details of the parallel 

implementation of genetic programming on a network of transputers can be found 

in Koza and Andre 1995.   

On generation 13 of one run, a 100%-correct solution to the even-5-parity 

problem emerged in the form of a computer program with one three-argument 

automatically defined function and one two-argument automatically defined 

function.   

Three-argument ADF0 (which had only two arguments in generation 0) 

performs Boolean rule 106, a non-parity rule, and is below: 

(NOR (OR (AND (OR (OR ARG0 ARG2) (NAND ARG0 ARG2)) (AND (NAND ARG0 

ARG1) (NOR ARG2 ARG0))) (AND (AND (NOR ARG1 ARG0) (OR ARG2 ARG0)) 

(OR (NAND ARG0 ARG1) (NOR ARG2 ARG0)))) (NAND (NAND (AND (NOR ARG0 

ARG2) (NAND ARG0 ARG0)) (NOR (NAND ARG0 ARG0) (NOR ARG2 ARG1))) 

(OR (NAND (AND ARG1 ARG0) (OR ARG1 ARG0)) (OR (NAND ARG2 ARG2) 

(NOR ARG0 ARG0))))) 

Two-argument ADF1 (which did not exist at all in generation 0) is equivalent 

to the odd-2-parity function and is below: 

(NOR (OR (AND (OR (OR ARG0 ARG1) (NAND ARG0 ARG1)) (AND (NAND ARG0 

ARG1) (NOR ARG1 ARG0))) (AND (AND (NOR ARG1 ARG0) (OR ARG1 ARG0)) 

(OR (NAND ARG0 ARG1) (NOR ARG1 ARG0)))) (NAND (NAND (AND (NOR ARG0 

ARG1) (NAND ARG0 ARG0)) (NOR (NAND ARG0 ARG0) (NOR ARG1 ARG1))) 
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(OR (NAND (AND ARG1 ARG0) (OR ARG1 ARG0)) (OR (NAND ARG1 ARG1) 

(NOR ARG0 ARG0))))).  

The result-producing branch of this program invokes both ADF0 and ADF1 

and is below:  

(AND (OR (ADF0 (NAND D1 D2) (ADF0 D2 D0 D0) (ADF0 D2 D0 D0)) (NAND 

(OR D3 D1) (ADF1 D3 D3))) (ADF0 (ADF1 (NAND D1 D2) (NOR D4 D4)) 

(ADF1 (ADF1 D3 D0) (NOR D1 D2)) (ADF1 (ADF1 D3 D0) (NOR D1 D2)))) 

7. Performance Characteristics of the New Operations 
We now use the Boolean even-5-parity problem to compare, over a series of runs, 
three performance characteristics of the architecture-altering operations for the 
following five approaches: 

(A) without automatically defined functions (corresponding to the style of 

runs discussed throughout most of Genetic Programming), 

(B) with automatically defined functions, evolutionary selection of the 

architecture  (corresponding to the style of runs discussed in chapters 21–25 of 

Genetic Programming II on the evolutionary selection of the architecture), an 

architecturally diverse initial population, and structure-preserving crossover with 

point typing,  

(C) with automatically defined functions, the architecture-altering 

operations, an architecturally diverse population (after generation 0), and 

structure-preserving crossover with point typing,   

(D) with automatically defined functions, a fixed, user-supplied architecture 

(i.e., an argument map of {3, 2} that is known to be a good choice of architecture 

for this problem), and structure-preserving crossover with point typing, and  
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(E) with automatically defined functions, the fixed, known-good, user-supplied 

{3, 2} architecture, and structure-preserving crossover with branch typing 

(corresponding to the style of runs discussed throughout most of Genetic 

Programming II).   

The comparisons are made for the following three performance characteristics: 

computational effort, E (with 99% probability); the wallclock time, W(M,t,z) in 

seconds(with 99% probability); and the average structural complexity, S .  These 

three measures are described in detail in Koza 1994a.  

The comparisons in table 8 all used a common population size, M, of 96,000.  

All runs solved well before the targeted maximum number of generations, G, of 

76.    

As can be seen from the table, all four approaches (B, C, D, or E) employing 

automatically defined functions require less computational effort than not using 

them (approach A).  Approach E (which benefits from the most user-supplied 

information) requires the least computational effort.  At the other extreme, 

approach A requires the most computational effort.   

Approach C (using the architecture-altering operations) requires less 

computational effort than solving the problem without automatically defined 

functions (approach A), but more computational effort than with the fixed, 

known-good, user-supplied architecture (approach E).  

Approach B requires greater computational effort than approach C, but less 

than that for approach A.  

Approach D isolates the additional computational effort required by point 

typing (relative to approach E).  Greater computational effort is required by 
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approach D than approach E.  Since the computational effort for approach C is 

virtually tied with approach D, the cost of architecture-altering operations for this 

problem is not much greater than the cost of point typing.   

Approach E consumes less wallclock time than approach C (using the 

architecture-altering operations), which, in turn, consumes less wallclock time 

than approach A (without automatically defined functions).   

The average structural complexity, S , for all four approaches (B, C, D, or E) 

employing automatically defined functions is less than that for approach A 

(without automatically defined functions).  Approach C (using the architecture-

altering operations) has the lowest value of S .   

Note also that all four approaches (B, C, D, or E) employing ADFs require less 

computational effort, require less wallclock time, and produce smaller solutions 

(i.e., are more parsimonious) than the ADF-less approach (approach A).  

Additional work in this area is described in Koza (1995a, b, c) and Koza and 

Andre (1996).  Application of the architecture-altering operations to the 

automated design of analog electrical circuits using genetic programming with 

automatically defined functions is described in Koza, Andre, Bennett, and Keane 

(1996).   

8. Conclusions 
This chapter describes how the biological theory of gene duplication described in 
Susumu Ohno's provocative book, Evolution by Means of Gene Duplication, was 
brought to bear on a vexatious problem of architecture discovery for automated 
machine learning.  The resulting biologically-motivated approach enables genetic 
programming to automatically discover the size and shape of the solution at the 
same time as genetic programming is evolving a solution to the problem.  This is 
accomplished using six biologically-motivated architecture-altering operations 



                                                                                                   57 

that provide a way to automatically discover, during a run of genetic 
programming, both the architecture and the sequence of steps of a multi-part 
computer program that will solve the given problem.    
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Figure 1  Program with an argument map of {2} consisting of one two-

argument function-defining branch (ADF0) and one result-producing 

branch.    
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Figure 2  Program with an argument map of {2, 2} consisting of two two-

argument function-defining branches (ADF0 and ADF1) and one result-

producing branch.    
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Figure 3  Complete genealogical audit trail showing all of the ancestors in 

generations 0 through 9 for the ultimate solution M10 from generation 10 for 
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the run in example 1. The maternal line is shown at the right and the 

paternal line at the left.   
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Table 1  Portion of a DNA sequence containing the two expressed proteins. 
      
TGAAGTAATA TTAAGCTATG AGAATTAAGT TCCTAGTAGT ATTAGCAGTT 950 
        M R  I  K  F   L  V  V   L  A  V    
      
ATCTGCTTGT TTGCACATTA TGCCTCAGCT AGTGGTATGG GGGGTGATAA 1000 
I  C  L  F   A  H  Y   A  S  A   S  G  M  G   G  D  K   
      
AAAACCCAAA GATGCCCCAA AACCCAAAGA TGCCCCAAAA CCCAAAGAAG 1050 
 K  P  K   D  A  P  K   P  K  D   A  P  K  P  K  E  V  
      
TGAAGCCTGT CAAAGCTGAG TCATCAGAGT ATGAGATAGA AGTCATTAAA 1100 
  K  P  V   K  A  E   S  S  E  Y   E  I  E   V  I  K    
      
CACCAGAAAG AAAAGACCGA GAAGAAGGAG AAGGAGAAGA AGACTCACGT 1150 
H  Q  K  E   K  T  E   K  K  E   K  E  K  K   T  H  V   
      
TGAAACCAAG AAAGAAGTTA AAAAGAAGGA GAAGAAGCAA ATCCCTTGTT 1200 
 E  T  K   K  E  V  K   K  K  E   K  K  Q   I  P  C  S  
      
CTGAAAAACT CAAGGATGAA AAACTTGATT GTGAGACCAA GGGCGTCCCT 1250 
  E  K  L   K  D  E K  L  D  C   E  T  K   G  V  P   
      
GCAGGCTACA AAGCAATCTT CAAATTCACA GAAAACGAGG AGTGCGATTG 1300 
A  G  Y  K   A  I  F   K  F  T   E  N  E  E   C  D  W   
      
GACGTGCGAT TATGAAGCAC TTCCACCACC TCCAGGAGCA AAGAAAGACG 1350 
 T  C  D Y  E  A  L   P  P  P  P  G  A   K  K  D  D  
      
ACAAGAAAGA AAAGAAGACA GTTAAAGTCG TTAAGCCACC AAAGGAGAAA 1400 
  K  K  E   K  K  T   V  K  V  V   K  P  P   K  E  K    
      
CCACCAAAGA AGCTTAGAAA GGAATGCTCT GGCGAAAAAG TGATCAAATT 1450 
P  P  K  K   L  R  K   E  C  S   G  E  K  V   I  K  F   
      
CCAAAACTGT CTCGTTAAGA TTAGAGGACT TATTGCCTTT GGTGATAAGA 1500 
 Q  N  C   L  V  K  I   R  G  L   I  A  F   G  D  K  T  
      
CAAAGAACTT TGATAAGAAG TTCGCAAAGC TTGTCCAAGG AAAGCAGAAG 1550 
  K  N  F   D  K  K   F  A  K  L   V  Q  G   K  Q  K    
      
AAGGGCGCAA AAAAAGCTAA AGGCGGTAAG AAGGCAGCAC CAAAACCAGG 1600 
K  G  A  K   K  A  K   G  G  K   K  A  A  P   K  P  G   
      
ACCAAAACCA GGGCCAAAAC AAGCTGATAA ACCAAAAGAT GCAAAAAAAT 1650 
 P  K  P   G  P  K  Q   A  D  K   P  K  D   A  K  K    
      
AAACTGACAT AGTAAGAATA ATAAAATAAA CATTATTTGA GCAACATCAC 1700 
AACACAAGAA AAAAATCATA TCAACATAAT TAAGACCTAA AAATTCTCGC 1750 
TATTCACTTT TTTTCAAATG AATATCCAAA ACAACATCAT TAAGGGATCT 1800 
TACACAATTT TATCCCAAAT TAGTTTTAAG TCTATTTTTT AGTTTTAAGT 1850 
AAAACATTAG TTAGAGAAAT TTCAAATGCG AAAAAAAGAC AAAATCAAAA 1900 
TTAACTCCAA CTAATTGTCT AGATCTAATC ACCACTGAAA AACAATATTT 1950 
TTTTCAATAA TATCTGAGAT GAAAATTTTG TAAGATACGA TTCAAAAAAA 2000 
AAAAAACAAA AACTTAAATA TTTTCTTTAT AAGAAAGTAA AAAACTTACA 2050 
TGAACAACAA GTAGACTAAG GGCTTAAAAA TACTAAGGAA TTTAAAGAAA 2100 
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CTGAACCAAT AACATCCAAT AAATATAAGC GTGTATTTAA CATCCATTCA 2150 
TGCAAAATTT GACTTGTTTT ATTCTAAACT TTTGAATTGT GAATATTTTT 2200 
GATGATTATT GAATATTTTA CAGCATTTTT CGACAAAATC CAAGGAAACT 2250 
GTTTTGTTTA ATATATACTA CAGCTCAGTA TCTATGCACA CGAAAAACTG 2300 
TAACAGACCA GACCATAAAA CCTACACATC ACCAAGATAC GTATTTTAAA 2350 
TTCATGTGAC TGACAAAAGC TGGAAACACT TGTGTCACGT CATGAAAACC 2400 
TCGTTGAAAT AAAACTTCTA GAAAGGTTAT CATGAAAGAG TATAAAAGAG 2450 
ATCTCAAACG AGGCTCAGTC AGTTCAGTTT AGCTTGGACT TCATATGAAG 2500 
TAATATTTAG CTATGAGAAT TAAGTTCCTA GTAGTATTAG CAGTTATCTG 2550 
   M  R  I   K  F  L   V  V  L  A   V  I  C   
      
CTTGCTTGCA CATTATGCCT CAGCTAGTGG TATGGGGGGT GATAAAAAAC 2600 
 L  L  A   H  Y  A  S   A  S  G   M  G  G   D  K  K  P  
      
CCAAAGATGC CCCAAAACCC AAAGATGCCC CAAAACCCAA AGAAGTGAAG 2650 
  K  D  A   P  K  P   K  D  A  P   K  P  K   E  V  K    
      
CCTGTCAAAG CTGACTCATC AGAGTATGAG ATAGAAGTCA TTAAACACCA 2700 
P  V  K  A   D  S  S   E  Y  E   I  E  V  I   K  H  Q   
      
GAAAGAAAAG ACCGAGAAGA AGGAGAAGGA GAAGAAAGCT CACGTCGAAA 2750 
 K  E  K   T  E  K  K   E  K  E   K  K  A   H  V  E  I  
      
TCAAGAAAAA GATTAAAAAT AAGGAGAAGA AGTTTGTCCC ATGTTCTGAA 2800 
  K  K  K   I  K  N   K  E  K  K   F  V  P   C  S  E    
      
ATTCTCAAGG ATGAAAAACT TGAATGTGAG AAAAATGCTA CTCCAGGCTA 2850 
I  L  K  D   E  K  L   E  C  E   K  N  A  T   P  G  Y   
      
TAAAGCACTC TTCGAATTCA AAGAAAGCGA AAGTTTTTGC GAATGGGAGT 2900 
 K  A  L   F  E  F  K   E  S  E   S  F  C   E  W  E  C  
      
GCGATTATGA AGCAATTCCA GGAGCAAAGA AAGACGAAAA AAAGGAGAAG 2950 
  D  Y  E   A  I  P   G  A  K  K   D  E  K   K  E  K    
      
AAGGTAGTTA AAGTCATTAA GCCACCAAAG GAAAAACCAC CAAAGAAGCC 3000 
K  V  V  K   V  I  K   P  P  K   E  K  P  P   K  K  P   
      
TAGAAAGGAA TGCTCTGGCG AAAAAGTGAT CAAATTCCAA AACTGTCTCG 3050 
 R  K  E   C  S  G  E   K  V  I   K  F  Q   N  C  L  V  
      
TTAAGATTAG AGGACTTATT GCCTTTGGTG ATAAGACAAA GAACTTTGAT 3100 
  K  I  R   G  L  I   A  F  G  D   K  T  K   N  F  D    
      
AAGAAGTTTG CAAAGCTTGT CCAAGGAAAG CAAAAGAAGG GCGCAAAAAA 3150 
K  K  F  A   K  L  V   Q  G  K   Q  K  K  G   A  K  K   
      
AGCTAAAGGC GGTAAGAAGG CAGAACCAAA ACCAGGACCA AAACCAGCAC 3200 
 A  K  G   G  K  K  A   E  P  K   P  G  P   K  P  A  P  
      
CAAAACCAGG ACCAAAACCA GCACCAAAAC CAGTACCAAA ACCAGCTGAT 3250 
  K  P  G   P  K  P   A  P  K  P   V  P  K   P  A  D    
      
AAACCAAAAG ATGCAAAAAA ATAAACTGAC ATAGTGAGAA TAATAAAATA 3300 
K  P  K  D   A  K  K       
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Table 2  Protein sequence of "A" protein.  
      
MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50 
ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100 
EKLDCETKGV PAGYKAIFKF TENEECDWTC DYEALPPPPG AKKDDKKEKK 150 
TVKVVKPPKE KPPKKLRKEC SGEKVIKFQN CLVKIRGLIA FGDKTKNFDK 200 
KFAKLVQGKQ KKGAKKAKGG KKAAPKPGPK PGPKQADKPK DAKK 244 
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Table 3  Protein sequence of "B" protein.  
      
MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50 
DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100 
EKLECEKNAT PGYKALFEFK ESESFCEWEC DYEAIPGAKK DEKKEKKVVK 150 
VIKPPKEKPP KKPRKECSGE KVIKFQNCLV KIRGLIAFGD KTKNFDKKFA 200 
KLVQGKQKKG AKKAKGGKKA EPKPGPKPAP KPGPKPAPKP VPKPADKPKD 250 
AKK     253 
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Table 4  Protein alignment of the "A" and "B" proteins.  
First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK 149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK 146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------ 239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD 246

First.protein --KDAKK 244
Second.protein KPKDAKK 253
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Table 5  Operation of the best-of-generation program from generation 0.  
D0 D1 D2 BEST-OF- 

GENERATION 
PROGRAM 
FOR 
GENERATION  
0 

EVEN-3-
PARITY 
FUNCTION 

SCORE 

0 0 0 1 1 correct 
0 0 1 1 0 wrong 
0 1 0 1 0 wrong 
0 1 1 1 1 correct 
1 0 0 0 0 correct 
1 0 1 1 1 correct 
1 1 0 1 1 correct 
1 1 1 0 0 correct 
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Table 6  ADF1 of the best-of-generation program of generation 5. 
ARG0 ARG1 ADF0 
0 0 1 
0 1 0 
1 0 0 
1 1 1 
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Table 7  ADF2 of the best-of-generation program of generation 5. 
ARG0 ARG1 ARG2 ADF2 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 0 
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Table 8  Comparison of the five approaches.   
Approach Runs Computatio

nal effort 
E 

Wallclock 
time 
W(M,t,z) 

Average 
Size of 
solution 
S  

A - No ADFs 14 5,025,000 36,950 469.1 
B - ADFs + Evolutionary 
Selection of Architecture 

14 4,263,000 66,667 180.9 

C - ADFs + Architecture-
Altering Operations 

25 1,789,500 13,594 88.8 

D - ADFs + Point Typing–Fixed, 
Known-Good Architecture  

25 1,705,500 14,088 130.0 

E - ADFs + Branch Typing–Fixed, 
Known-Good Architecture 

25 1,261,500 6,481 112.2 

 


