
 1

THE IMPORTANCE OF REUSE AND
DEVELOPMENT IN EVOLVABLE

HARDWARE

NASA/DoD-EH-2003 — CHICAGO
WEDNESDAY JULY 9, 2003

John R. Koza

Stanford University

Martin A. Keane
Econometrics Inc.

Matthew J. Streeter
Genetic Programming Inc.

 2

EVOLVED CAMPBELL FILTER
CASCADE OF 6 π SECTIONS

U. S. PATENT 1,227,113

 3

EVOLVED ZOBEL FILTER
CASCADE OF 3 T-SECTIONS

U. S. PATENT 1,538,964

 4

POST-2000 PATENTED INVENTION
EVOLVED REGISTER-CONTROLLED

CAPACITOR CIRCUIT FROM
GENERATION 98

 5

POST-2000 PATENTED INVENTION
HIGH CURRENT LOAD CIRCUIT

BEST-OF-RUN FROM GENERATION 114

 6

GENETICALLY EVOLVED CUBE ROOT
CIRCUIT

 7

DARLINGTON EMITTER-FOLLOWER
FROM GENETICALLY EVOLVED CUBE

ROOT CIRCUIT

 8

PLACEMENT AND ROUTING
(DONE SIMULTANEOUSLY WITH

TOPOLOGY AND SIZING)

LOWPASS LADDER FILTER

RLOAD
(17.5,5.4)

1K

RSRC
(-16,5.4)

1K

L38
(11,5.4)

96100uH
VG G

C12
(-10,0.5)
155nF

G

C18
(-4,1)
256nF

G

L20
(-7,5.4)

253000u
H

C27
(2,1.2)
256nF

G

L29
(-1,5.4)

319000u
H

C34
(8,1.4)
256nF

G

L36
(5,5.4)

288000u
H

VOUT

 9

EVOLVED ANTENNA FROM
GENERATION 90

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

 10

OTHER STRUCTURES

 11

MAIN POINTS

• Reuse becomes increasingly important as
larger digital and analog circuits are created
by evolvable hardware techniques because

• it avoids the need to reinvent the wheel
on each occasion when an already-learned
substructure can be used, and
• thereby accelerating the evolutionary
process for problems possessing
modularity, symmetry, and regularity and

• A developmental process facilitates reuse
• facilitates reuse,
• preserves locality,
• preserves electrical validity,
• preserves syntactic validity and

executability (thereby alleviating the need
for repair and the consequent
introduction of genetic material from
sources other than the two parents from
the current generation of the run)

 12

ASPECTS OF REUSE

(1) reusing substructures,
(2) discovering the number of

substructures,
(3) discovering hierarchical references

among substructures,
(4) passing parameters to a substructure,

and
(5) discovering the dimensionality of a

substructure (i.e., the number of
arguments possessed by the substructure)

 13

3 TYPES OF REUSE

• The circuit-constructing functions
responsible for a useful subcircuit may
reside in an automatically defined
function (ADF)

• The circuit-constructing functions
responsible for a useful subcircuit may
reside in an automatically defined copy
(ADC)

• Although often overlooked, the ordinary
crossover operation often acts as a
mechanism for reusing a subtree that is
responsible for a useful subcircuit

 14

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

Potential
Recursions

Potential
Internal
Storage

Program

Potential
Subroutines

Input Output

Potential
Loops

• Subroutines provide one way to REUSE
code  possibly with different instantiations
of the dummy variables (formal parameters)
• Loops (and iterations) provide a 2nd way to
REUSE code
• Recursion provide a 3rd way to REUSE
code
• Memory provides a 4th way  to REUSE
the results of executing code

 15

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

PROBLEM OF SYMBOLIC REGRESSION
INVOLVING DEPENDENT VARIABLE, D,

AND 6 INDEPENDENT VARIABLES

Fitness
case

L0 W0 H0 L1 W1 H1 Dependent
variable D

1 3 4 7 2 5 3 54
2 7 10 9 10 3 1 600
3 10 9 4 8 1 6 312
4 3 9 5 1 6 4 111
5 4 3 2 7 6 1 –18
6 3 3 1 9 5 4 –171
7 5 9 9 1 7 6 363
8 1 2 9 3 9 2 –36
9 2 6 8 2 6 10 –24
10 8 1 10 7 5 1 45

 16

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

SOLUTION WITHOUT ADFS

(- (* (* W0 L0) H0)
 (* (* W1 L1) H1))

W0 H0

* L0

*

*

L1 H1

*

W1

–

D = W0*L0*H0 – W1*L1*H1

L1

W1

H1

L0

W0

H0

 17

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

IF WE ADD TWO NEW VARIABLES FOR

VOLUME (V0 ANDV1), THE 6-
DIMENSIONAL NON-LINEAR

REGRESSION PROBLEM BECOMES AN
8-DIMENSIONAL PROBLEM

Fitne
ss
case

L0 W0 H0 L1 W1 H1 V0 V1 D

1 3 4 7 2 5 3 84 30 54
2 7 10 9 10 3 1 630 30 600
3 10 9 4 8 1 6 360 48 312
4 3 9 5 1 6 4 135 24 111
5 4 3 2 7 6 1 24 42 –18
6 3 3 1 9 5 4 9 180 –171
7 5 9 9 1 7 6 405 42 363
8 1 2 9 3 9 2 18 54 –36
9 2 6 8 2 6 10 96 120 –24
10 8 1 10 7 5 1 80 35 45

 18

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

TOP-DOWN VIEW OF THREE STEP

HIERARCHICAL PROBLEM-SOLVING
PROCESS

DIVIDE AND CONQUER

Subproblem 1

Subproblem 2

Original
problem

Solution to
original problem

Solution to subproblem 1

Solution to subproblem 2

Decompose Solve
subproblems

Solve original
problem

• Decompose a problem into subproblems

• Solve the subproblems

• Assemble the solutions of the subproblems
into a solution for the overall problem

 19

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

BOTTOM-UP VIEW OF THREE STEP

HIERARCHICAL PROBLEM-SOLVING
PROCESS

Identify

regularities
Change

representation Solve

Second recoding rule

First recoding ruleOriginal
representation

of the
problem

New
representation

of the
 problem

Solution to
problem

• Identify regularities

• Change the representation

• Solve the overall problem

 20

AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

AN OVERALL COMPUTER PROGRAM

CONSISTING OF ONE FUNCTION-
DEFINING BRANCH (ADF,

SUBROUTINE) AND ONE RESULT-
PRODUCING BRANCH (MAIN

PROGRAM)

(progn
 (defun volume (arg0 arg1 arg2)
 (values
 (* arg0 (* arg1 arg2))))
(values (- (volume L0 W0 H0)
 (volume L1 W1 H1))))

progn

(ARG0 ARG1

defun

ARG0 *

ARG2ARG1

*

valuesVOLUME

–

values

L1 W1 H1

VOLUME

W0 H0L0

VOLUME

 21

8 MAIN POINTS FROM GENETIC
PROGRAMMING II: AUTOMATIC

DISCOVERY OF REUSABLE PROGRAMS

• ADFs work.
• ADFs do not solve problems in the style of
human programmers.
• ADFs reduce the computational effort
required to solve a problem.
• ADFs usually improve the parsimony of the
solutions to a problem.
• As the size of a problem is scaled up, the
size of solutions increases more slowly with
ADFs than without them.
• As the size of a problem is scaled up, the
computational effort required to solve a
problem increases more slowly with ADFs
than without them.
• The advantages in terms of computational
effort and parsimony conferred by ADFs
increase as the size of the problem is scaled
up.

 22

REUSE

AUTOMATICALLY DEFINED
ITERATIONS (ADIS)

• Overall program consisting of an
automatically defined function ADF0, an
iteration-performing branch IPB0, and a
result-producing branch RPB0.
• Iteration is over a known, fixed set
• protein or DNA sequence (of varying
length
• time-series data
• two-dimensional array of pixels
• bit positions in a digital register

 23

REUSE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

GENERATION 20 OUT-OF-SAMPLE

ERROR RATE 1.6%
(progn

 (defun ADF0 ()
(ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?))) (ORN (ORN
(ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?) (H?))))))

 (defun ADF1 ()
(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?)))
(ORN (ORN (T?) (L?)) (ORN (T?) (W?))))))

 (defun ADF2 ()
(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))

 (progn (loop-over-residues
 (SETM0 (+ (- (ADF1) (ADF2)) (SETM3 M0))))

 (values (% (% M3 M0) (% (% (% (- L -0.53) (* M0
M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 M2))) M2)) (%
M3 M0))))))

 24

REUSE

EXAMPLE OF A PROGRAM WITH A
FOUR-BRANCH AUTOMATICALLY

DEFINED LOOP (ADL0) AND A RESULT-
PRODUCING BRANCH

SETM1

0

IFLTE

LEN M1 -73 +22

values

SETM0

M0

+

values

READV

M1

SETM1LIST
progn

%

M0 LEN

ADL0+

M1 1

defloop

progn

ADL0

400

410

411 412 413

414

415

416

417

420

440

450

460

470

 25

REUSE

AUTOMATICALLY DEFINED
RECURSION (ADR0) AND A RESULT-

PRODUCING BRANCH
• a recursion condition branch, RCB
• a recursion body branch, RBB
• a recursion update branch, RUB
• a recursion ground branch, RGB

progn

defrecursion values

ADL0 LIST values IFGTZ * IFGTZ ADR0

ARG0 IFGTZ 1 3 RLI -1 1 5

ARG01ARG0 -1

ADR0 IFGTZ IFGTZ

-

ARG0 1

RLI -1 1

ARG0

RLI 1 -1

ARG0

600

610 670

611 612

613

620

621

622 623 624

630

631 635 640

632

633 634

636

637

638 639 641 643 644

642

650

651 652

660 680

661

662

663 664 681

 26

ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH 1 TWO-ARGUMENT

AUTOMATICALLY DEFINED FUNCTION
(ADF0) AND 1 RESULT-PRODUCING
BRANCH – ARGUMENT MAP OF {2}

progn

400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491

 27

ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH ARGUMENT MAP OF

{2, 2} CREATED USING THE
OPERATION OF BRANCH

DUPLICATION

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

 28

ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH ARGUMENT MAP OF
{3} CREATED USING THE OPERATION

OF ARGUMENT DUPLICATION

progn

defun

ADF0 values

OR

ARG2 AND

LIST

610

611 612 619

ARG0
613

ARG1
614 620

621
622

623

ARG1

624

ARG2
615

ARG0

values

AND

D1 D2 D0

D3

ADF0 NAND

ADF0

D4 D0

NOR

670

681

682 683

687

690

688

691

D2

684

D4 D0

NOR
689 695

696 697

600

 29

DEVELOPMENTAL GP

THE INITIAL CIRCUIT
• Initial circuit consists of embryo and test
fixture
• Embryo has modifiable wires (e.g., Z0 AND
Z1)

C FLIP

LIST1

2 3

-

• Test fixture has input and output ports and
usually has source resistor and load resistor.
There are no modifiable wires (or modifiable
components) in the test fixture.

 30

DEVELOPMENTAL GP

THE INITIAL CIRCUIT

• Circuit-constructing program trees consist
of
• Component-creating functions
• Topology-modifying functions
• Development-controlling functions

• Circuit-constructing program tree has one
result-producing branch for each modifiable
wire in embryo of the initial circuit

 31

DEVELOPMENTAL GP

CIRCUIT FROM A CIRCUIT-
CONSTRUCTING PROGRAM TREE AND

LISP S-EXPRESSION

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 1 0 1 1 1 2

1 3 1 4 1 5 1 7 1 81 6 1 9 2 0 2 1

2 2

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

 32

DEVELOPMENTAL GP

RESULT OF COMPONENT-CREATING
FUNCTION (CAPACITOR-INSERTING C
FUNCTION) AND ITS VALUE-SETTING

SUBTREE (ARITHMETIC-PERFORMING
SUBTREE)

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

 33

DEVELOPMENTAL GP

RESULT OF TOPOLOGY MODIFYING
FUNCTION (SERIES DIVISION

FUNCTION SERIES)

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

 34

CIRCUIT CONSISTING OF ONE T-
SECTION

0

0.5

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

Frequency

Vo
lta
ge

 35

CIRCUIT CONSISTING OF TWO T-
SECTIONS

0

0.5

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

Frequency

Vo
lta
ge

 36

CIRCUIT CONSISTING OF SIX T-
SECTIONS

0

0.5

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz
Frequency

Vo
lta
ge

A FIRST ILLUSTRATIVE

CHROMOSOME FOR ONE T-SECTION
L 106 2 6 C 186 6 0 L 106 6 3 W 0 0 7 C 100 0 7 C 200 8 0

CHROMOSOME FOR CIRCUIT
CONSISTING OF TWO T-SECTIONS

L 106 2 6 C 186 6 0 L 106 6 7 L 106 7 8 C 186 8 0 L 106 8 3

SUB-STRING PRODUCING A T-SECTION

L 106 2 6 C 186 6 0 L 106 6 3

CHROMOSOME OF FIRST PARENT
L 106 2 6 W 0 6 7 C 186 7 0 W 0 7 8 L 106 8 9 W 0 9 3

 37

CHROMOSOME OF SECOND PARENT
W 0 8 6 W 0 9 3 W 0 7 8 L 106 6 9 C 186 8 0 L 106 2 7

RESULT OF A CROSSOVER
L 106 2 6 W 0 6 7 C 186 7 0 L 106 6 9 C 186 8 0 L 106 2 7

 38

A CIRCUIT-CONSTRUCTING PROGRAM
TREE THAT DEVELOPS INTO THE

SINGLE T-SECTION

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

END

100

 39

A CIRCUIT-CONSTRUCTING PROGRAM
TREE THAT DEVELOPS INTO THE TWO

T-SECTIONS

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

200

 40

CIRCUIT-CONSTRUCTING PROGRAM
TREE CONTAINING AUTOMATICALLY

DEFINED FUNCTION ADF0 THAT
DEVELOPS INTO THE TWO T-

SECTIONS

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

SERIES

ADF0 ADF0

ADF0

END

ADF0 ARG0

 41

DISCOVERING THE NUMBER OF
SUBSTRUCTURES

• 4 occurrences of 3-ported automatically
defined function ADF0
• 2 occurrences of 4-ported automatically
defined function ADF3
• 1 occurrence of 3-ported automatically
defined function ADF1

GENETICALLY EVOLVED DOUBLE-
BANDPASS FILTER

 42

DISCOVERING THE NUMBER OF
SUBSTRUCTURES

QUADRUPLY-USED SUBCIRCUIT

PRODUCED BY AUTOMATICALLY
DEFINED FUNCTION ADF0

TWICE-USED FOUR-PORTED
SUBCIRCUIT PRODUCED BY

AUTOMATICALLY DEFINED FUNCTION
ADF3

 43

DISCOVERING THE NATURE OF THE
HIERARCHICAL REFERENCES AMONG

SUBSTRUCTURES

HIERARCHY OF BRANCHES FOR THE
BEST-OF-RUN CIRCUIT- FROM

GENERATION 158

RPB2

execute

ADF4 {1}

RPB1RPB0

ADF3 {1} ADF2 {1}ADF3 {1}

ADF2 {1} ADF2 {1} ADF2 {1}

BEST-OF-RUN CIRCUIT FROM
GENERATION 158

 44

DISCOVERING THE NATURE OF THE
HIERARCHICAL REFERENCES AMONG

SUBSTRUCTURES

In addition to the mundane matter of
inserting an ordinary 5,130-nanofarad
capacitor C112, the execution of the three-
ported automatically defined function ADF3

• ADF3 inserts a parameterized capacitor
C39 whose component value is dependent
on the dummy variable ARG0 that is
passed into automatically defined
function ADF3 from the program that
calls ADF3, and

• ADF3 calls automatically defined function
ADF2. A dummy variable ARG0 is passed
along from ADF3 to ADF2. In turn, ADF2
creates a parameterized inductor whose
component value is dependent on this
dummy variable.

 45

PASSING A PARAMETER TO A
SUBSTRUCTURE

THREE-PORTED AUTOMATICALLY
DEFINED FUNCTION ADF3 OF THE

BEST-OF-RUN CIRCUIT FROM
GENERATION 158 FOR GENETICALLY

EVOLVED CROSSOVER (WOOFER-
TWEETER) FILTER

ADF3 CONTAINS CAPACITOR C39

PARAMETERIZED BY DUMMY
VARIABLE ARG0

 46

THE FIRST RESULT-PRODUCING
BRANCH, RPB0, CALLING ADF3

(PARALLEL0 (L (+ (– 1.883196E-01 (– -9.095883E-02 5.724576E-
01)) (– 9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+
(+ -6.668774E-01 -8.770285E-01) 4.587758E-02) (NOP END))
(SERIES END END (PARALLEL1 END END END END)) (FLIP
(SAFE_CUT))) (PAIR_CONNECT_0 END END END) (PAIR_CONNECT_0 (L
(+ -7.220122E-01 4.896697E-01) END) (L (– -7.195599E-01
3.651142E-02) (SERIES (C (+ -5.111248E-01 (– (– -6.137950E-01
-5.111248E-01) (– 1.883196E-01 (– -9.095883E-02 5.724576E-
01)))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END)))
(NOP END)))

AUTOMATICALLY DEFINED FUNCTION

ADF3
(C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01 -9.452780E-01))
(+ ARG0 6.953752E-02)) (– (– 5.627716E-02 (+ 2.273517E-01 (+
1.883196E-01 (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02
1.397491E-02)))))) (– (+ (– 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01
-2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+ 9.346950E-02
(+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))) (– 4.587758E-
02 -2.340137E-01)) 3.226026E-01) (+ -7.220122E-01 (– -
9.131658E-01 6.595502E-01)))) 3.660116E-01)) 9.496355E-01)
(THREE_GROUND_0 (C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01
-9.452780E-01)) (+ (– (– -7.195599E-01 3.651142E-02) -
9.761651E-01) (– (+ (– (– -7.195599E-01 3.651142E-02) -
9.761651E-01) 6.953752E-02) 3.651142E-02))) (– (– 5.627716E-02
(– 1.883196E-01 (– -9.095883E-02 5.724576E-01))) (– (+ (–
2.710414E-02 -2.807583E-01) (+ -6.137950E-01 (+ ARG0
6.953752E-02))) (– -8.770285E-01 (– -4.049602E-01 -2.192044E-
02))))) (+ (+ 1.883196E-01 -7.195599E-01) 3.660116E-01))
9.496355E-01) (NOP (FLIP (PAIR_CONNECT_0 END END END)))) (FLIP
(SERIES (FLIP (FLIP (FLIP END))) (C (– (+ 6.238477E-01
6.196514E-01) (+ (+ (– (– 4.037348E-01 4.343444E-01) (+ -
7.788187E-01 (+ (+ (– -8.786904E-01 1.397491E-02) (– -
6.137950E-01 (– (+ (– 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01
-2.192044E-02))))) (+ (+ 7.215142E-03 1.883196E-01) (+
7.733750E-01 4.343444E-01))))) (– (– -9.389297E-01 5.630820E-
01) (+ -5.840433E-02 3.568947E-01))) -8.554120E-01)) (NOP
END)) END)) (FLIP (adf2 9.737455E-01))))

 47

DISCOVERING THE NUMBER OF
ARGUMENTS POSSESSED BY

SUBSTRUCTURES

• In a run on the even-6-parity problem, the
Genetic Programming Problem Solver
(GPPS) determined that the genetically
evolved solution would consist of
• 1 result-producing branch (RPB),
• 1 automatically defined loop (ADL), and
• 2 two-argument automatically defined

functions.
• The architecture-altering operations in
GPPS determined that the automatically
defined functions would possess two
arguments.

 48

A DEVELOPMENTAL PROCESS CAN
PRESERVE LOCALITY

• Because most of the component-creating,
topology-modifying, and development-
controlling functions operate on a small local
area of the circuit, the subtrees that are
transplanted by the crossover operation
generally operate locally.
• Thus, when a crossover replaces a subtree
in one individual with a subtree from another
individual, it (usually) replaces a local
structure in the circuit created by the first
individual with a local structure in the circuit
created by the second individual.
• The developmental process works in
conjunction with the crossover operation in
preserving locality.

 49

A DEVELOPMENTAL PROCESS CAN
PRESERVE ELECTRICAL

CONNECTIVITY

• There are no unconnected leads in the
initial circuit.
• Each component-creating, topology-
modifying, and development-controlling
function preserves connectivity at each stage
of the developmental process.
• The result is that there are no unconnected
leads in the fully developed circuit.

 50

A DEVELOPMENTAL PROCESS CAN
FACILITATE REUSE

 51

OFTEN-USED GA/ES REPRESENTATION
FOR CIRCUIT SYNTHESIS

A mixture of real-valued variables, integer-
valued variables, and categorical variables
are encoded in the chromosome
L .220 2 3 C 403. 3 6 L .528 6 9 L .041 9 0

• Bit-string chromosome
Resistor | 2.5 Ω | Node 3 | Node 6
0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0

• The component type
• The component value
• The node to which the component's 1st

lead is connected
• The node to which the component's 2nd

lead is connected

 52

PROBLEMS WITH OFTEN-USED GA/ES
REPRESENTATION FOR CIRCUIT

SYNTHESIS

Chromosome #1
 1st Component | 2nd Component
L .220 1 2 C 403. 2 0

Chromosome #2
 1st Component | 2nd Component
R 250. 0 1 C 100. 1 2

Nominal Offspring #1 is invalid
1st Component | 2nd Component
L .220 1 2 C 100. 1 2

• Penalize (in fitness measure)
• Delete
• Repair (most common method)

• Inundate

 53

PROBLEMS — CONTINUED

FIRST PARENT

SECOND PARENT

OFFSPRING

 54

ADDITIONAL ISSUES

(6) discovering the type of substructures (e.g.,
subroutines, iterations, loops, recursions, or
storage)
(7) discovering a general solution in the form
of a parameterized topology containing free
variables
(8) dynamically discovering the size and
shape of the solution

 55

DISCOVERING THE TYPE OF
SUBSTRUCTURES (E.G., SUBROUTINES,
ITERATIONS, LOOPS, RECURSIONS, OR

STORAGE)

• The architecture-altering operations can
dynamically create, duplicate, and delete
subroutines, loops, recursions, and internal
storage during a run
• In a run of the problem of evolving a
computer program for the even-6-parity
problem, the architecture-altering operations
in GPPS determined that the program
architecture would be
• 1 result-producing branch (RPB), and
• 2 automatically defined loops (ADLs).

 56

PARAMETERIZED TOPOLOGIES

VALUE-SETTING SUBTREES — 3 WAYS

ARITHMETIC-PERFORMING SUBTREE

3.2921.234

*

+

2.963

C

END

SINGLE PERTURBABLE CONSTANT

4.809

C

END
FREE VARIABLE F

3.2921.234

*

+

C

END

F

 57

PARAMETERIZED TOPOLOGY FOR
"GENERALIZED" LOWPASS FILTER

VARIABLE CUTOFF LOWPASS FILTER

• Lowpass filter whose passband ends at
frequencies f = 1,000, 1,780, 3,160, 5,620,
10,000, 17,800, 31,600, 56,200, 100,000 Hz

f
L

7100198.81 ×=

()()
() f

f
f

ff
fffL ln104451.2ln

104636.3
103714.9103331.1107387.4103406.12

8

12

2516128

+×≈+
+×

+×+×+××=
−

f
f

L ln2100262.23
8

+×=

f
L

7107297.34 ×=

f
C

5106786.11 ×=
f

C
5106786.12 ×=

f
C

5103552.13 ×=

f
C

5104484.64 ×=

f
C

5101056.15 ×=

L2

 58

PARAMETERIZED TOPOLOGY USING
CONDITIONAL DEVELOPMENTAL
OPERATORS (GENETIC SWITCH)

VARIABLE-CUTOFF

LOWPASS/HIGHPASS FILTER CIRCUIT
• Best-of-run circuit from generation 93
when inputs call for a highpass filter (i.e., F1
> F2)

1
100

=1 F
Fµ

C 1
2.57

=2 F
Fµ

C 1
9.49

=3 F
Fµ

C 1
2.57

=4 F
Fµ

C
1
9.49

=5 F
Fµ

C 1
9.49

=6 F
Fµ

C

1
3.56

=1 F
H

L 1
113

=6 F
H

L
1
3.56

=2 F
H

L 1
3.56

=3 F
H

L 1
3.56

=4 F
H

L 1
3.56

=5 F
H

L

• Best-of-run circuit from generation 93
when inputs call for a lowpass filter

 59

1
113

=1 F
H

L
1

218
=2 F

H
L 1

218
=3 F

H
L 1

218
=4 F

H
L

1
9.58

=5 F
H

L

1
183

=1 F
Fµ

C
1

219
=2 F

Fµ
C 1

219
=3 F

Fµ
C

1
7.91

=4 F
Fµ

C

 60

AUTOMATIC SYNTHESIS OF A YAGI-
UDA WIRE ANTENNA USING GENETIC

ALGORITHM (LINDEN 1997)

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

• When the genetic algorithm (GA) operating
on fixed-length character strings was used to
synthesize a particular Yagi-Uda wire
antenna by Linden (1997), the chromosome
was based on
• a particular number of reflectors (one)

and
•a particular number of directors.

The chromosome encoded
• the spacing between the parallel wires
• the length of each of the parallel wires

 61

AUTOMATIC SYNTHESIS OF A WIRE
ANTENNA

EXAMPLE OF TURTLE FUNCTIONS
USED TO CREATE WIRE ANTENNA

1 (PROGN3
2 (TURN-RIGHT 0.125)
3 (LANDMARK
4 (REPEAT 2
5 (PROGN2
6 (DRAW 1.0 HALF-MM-WIRE)
7 (DRAW 0.5 NO-WIRE)))
8 (TRANSLATE-RIGHT 0.125 0.75))

(a) (b) (c) (d) (e) (f) (g)

 62

BEST-OF-RUN ANTENNA

0 0.5 1 1.5 2
0.2

0

0.2

x(m)

y(
m

)

• The GP run discovered

(1) the number of reflectors (one),
(2) the number of directors,
(3) the fact that the driven element, the

directors, and the reflector are all single
straight wires,

(4) the fact that the driven element, the
directors, and the reflector are all
arranged in parallel,

(5) the fact that the energy source (via the
transmission line) is connected only to
single straight wire (the driven element)
 that is, all the directors and reflectors
are parasitically coupled

• Characteristics (3), (4), and (5) are essential
characteristics of the Yagi-Uda antenna

