EMERGENCE OF CREATIVITY (AND OTHER THINGS) IN GENETIC PROGRAMMING

SFI-UM-CSCS WORKSHOP ANN ARBOR THURSDAY NOVEMBER 13, 2003

John R. Koza Consulting Professor (Medical Informatics) Department of Medicine School of Medicine Stanford University

Consulting Professor Department of Electrical Engineering School of Engineering Stanford University

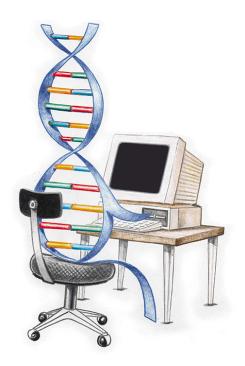
E-MAIL: <u>koza@stanford.edu</u> <u>http://www.smi.stanford.edu/people/koza/</u> "the ... challenge of creating ... complex systems with particular structural or dynamic properties, e.g., to create:

 architectural or computer chip <u>designs</u> <u>that achieve desired goals subject to</u> <u>various constraints;</u>

• • •

• physical robots to do specified jobs ...

WORKSHOP DESCRIPTION — CONTINUED


"Part of the challenge in creating complex systems like those listed is that <u>while some</u> <u>properties can be more-or-less directly</u> <u>designed into a system, other properties</u> <u>emerge</u> from the interaction of the system's parts.

"In addition, there is a growing interest in approaches to design that don't just take the emergent properties as complexities to be kept under control, but instead <u>try to harness</u> <u>those emergent properties to achieve design</u> <u>goals</u>"

GENETIC PROGRAMMING

WHAT'S EMERGENT IN GENETIC PROGRAMMING?

DEFINITION OF "EMERGENT"

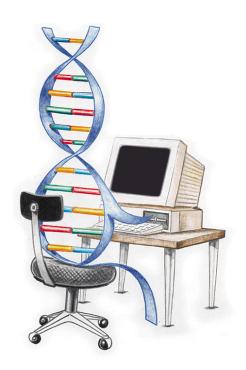
DEFINITION OF "EMERGENT"

• Getting more than you're entitled to

WHAT'S EMERGENT IN GENETIC PROGRAMMING?

• Solutions to problems — Starting from a high-level statement of the problem

36 HUMAN-COMPETITIVE RESULTS

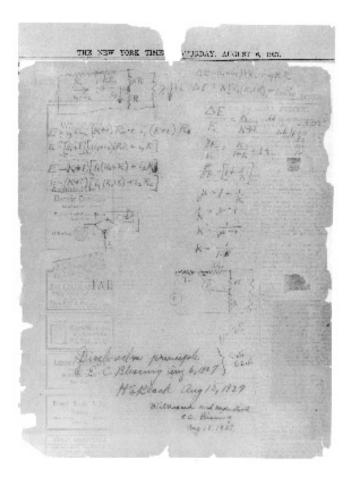

	Claimed instance	Basis for claim of human- competitiveness	Reference
1	Creation of a better-than-classical quantum algorithm for the Deutsch-Jozsa "early promise" problem	B, F	Spector, Barnum, and Bernstein 1998
2	Creation of a better-than-classical quantum algorithm for Grover's database search problem	B, F	Spector, Barnum, and Bernstein 1999
3	Creation of a quantum algorithm for the depth- two AND/OR query problem that is better than any previously published result	D	Spector, Barnum, Bernstein, and Swamy 1999; Barnum, Bernstein, and Spector 2000
4	Creation of a quantum algorithm for the depth- one OR query problem that is better than any previously published result	D	Barnum, Bernstein, and Spector 2000
5	Creation of a protocol for communicating information through a quantum gate that was previously thought not to permit such communication	D	Spector and Bernstein 2003
6	Creation of a novel variant of quantum dense coding	D	Spector and Bernstein 2003
7	Creation of a soccer-playing program that won its first two games in the Robo Cup 1997 competition	Н	Luke 1998
8	Creation of a soccer-playing program that ranked in the middle of the field of 34 human- written programs in the Robo Cup 1998 competition	н	Andre and Teller 1999
9	Creation of four different algorithms for the transmembrane segment identification problem for proteins	B , E	Sections 18.8 and 18.10 of <i>GP-2 book</i> and sections 16.5 and 17.2 of GP-3 book
10	Creation of a sorting network for seven items using only 16 steps	A, D	Sections 21.4.4, 23.6, and 57.8.1 of GP-3 book
11	Rediscovery of the Campbell ladder topology for lowpass and highpass filters	A, F	Section 25.15.1 of GP-3 book and section 5.2 of GP-4 book
12	Rediscovery of the Zobel " <i>M</i> -derived half section" and "constant <i>K</i> " filter sections	A, F	Section 25.15.2 of GP-3 book
13	Rediscovery of the Cauer (elliptic) topology for filters	A, F	Section 27.3.7 of GP-3 book
14	Automatic decomposition of the problem of synthesizing a crossover filter	A, F	Section 32.3 of GP-3 book
15	Rediscovery of a recognizable voltage gain stage and a Darlington emitter-follower section of an amplifier and other circuits	A, F	Section 42.3 of GP-3 book
16	Synthesis of 60 and 96 decibel amplifiers	A, F	Section 45.3 of GP-3 book
17	Synthesis of analog computational circuits for squaring, cubing, square root, cube root, logarithm, and Gaussian functions	A, D, G	Section 47.5.3 of GP-3 book
18	Synthesis of a real-time analog circuit for time- optimal control of a robot	G	Section 48.3 of GP-3 book
19	Synthesis of an electronic thermometer	A, G	Section 49.3 of GP-3 book
20	Synthesis of a voltage reference circuit	A, G	Section 50.3 of GP-3 book

21	Creation of a cellular automata rule for the	D, E	Andre, Bennett, and Koza
	majority classification problem that is better		1996 and section 58.4 of GP-3
	than the Gacs-Kurdyumov-Levin (GKL) rule		book
	and all other known rules written by humans		
22	Creation of motifs that detect the D-E-A-D	С	Section 59.8 of GP-3 book
	box family of proteins and the manganese		
	superoxide dismutase family		
23	Synthesis of topology for a PID-D2	A, F	Section 3.7 of GP-4 book
	(proportional, integrative, derivative, and		
	second derivative) controller		
24	Synthesis of an analog circuit equivalent to	A, F	Section 4.3 of GP-4 book
	Philbrick circuit		
25	Synthesis of a NAND circuit	A, F	Section 4.4 of GP-4 book
26	Simultaneous synthesis of topology, sizing,	A. F, G	Chapter 5 of GP-4 book
	placement, and routing of analog electrical		
	circuits		
27	Synthesis of topology for a PID (proportional,	A, F	Section 9.2 of GP-4 book
	integrative, and derivative) controller		
28	Rediscovery of negative feedback	A, E, F, G	Chapter 14 of GP-4 book
29	Synthesis of a low-voltage balun circuit	Α	Section 15.4.1 of GP-4 book
30	Synthesis of a mixed analog-digital variable		Section 15.4.2 of GP-4 book
	capacitor circuit	Α	
31	Synthesis of a high-current load circuit	Α	Section 15.4.3 of GP-4 book
32	Synthesis of a voltage-current conversion		Section 15.4.4 of GP-4 book
	circuit	Α	
33	Synthesis of a Cubic function generator	Α	Section 15.4.5 of GP-4 book
34	Synthesis of a tunable integrated active filter	Α	Section 15.4.6 of GP-4 book
35	Creation of PID tuning rules that outperform	A, B, D, E, F, G	Chapter 12 of GP-4 book
	the Ziegler-Nichols and Åström-Hägglund		
	tuning rules		
36	Creation of three non-PID controllers that	A, B, D, E, F, G	Chapter 13 of GP-4 book
	outperform a PID controller that uses the		
	Ziegler-Nichols or Åström-Hägglund tuning		
	rules		

WHAT'S EMERGENT IN GENETIC PROGRAMMING? — CONTINUED

- Solutions to problems
- Reuse
- Hierarchy
- Architecture
- Creativity

CREATIVITY


CREATIVITY

• An illogical discontinuity

HAROLD S. BLACK DESCRIPTION OF HIS RIDE ON THE LACKAWANNA FERRY

"Then came the morning of Tuesday, August 2, 1927, when the concept of the negative feedback amplifier <u>came to me</u> <u>in a flash</u> while I was crossing the Hudson River on the Lackawanna Ferry, on my way to work. For more than 50 years, I have pondered how and why the idea came, and I can't say any more today than I could that morning. All I know is that after several years of hard work on the problem, I suddenly realized that if I fed the amplifier output back to the input ...

NOTES WRITTEN BY HAROLD S. BLACK ON A PAGE OF *THE NEW YORK TIMES* WHILE COMMUTING ON THE LACKAWANNA FERRY

BLACK (1977)

"...more than nine years would elapse before the patent was issued ... One reason for the delay was that the concept was so contrary to established beliefs."

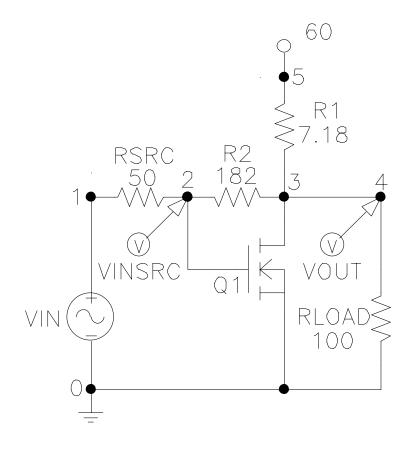
"... our patent application was treated in the same manner as one for a perpetual motion machine."

ARMSTRONG'S POSITIVE TYPE OF FEEDBACK (1914)

"[P]rogress in electronics in those early years was largely made possible by Armstrong's regenerative [positive feedback] amplifier, since there was no other economical way to obtain large amounts of gain from the primitive (and expensive) vacuum tubes of the day."...

"In short order, the positive feedback (regenerative) amplifier became a nearly universal idiom,"

ARMSTRONG'S POSITIVE TYPE OF FEEDBACK (1914) — CONTINUED


- Amplified incoming signal
- Distortion when things are non-linear

• Distortion overwhelms signal after repeated amplification

BLACK'S WORK AT AT&T 1921-1927 ON PROBLEM OF REDUCING DISTORTION IN AMPLIFIERS

- Black's first solution (1923) was entirely feed-forward
- The incoming signal is amplified by amplifier no. 1
- The amplified system is then cut back (by a resistive network) by the amplifier's amplification factor
- The cut-back (and usually somewhat distorted) signal is subtracted from the incoming signal to produce an error
- This error is then amplified by amplifier no. 2 (identical to no. 1) and then subtracted from the output of amplifier no. 1
- The result has little or no distortion
- This approach relies on identical amplifiers
- Impractical

NEGATIVE FEEDBACK AMPLIFIER (USING IRFZ44 FET TRANSISTOR IN LIEU OF VACUUM TUBES)

WHY WAS THE DISCOVERY OF NEGATIVE FEEDBACK SO DIFFICULT?

• One reason why it took an inordinate amount of time for negative feedback to gain acceptance was that human thinking often becomes channeled along the well-traveled paths of "established beliefs."

GEDANKEN EXPERIMENT USING A KNOWLEDGE-BASED LOGICAL APPROACH

• Codify all the knowledge about electronics of the time (1927)

• There is no way to reach the idea of negative feedback by logic applied to the knowledge of the times

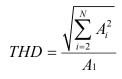
GEDANKEN EXPERIMENT — CONTINUED

"... the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would [not] have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains."

- 35 United States Code 103a

GEDANKEN EXPERIMENT — CONTINUED

• What's missing is the "flash of genius — that is, the logical discontinuity


GEDANKEN EXPERIMENT — CONTINUED

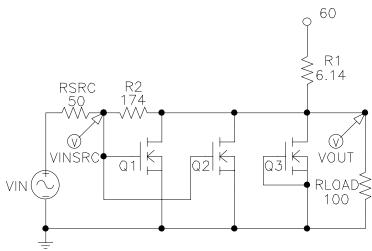
• The human contribution is the *illogic*

BLACK'S SOLUTION READILY "EMERGES" FROM THE HIGH-LEVEL STATEMENT OF THE PROBLEM OF REDUCING DISOTORTION IN AMPLIFIERS

3-PART FITNESS MEASURE

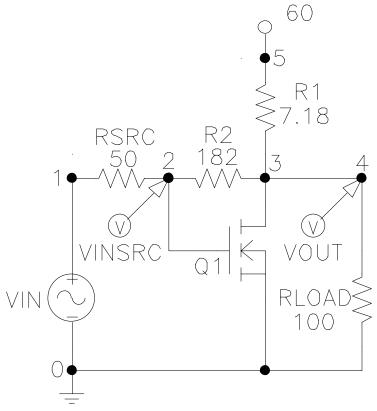
- Amplification of the incoming signal
- Minimizing of distortion

• Parsimony (number of components)


FUNCTIONS AND TERMINALS

• Allow creation of circuits with resistors, capacitors, and transistors (using a developmental process)

• The best circuit from generation 0 delivers amplification of -2.91 dB (i.e., acts as an attenuator rather than an amplifier)


• The first best-of-generation circuit that acts as an amplifier appeared in generation 9 (with only 5.37 dB amplification and total harmonic distortion of -5.65 dB)

• The first circuit satisfying the 10 dB amplification criterion and having a total harmonic distortion of less than -45 dB appeared in generation 46. This circuit has a total harmonic distortion of -54.2 dB.

BEST OF GENERATION 48

- Amplification of 10.06 dB
- Total harmonic distortion of -51.2 dB
- Infringes claims 1 and 3 of U.S. patent 2,102,671 (Black 1937)

BLACK (1977)

"Then came the morning of Tuesday, August 2, 1927, <u>when the concept of the</u> <u>negative feedback amplifier came to me</u> <u>in a flash</u>...

"... I suddenly realized that if I fed the amplifier output back to the input, in reverse phase, and kept the device from oscillating (singing, as we called it then), I would have exactly what I wanted: a means of canceling out the distortion of the output. I opened my morning newspaper and on a page of The New York Times I sketched a simple canonical diagram of a negative feedback amplifier plus the equations for the amplification with feedback. I signed the sketch, and 20 minutes later, when I reached the laboratory at 463 Street, it was witnessed, West understood, and signed by the late Earl C. Blessing."

THE AI RATIO

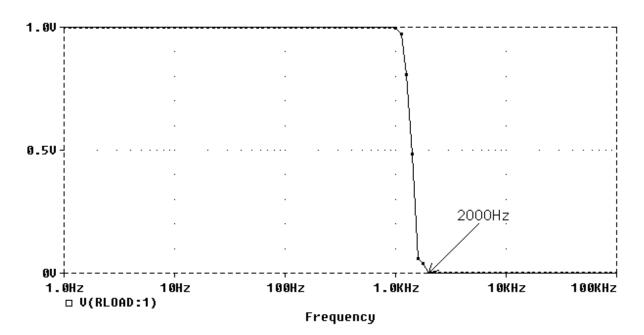
• What is delivered by the actual automated operation of an artificial method in comparison to the amount of knowledge, information, analysis, and intelligence that is pre-supplied by the human employing the method? • We define the *AI ratio* (the "artificial-tointelligence" ratio) of a problem-solving method as the ratio of that which is delivered by the automated operation of the *artificial* method to the amount of *intelligence* that is supplied by the human applying the method to a particular problem.

THE AI RATIO — CONTINUED

- Deep Blue
- Chinook

FROM JAWS-1 ...

"STRUCTURE ARISES FROM FITNESS"


BLACK'S PROBLEM OF REDUCING DISTORTION IN AMPLIFIERS

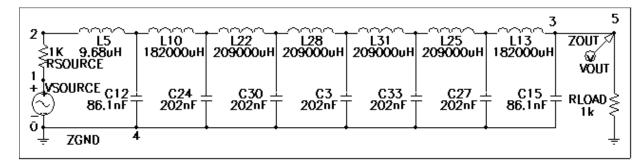
3-PART FITNESS MEASURE amplifies the incoming signal minimizes distortion

$$THD = \frac{\sqrt{\sum_{i=2}^{N} A_i^2}}{A_1}$$

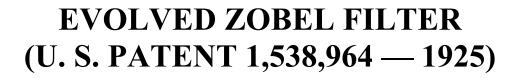
• contains a small number of components

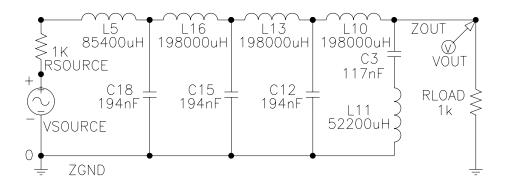
AUTOMATIC SYNTHESIS OF A LOWPASS FILTER

FITNESS MEASURE


• Ideally 1 volt below 1,000 Hertz, but no worse than 970 millivolts

• Ideally 0 volts above 2,000 Hertz, but no higher than 1 millivolts

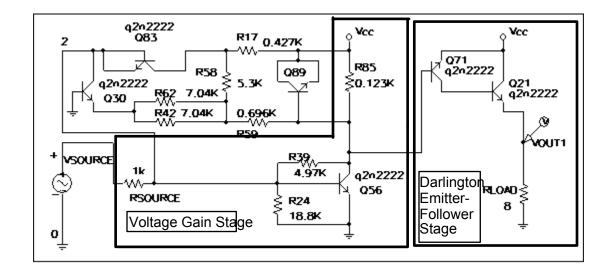

FUNCTIONS AND TERMINALS


• Allow creation of circuits with resistors, capacitors, and inductors (using a developmental process)

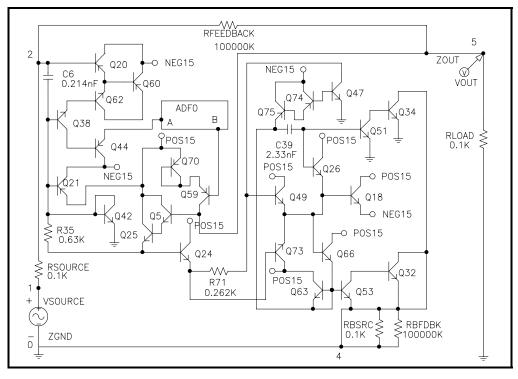
EVOLVED CAMPBELL FILTER (U. S. PATENT 1,227,113 — 1917)

• Cascade of 6 symmetric π-sections

Cascade of 3 symmetric T-sections
One *M*-derived half section (C2 and L11)

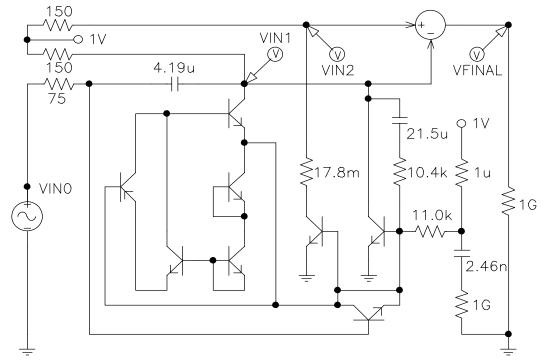

THE AI RATIO — CONTINUED

FROM JAWS-1 ...


"STRUCTURE ARISES FROM FITNESS"

GENETICALLY EVOLVED 10 DB AMPLIFIER FROM GENERATION 45

SHOWING A VOLTAGE GAIN STAGE AND QUASI-DARLINGTON EMITTER FOLLOWER SECTION



DARLINGTON EMITTER-FOLLOWER SECTION'(U. S. PATENT 2,663,806 — 1953)

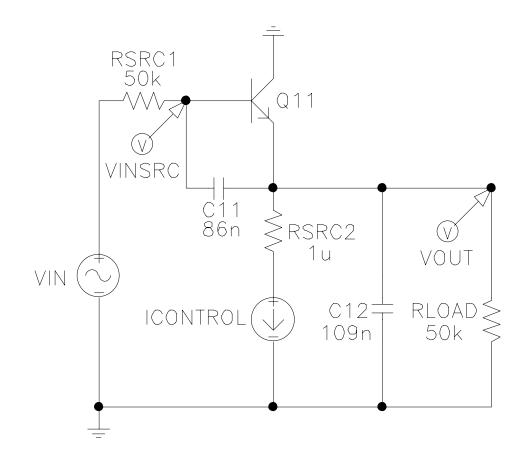
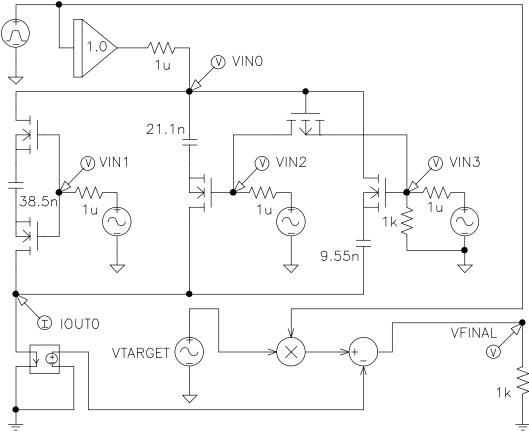
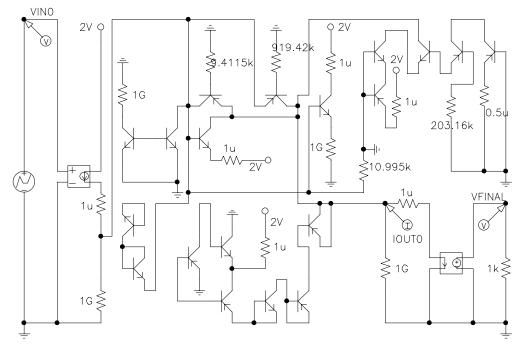
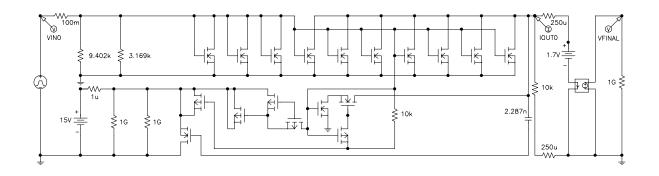
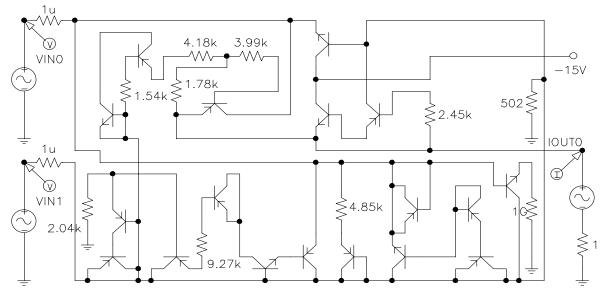


Figure I n GP-3 book	Circuit	Transistors	Patent claim
45.16	96 dB amplifier	Q5 and Q25	1
45.16	96 dB amplifier	Q53, Q32	3
47.6	Squaring computational	Q101, Q119	1
47.6	Squaring computational	Q29, Q88	4
47.10	Cubing computational	Q27, Q46	3
47.10	Cubing computational	Q46 , Q35	3
47.11	Cubing computational	Q35, Q49	3
47.12	Square root computational	Q120, Q155	2
47.15	Cube root computational	QNC19, QNC24	2
47.16	Cube root computational	QNC73, QNC74	1
47.16	Cube root computational	QNC74, QNC48	2
47.17	Logarithmic computational	Q22, Q66	4

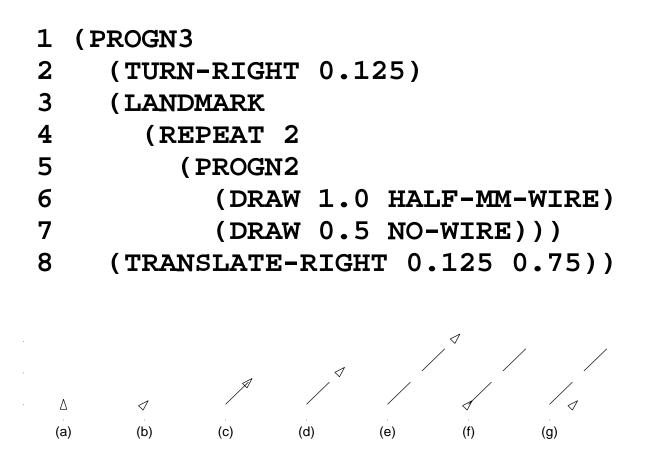

LOW-VOLTAGE BALUN CIRCUIT BEST EVOLVED FROM GENERATION 84


TUNABLE INTEGRATED ACTIVE FILTER — GENERATION 50

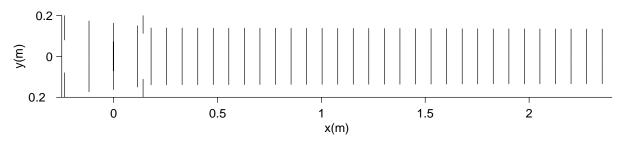

REGISTER-CONTROLLED CAPACITOR CIRCUIT — GENERATION 98


LOW-VOLTAGE CUBIC SIGNAL GENERATION CIRCUIT FROM GENERATION 182

HIGH CURRENT LOAD CIRCUIT FROM GENERATION 114



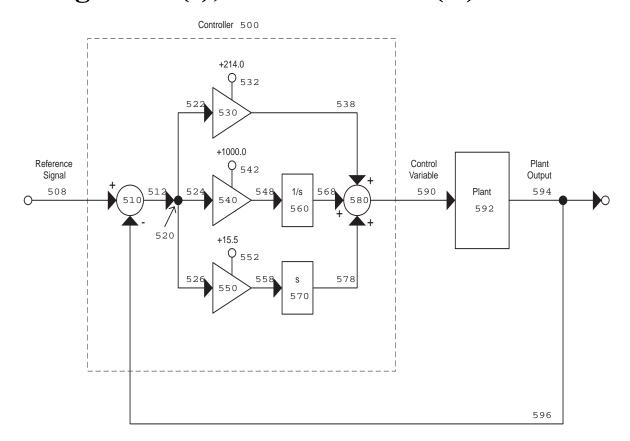
VOLTAGE-CURRENT-CONVERSION CIRCUIT FROM GENERATION 109



AUTOMATIC SYNTHESIS OF A WIRE ANTENNA

EXAMPLE OF TURTLE FUNCTIONS USED TO CREATE WIRE ANTENNA

BEST-OF-RUN ANTENNA FROM GENERATION 90

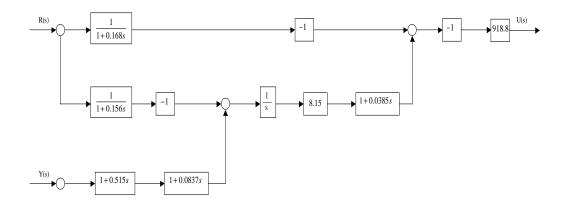

- The GP run discovered
 - (1) the number of reflectors (one),
 - (2) the number of directors,
 - (3) the fact that the driven element, the directors, and the reflector are all straight wires,
 - (4) the fact that the driven element, the directors, and the reflector are parallel,
 - (5) the fact that the energy source (the transmission line) is connected only to single straight wire (the driven element) that is, all the directors and reflectors are parasitically coupled

BEST-OF-RUN ANTENNA FROM GENERATION 90

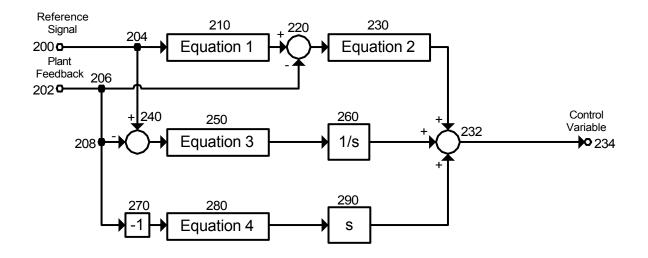
• Characteristics (3), (4), and (5) are essential characteristics of the Yagi-Uda antenna, namely an antenna with multiple parallel parasitically coupled straight-line directors, a single parallel parasitically coupled straightline reflector, and a straight-line driven element.

PID CONTROLLER

Block diagram of a plant and a PID controller composed of proportional (P), integrative (I), and derivative (D) blocks


FUNCTION SET AND TERMINAL SET FOR TWO-LAG PLANT PROBLEM

FUNCTION SET AND TERMINAL SET


F = {GAIN, INVERTER, LEAD, LAG, LAG2, DIFFERENTIAL_INPUT_INTEGRATOR, DIFFERENTIATOR, ADD_SIGNAL, SUB_SIGNAL, ADD_3_SIGNAL, ADF0, ADF1, ADF2, ADF3, ADF4}

T = { REFERENCE_SIGNAL, CONTROLLER_OUTPUT, PLANT_OUTPUT, CONSTANT_0}

BEST-OF-RUN GENETICALLY EVOLVED CONTROLLER FROM GENERATION 32 FOR THE TWO-LAG PLANT

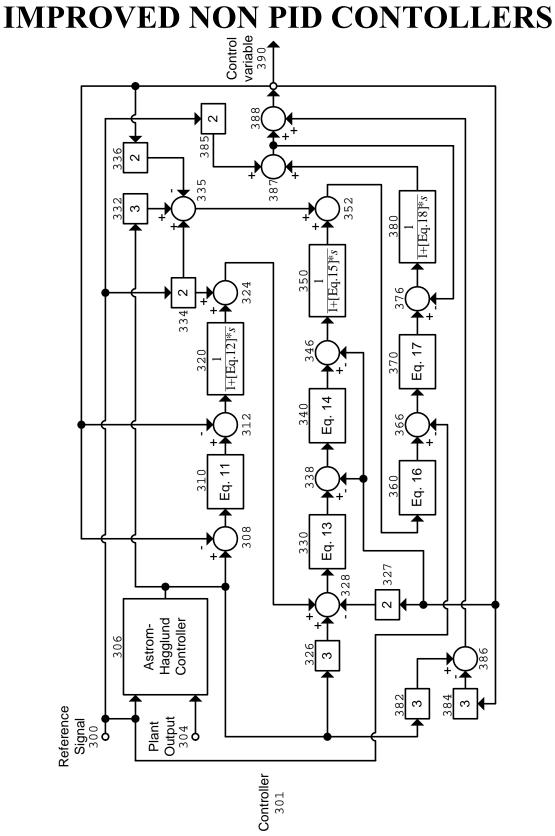
TOPOLOGY OF A PID CONTROLLER WITH NONZERO SETPOINT WEIGHTING OF THE REFERENCE SIGNAL IN THE PROPORTIONAL BLOCK BUT NO SETPOINT WEIGHTING FOR THE DERIVATIVE BLOCK

EVOLVED PID TUNING RULES

• the proportional part of the controller

 $K_{p-final} = {}_{0.72*K_u*e^{\frac{-1.6}{K_u}+\frac{1.2}{K_u^2}}-.0012340*T_u-6.1173*10^{-6}}}$

• the integrative part


$$K_{i-final} = \frac{0.72 * K_u * e^{\frac{-1.6}{K_u} + \frac{1.2}{K_u^2}}}{0.59 * T_u * e^{\frac{-1.3}{K_u} + \frac{0.38}{K_u^2}}} - .068525 * \frac{K_u}{T_u}$$

• the derivative part

 $K_{d-final} = {}_{0.108*K_u*T_u*e} e^{\frac{-1.6}{K_u}+\frac{1.2}{K_u^2}} e^{\frac{-1.4}{K_u}+\frac{0.56}{K_u^2}} - 0.0026640(e^{T_u})^{\log(1.6342^{\log K_u})}$

• b_{final} , setpoint weighting of the reference signal in the proportional block

$$b_{final} = {}_{0.25*e^{\frac{0.56}{K_u} + \frac{0.12}{K_u^2}} + \frac{K_u}{e^{K_u}}}$$

IMPROVED NON PID CONTOLLERS — CONTINUED

• Gain block 310 is parameterized by equation 11:

 $10^{\log \log \log (e^{K_u * L})/L}$ [11]

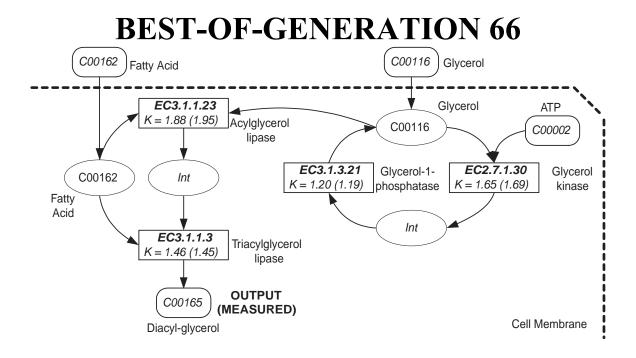
• Gain block 330 is parameterized by equation 13:

 $10^{\log \log |K_u * L|}$ [13]

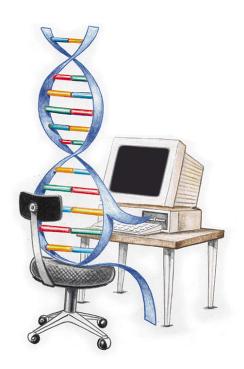
• Gain block 340 is parameterized by equation 14:

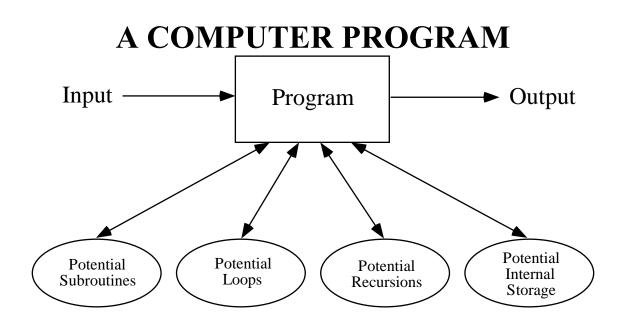
 $e^{\log|K_u/L|}$ [14]

• Gain block 360 is parameterized by equation 16:


 $10^{\log \log |K_u^*L|}$ [16]

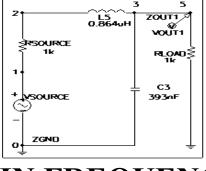
• Gain block 370 in figure 13.1 is parameterized by equation 17:

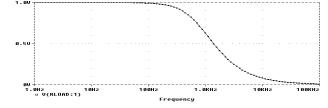

 $e^{\log(K_u)}$ [17]


• Equation 12 for lag block 320, equation 15 for lag block 350, and equation 18 for lag block 380 are the same:

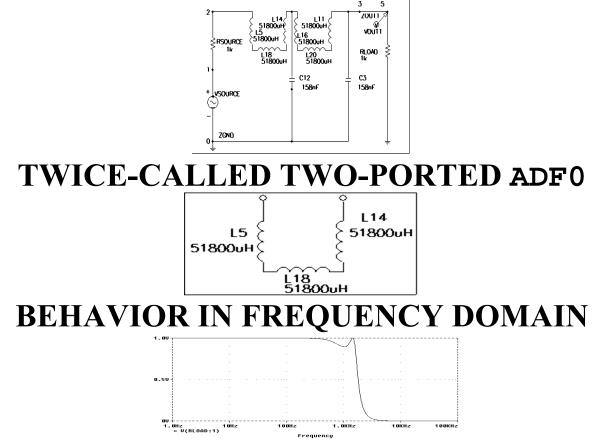
REVERSE ENGINEERING OF METABOLIC PATHWAYS

REUSE

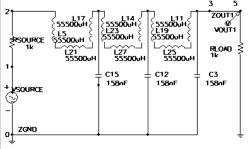


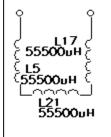

- Subroutines provide one way to REUSE code possibly with different instantiations of the dummy variables (formal parameters)
- Loops (and iterations) provide a 2nd way to REUSE code
- Recursion provide a 3rd way to REUSE code
- Memory provides a 4th way to REUSE the results of executing code

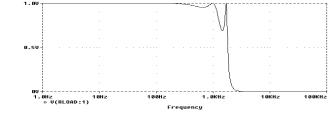
61


REUSE LOWPASS FILTER USING ADFs

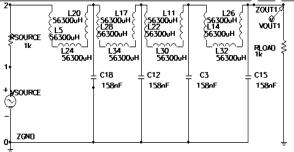
GENERATION 0 – ONE-RUNG LADDER



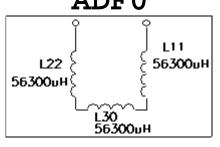

REUSE LOWPASS FILTER USING ADFs GENERATION 9 - TWO-RUNG LADDER

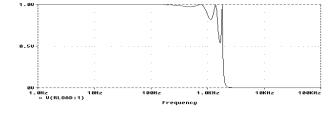


REUSE LOWPASS FILTER USING ADFs GEN 16 – THREE-RUNG LADDER

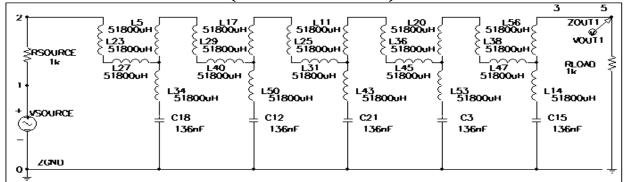


THRICE-CALLED TWO-PORTED ADF0

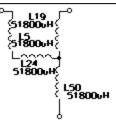


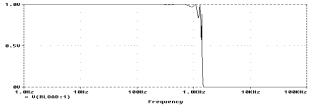


REUSE LOWPASS FILTER USING ADFs GEN 20 – FOUR-RUNG LADDER

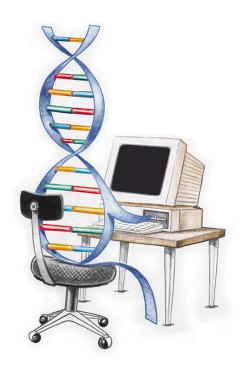


QUADRUPLY-CALLED TWO-PORTED ADF0

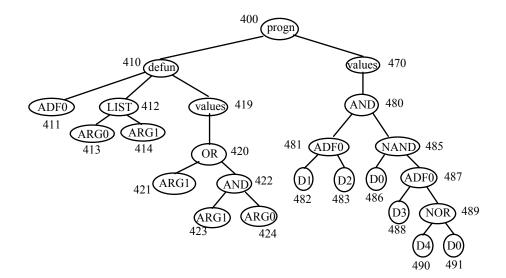




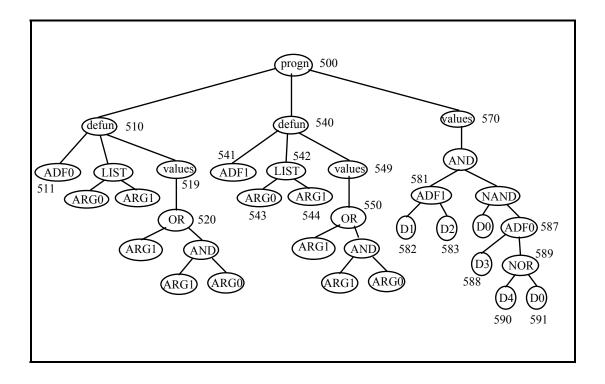
REUSE LOWPASS FILTER USING ADFS GENERATION 31 — TOPOLOGY OF CAUER (ELLIPTIC) FILTER



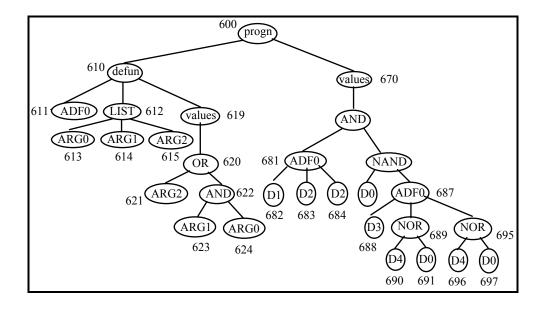
QUINTUPLY-CALLED THREE-PORTED ADF0



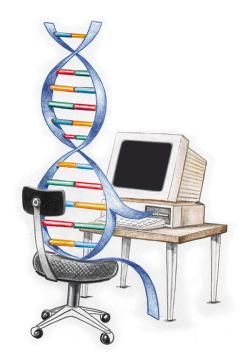
ARCHITECTURE


ARCHITECTURE-ALTERING OPERATIONS

PROGRAM WITH 1 TWO-ARGUMENT AUTOMATICALLY DEFINED FUNCTION (ADF0) AND 1 RESULT-PRODUCING BRANCH – ARGUMENT MAP OF {2}


ARCHITECTURE-ALTERING OPERATIONS

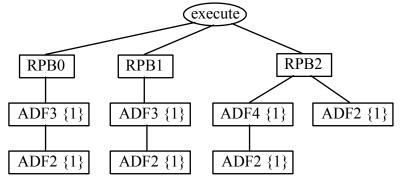
PROGRAM WITH ARGUMENT MAP OF {2, 2} CREATED USING THE OPERATION OF BRANCH DUPLICATION



ARCHITECTURE-ALTERING OPERATIONS

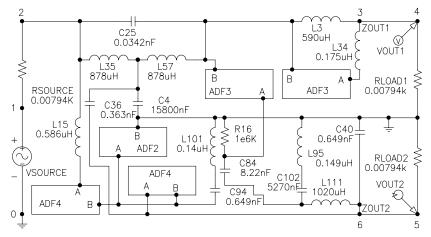
PROGRAM WITH ARGUMENT MAP OF {3} CREATED USING THE OPERATION OF ARGUMENT DUPLICATION

PARAMETER PASSING

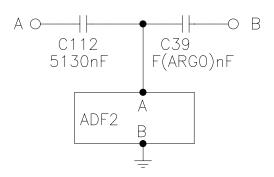

PASSING A PARAMETER TO A SUBSTRUCTURE

• The set of potential terminals for each construction-continuing subtree of an automatically defined function, $T_{ccs-adf-potential}$, is

 $T_{ccs-adf-potential} = {ARG0}$


EMERGENCE OF A PARAMETERIZED ARGUMENT IN A CIRCUIT SUBSTRUCTURE

HIERARCHY OF BRANCHES FOR THE BEST-OF-RUN CIRCUIT- FROM GENERATION 158


PASSING A PARAMETER TO A SUBSTRUCTURE

BEST-OF-RUN CIRCUIT FROM GENERATION 158

THREE-PORTED AUTOMATICALLY DEFINED FUNCTION ADF3 OF THE BEST-OF-RUN CIRCUIT FROM GENERATION 158

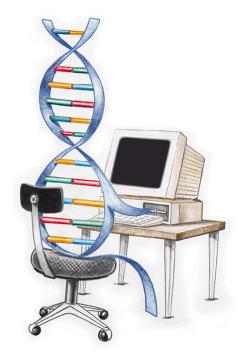
ADF3 CONTAINS CAPACITOR C39 PARAMETERIZED BY DUMMY VARIABLE ARG0

THE FIRST RESULT-PRODUCING BRANCH, RPB0, CALLING ADF3

(PARALLELO (L (+ (- 1.883196E-01 (- -9.095883E-02 5.724576E-01)) (- 9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+ (+ -6.668774E-01 -8.770285E-01) 4.587758E-02) (NOP END)) (SERIES END END (PARALLEL1 END END END END)) (FLIP (SAFE_CUT))) (PAIR_CONNECT_0 END END END) (PAIR_CONNECT_0 (L (+ -7.220122E-01 4.896697E-01) END) (L (- -7.195599E-01 3.651142E-02) (SERIES (C (+ -5.111248E-01 (- (- -6.137950E-01 -5.111248E-01) (- 1.883196E-01 (- -9.095883E-02 5.724576E-01)))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END))) (NOP END)))

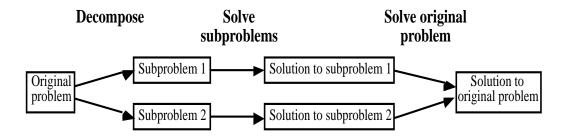
AUTOMATICALLY DEFINED FUNCTION ADF 3

(**C** (+ (- (+ (+ (+ 5.630820E-01 (- 9.737455E-01 -9.452780E-01)) (+ ARG0 6.953752E-02)) (- (- 5.627716E-02 (+ 2.273517E-01 (+ 1.883196E-01 (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))))) (- (+ (- 2.710414E-02 -2.807583E-01) (+ -6.137950E-01 -8.554120E-01)) (- -8.770285E-01 (- -4.049602E-01 -2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))) (- 4.587758E-02 -2.340137E-01)) 3.226026E-01) (+ -7.220122E-01 (- -9.131658E-01 6.595502E-01)))) 3.660116E-01)) 9.496355E-01) (THREE_GROUND_0 (C (+ (- (+ (+ 5.630820E-01 (- 9.737455E-01 -9.452780E-01)) (+ (- (- -7.195599E-01 3.651142E-02) -9.761651E-01) (- (+ (- (- -7.195599E-01 3.651142E-02) -9.761651E-01) 6.953752E-02) 3.651142E-02))) (- (- 5.627716E-02 (- 1.883196E-01 (- -9.095883E-02 5.724576E-01))) (- (+ (-2.710414E-02 -2.807583E-01) (+ -6.137950E-01 (+ ARGO **6.953752E-02)**)) (- -8.770285E-01 (- -4.049602E-01 -2.192044E-(02))))) (+ (+ 1.883196E-01 -7.195599E-01) 3.660116E-01))9.496355E-01) (NOP (FLIP (PAIR CONNECT 0 END END)))) (FLIP (SERIES (FLIP (FLIP (FLIP END))) (C (- (+ 6.238477E-01 6.196514E-01) (+ (+ (- (- 4.037348E-01 4.343444E-01) (+ -7.788187E-01 (+ (+ (- -8.786904E-01 1.397491E-02) (- -6.137950E-01 (- (+ (- 2.710414E-02 -2.807583E-01) (+ -6.137950E-01 -8.554120E-01)) (- -8.770285E-01 (- -4.049602E-01 -2.192044E-02))))) (+ (+ 7.215142E-03 1.883196E-01) (+ 7.733750E-01 4.343444E-01))))) (- (- -9.389297E-01 5.630820E-01) (+ -5.840433E-02 3.568947E-01))) -8.554120E-01)) (NOP END)) END)) (FLIP (adf2 9.737455E-01))))

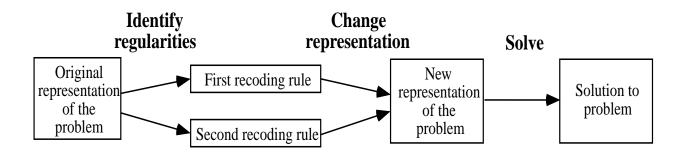

ADF3 DOES THREE THINGS

• The structure that develops out of ADF3 includes a capacitor C112 whose value (5,130 uF) is not a function of its dummy variable, ARG0.

• The structure that develops out of ADF3 has one hierarchical reference to ADF2. The invocation of ADF2 is done with a constant (9.737455E-01) and produces a 259 μ H inductor.

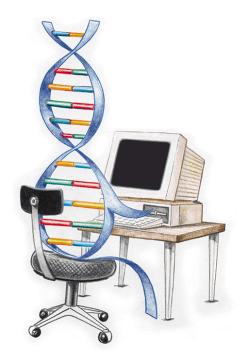

• Most importantly, the structure that develops out of ADF3 creates a capacitor (C39) whose sizing, F(ARG0), is a function of the dummy variable, ARG0, of automatically defined function ADF3. Capacitor C39 has different sizing on different invocations of automatically defined function ADF3.

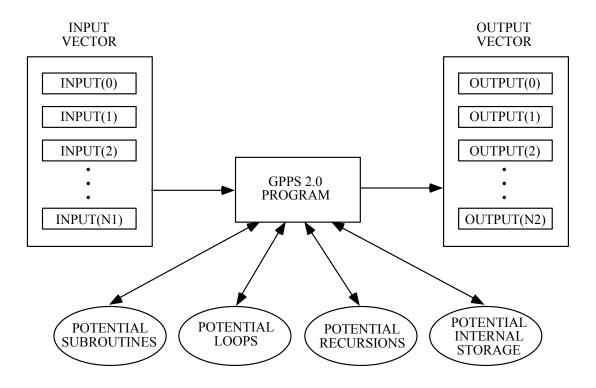
PROBLEM DECOMPOSITION


TOP-DOWN VIEW OF THREE STEP HIERARCHICAL PROBLEM-SOLVING PROCESS

DIVIDE AND CONQUER

- Decompose a problem into subproblems
- Solve the subproblems
- Assemble the solutions of the subproblems into a solution for the overall problem


BOTTOM-UP VIEW OF THREE STEP HIERARCHICAL PROBLEM-SOLVING PROCESS


• Identify regularities

- Change the representation
- Solve the overall problem

AUTOMATIC PROGRAMMING

16 ATTRIBUTES OF A SYSTEM FOR AUTOMATICALLY CREATING COMPUTER PROGRAMS

- 1 Starts with "What needs to be done"
- 2 Tells us "How to do it"
- 3 Produces a computer program
- 4 Automatic determination of program size
- 5—Code reuse
- 6 Parameterized reuse
- 7 Internal storage
- 8 Iterations, loops, and recursions
- 9 Self-organization of hierarchies
- 10 Automatic determination of program architecture
- 11 Wide range of programming constructs
- 12 Well-defined
- 13 Problem-independent
- 14 Wide applicability
- 15 Scalable

16 — Competitive with human-produced results

GENETIC PROGRAMMING OVER 15-YEAR PERIOD 1987–2002

System	Period of usage	Petacycles (10 ¹⁵ cycles) per day for entire system	Speed-up over previous system	Speed-up over first system in this table	Human- competitive results
Serial Texas Instruments LISP machine	1987– 1994	0.00216	1 (base)	1 (base)	0
64-node Transtech transputer parallel machine	1994– 1997	0.02	9	9	2
64-node Parsytec parallel machine	1995– 2000	0.44	22	204	12
70-node Alpha parallel machine	1999– 2001	3.2	7.3	1,481	2
1,000-node Pentium II parallel machine	2000– 2002	30.0	9.4	13,900	12

PROGRESSION OF RESULTS

System	Period	Speed-	Qualitative nature of the results produced		
		up	by genetic programming		
Serial LISP	1987–	1 (base)	• Toy problems of the 1980s and early		
machine	1994		1990s from the fields of artificial		
			intelligence and machine learning		
64-node	1994–	9	•Two human-competitive results involving		
Transtech	1997		one-dimensional discrete data (not patent-		
8-biy			related)		
transputer					
64-node	1995–	22	• One human-competitive result involving		
Parsytec	2000		two-dimensional discrete data		
parallel			• Numerous human-competitive results		
machine			involving continuous signals analyzed in		
			the frequency domain		
			• Numerous human-competitive results		
			involving 20 th -century patented inventions		
70-node	1999–	7.3	• One human-competitive result involving		
Alpha	2001		continuous signals analyzed in the time		
parallel			domain		
machine			• Circuit synthesis extended from topology		
			and sizing to include routing and		
			placement (layout)		
1,000-node	2000-	9.4			
Pentium II	2002		involving continuous signals analyzed in		
parallel			the time domain		
machine			• Numerous general solutions to problems		
			in the form of parameterized topologies		
			• Six human-competitive results		
			duplicating the functionality of 21 st -		
			century patented inventions		
Long (4-	2002	9.3	Generation of two patentable new		
week) runs			inventions		
of 1,000-					
node					
Pentium II					
parallel					
machine					
			1		

PROGRESSION OF QUALITATIVELY MORE SUBSTANTIAL RESULTS PRODUCED BY GENETIC PROGRAMMING IN RELATION TO FIVE ORDER-OF-MAGNITUDE INCREASES IN COMPUTATIONAL POWER

- toy problems
- human-competitive results not related to patented inventions
- 20th-century patented inventions
- 21st-century patented inventions
- patentable new inventions

THE CHALLENGE OF AUTOMATIC PROGRAMMING

"How can computers learn to solve problems without being explicitly programmed? In other words, how can computers be made to do what is needed to be done, without being told exactly how to do it?"

— Attributed to Arthur Samuel (1959)

CRITERION FOR SUCCESS

"The aim [is] ... to get machines to exhibit behavior, which if done by humans, would be assumed to involve the use of intelligence."

— Arthur Samuel (1983)